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Abstract. WebAssembly is an instruction set architecture and binary
format standard, designed for secure execution by an interpreter. Previ-
ous work has shown that WebAssembly is vulnerable to buffer overflow
due to the lack of effective protection mechanisms.
In this paper, we evaluate the implementation of Stack Smashing Pro-
tection (SSP) in WebAssembly standalone runtimes, and uncover two
weaknesses in their current implementation. The first one is the pos-
sibility to overwrite the SSP reference value because of the contiguous
memory zones inside a WebAssembly process. The second comes from
the reliance of WebAssembly on the runtime to provide randomness in
order to initialize the SSP reference value, which impacts the robustness
of the solution.
We address these two flaws by hardening the SSP implementation in
terms of storage and random generator failure, in a way that is general-
izable to all of WebAssembly. We evaluate our new, more robust, solution
to prove that the implemented improvements do not reduce the efficiency
of SSP.

Keywords: WebAssembly · Memory bugs · Stack Smashing Protection

1 Introduction

WebAssembly [20,9] has been created as a fast and secure-by-design answer to
the always increasing need for complex computation in browsers, such as 3D
rendering [29], 3D model parsing [6], gaming [26], hardware emulation [1] or
physics workloads (e.g. computational fluid dynamics [21]).

The success of WebAssembly as a portable Instruction Set Architecture (ISA)
and binary format has prompted its adoption in many applications besides
browsers.

Today, we can find WebAssembly in smart contracts [19,14], embedded de-
vices [8], secure plugins [17,7], Function as a Service (FaaS) platforms [25,11],
or as a standalone runtime [4]. The latter has a huge impact on the cloud world
and the computing world in general. Some see in the flexibility of WebAssembly
a universal binary format that could be distributed seamlessly across operat-
ing systems and hardware architectures. It also appears in various cloud-related
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projects and is considered as an alternative to Linux-based containers [28,24],
promising to be more portable, lightweight and secure.

WebAssembly claims strong security. By default, it provides sandboxing be-
tween different WebAssembly instances and between WebAssembly and its host.
It also enforces control-flow integrity, and protection against code reuse at-
tacks. However, the security of WebAssembly has been challenged in several
works [22,12]. First, WebAssembly offers weak protection against memory cor-
ruption attacks compared to native binaries. Some vulnerabilities, such as stack-
based buffer overflows, have been present in native binaries for a long time, but
are mitigated with mechanisms such as Stack Smashing Protection (SSP). This
protection was initially absent in WebAssembly [27]. Second, differences in de-
sign between WebAssembly and native binaries make the former vulnerable to
attacks that are not possible in native binaries. One example is the corruption
of heap data using a stack-based buffer overflow.

Stack Smashing Protection has been implemented in WebAssembly after the
publication of the papers discussed in the previous paragraph. In this paper,
we propose the following contributions: (i) a thorough analysis of SSP in Web-
Assembly; (ii) some proofs of concept to confirm the weaknesses of the current
implementation; (iii) the implementation of a more robust SSP mechanism in
LLVM [13] and wasi-libc;3 (iv) an evaluation of our solution.

We open-source all our code contributions: the implementation of SSP in
the WebAssembly target of the LLVM compiler;4 modifications to wasi-libc;5
adaptation of CookieCrumbler [2] (a tool used to assess the robustness of SSP
implementations) to WebAssembly; and our proofs of concept.6

The following if this paper is structured as follows. First, Section 2 and 3
presents necessary background and motivation for this work. Then, Section 4
contains our security analysis of WebAssembly SSP and our remediation propos-
als. Finally, Section 5 provides an evaluation of our work and Section 6 concludes
and gives some perspective for future work.

2 Background

We start by giving a brief introduction to buffer overflows and Stack Smashing
Protection. We also provide a quick background on WebAssembly and its inner
workings.

2.1 Buffer overflow and Stack Smashing Protection

Buffer Overflow. Buffer overflows are an old and well-known vulnerability [18].
They occur when a program stores more data in a buffer than the buffer may

3 https://github.com/WebAssembly/wasi-libc/
4 https://github.com/ThalesGroup/llvm-project/tree/new-wasm-ssp
5 https://github.com/ThalesGroup/wasi-libc/tree/new-wasm-ssp
6 https://github.com/mh4ck-Thales/Robust-SSP-in-Wasm
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hold. Writing to memory out of buffer bounds leads to the corruption of memory
adjacent to the buffer.

Buffer overflows may also happen during the execution of a WebAssembly
program.

Stack Smashing Protection. Stack Smashing Protection (SSP), also known
as stack canaries or stack cookies [5] is a defense mechanism available to prevent
exploitation of stack-based buffer overflows. SSP provides a detection mechanism
for stack-based buffer overflows and terminates the execution of the program
after the current function is executed.

At program start time, the program initializes a random reference value
(named canary or cookie) and writes it in a memory zone, preferably where
overwrite is made impossible, or at least difficult.

Each time a function is called, the function prologue is executed which cre-
ates a new stack frame and copies the canary reference value in the stack, in a
dedicated variable, the stack canary located after the buffer. The function epi-
logue checks this value against the canary reference value stored in safe memory.
If the stack canary is different from the reference value, it means that the stack
canary has been overwritten and that a stack-based buffer overflow has occurred.
In this case, a specific function is called to terminate the process.

Stack Smashing Protection is implemented in two different code bases. The
initialization of the reference value and the function called when the stack ca-
nary is overwritten is provided in the language standard library (e.g. the GNU
C standard library or the musl C standard library). The generation of the spe-
cific function prologue and epilogue for setting up and verifying the integrity of
canaries is implemented in the compiler.

2.2 WebAssembly

Overview. WebAssembly (commonly abbreviated as Wasm) is a binary format,
designed to be compact, easy to parse and fast at execution. A WebAssembly
file, containing a WebAssembly program, is named a module. An instance is a
module being executed in a runtime. WebAssembly is also an Instruction Set
Architecture (ISA), designed as a stack-based virtual machine. It was designed
to be fast and secure by design.

A lot of programming languages can be compiled to WebAssembly, with sev-
eral compilers for various languages and environments. Among the commonly
used languages are C, C++, Rust, Go, and AssemblyScript, and support is con-
stantly growing. Alongside the source code, compilers need to add their own
code and libraries for adapting the program to its host environment. For exam-
ple, browser-based WebAssembly includes specific JavaScript bindings to allow
WebAssembly to interact with the functionalities of the browser. This means that
such a WebAssembly binary will not be able to run in a different environment,
e.g. in standalone mode on a server.
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Execution model. WebAssembly bytecode is executed using a stack-based
Virtual Machine (VM). This means that each instruction gets input operands
by popping values off a stack, and pushes its eventual results on this stack
referred as the evaluation stack. There are no registers in the WebAssembly
virtual machine.

The WebAssembly bytecode is located in a specific memory managed by the
virtual machine, that is read to execute instruction, but that is not directly
accessible by the program.

In this architecture, the call stack is also stored in a dedicated memory. This
means that the return address for each function call is saved separately from
the linear memory, thus implicitly implementing backwards-edge control-flow
integrity (i.e. integrity when resuming the caller execution) and offering a strong
protection against control-flow hijacking.

Moreover, WebAssembly also implicitly enforce forward-edge control-flow in-
tegrity (i.e. integrity when calling a new function) by using function tables.
Function tables list which functions are present in the binary, where they are lo-
cated in the code and what arguments they expect. Only functions present in the
table can be called, ensuring that arbitrary assembly code cannot be executed.
However, to implement function pointers, WebAssembly has an indirect_call
instruction, which is using data from the linear memory to determine which
function to call in the function table. The signature of the function in the Web-
Assembly code must match the signature of the function in the function table,
but it is still possible for an attacker to corrupt the data in the linear memory
to divert the control flow by calling another function with the same signature.

Memory model. The WebAssembly virtual machine relies on multiple memory
regions which are represented in Figure 1, and summarized below.

The managed code memory contains the WebAssembly program code. It is
only accessible by the VM, so the WebAssembly code cannot read or modify it.

The managed call stack contains return addresses. These return addresses
are of WebAssembly’s i32 type, which is used as the type for memory pointers
and addresses.7 It is used to keep track of all the ongoing function calls, while
preventing control-flow hijacking based on return address overwrite.

The managed evaluation stack is used to give parameters to instructions
and to store their results. This stack can hold the four WebAssembly basic
types, i.e. i32, i64, f32 and f64 that are respectively integers and floating
point numbers encoded on 32 or 64 bits.

The linear memory is used to store non-scalar types, e.g. strings, arrays, or
lists. This linear memory is a single contiguous memory segment with no notion
of memory permissions. As such, all memory in the linear memory is readable and
writable. Linear memory does not use any address randomization mechanisms,
such as Address Space Layout Randomization (ASLR) or Position-Independent
Executables (PIE), which are supported by all major operating systems. The
7 A proposed extension of WebAssembly is using the i64 type to address the memory,

but this extension is not addressed in this paper.
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Fig. 1. The memory layout of a WebAssembly virtual machine

management of this memory is left to the program, but for most programming
languages and their respective compilers, the structure used is the same as the
one widely used in native binaries, which includes a stack, a heap and a data
zone for static or predetermined values. These memory zones contain most of the
data used by the program, the data being distributed between the different zones
according to the source code and the compiler used. The situations relevant to
this paper will be further described in Section 2.3.

The WebAssembly local and global variables are another memory mechanism.
As for the evaluation stack, they are restricted to the four WebAssembly basic
types. The scope of global variables is the entire module, while local variables are
only accessible by the function being executed. These variables are manipulated
through dedicated instructions and are stored in a specific table that is not
accessible from the linear memory. It is however important to notice that current
toolchains do not usually map local and global variables found in programming
languages onto WebAssembly local and global variables.

2.3 Standalone WebAssembly

WASI. By design, WebAssembly does not provide access to the host environ-
ment in which the WebAssembly program is executed. It can only be performed
using functions provided by the WebAssembly runtime, that will then interact
with the host environment as requested and store the results in linear memory or
in the evaluation stack, as an internal WebAssembly function would do. It is up
to the runtime to implement or not these special functions. In order for a Web-
Assembly binary to work with a large panel of runtimes and host environments,
standardizing such special functions was needed.
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For standalone WebAssembly, this led to the creation of the WebAssembly
System Interface (WASI). It is composed of a set of modular standards regrouped
around different use cases: filesystem, random, sockets, etc.

One of the main inspirations for the design of WASI is the POSIX standards.
This brings the development of WebAssembly applications using WASI very
close to Linux ones. Indeed, a big part of Linux applications can be recompiled
without any changes using a WASI compilation toolchain. This proximity allows
us to easily compare the implementations of security mechanisms between native
and WebAssembly binaries. It gives security researchers a baseline to compare
against when designing or evaluating new security mechanisms for WebAssembly.

WASI [23] is still evolving as a standard, but it is already widely used. Two
main versions of WASI exist to this day: WASI preview 1 (WASIp1), released
in late 2020 and WASI preview 2 (WASIp2), released in the beginning of 2024.
There is ongoing effort to implement WASIp2 in most toolchains that are sup-
porting WASIp1, but at the time of writing, most WebAssembly binaries still use
WASIp1. This paper along with its proposed proofs of concept is using WASIp1,
as most research was done before the publication of WASIp2.

Memory layout. WebAssembly compilers are leveraging the linear memory to
create a memory layout with three memory zones: a stack, a heap and a zone for
static data. These three zones can be arranged in several ways in memory, and
in practice different WebAssembly compilers made different choices resulting in
different layouts. For the purpose of this article, we focus on the two layouts
available with the LLVM toolchain, named stack-first and no-stack-first. These
layouts are represented in Figure 1.

LLVM default memory layout, no-stack-first, puts the fixed-size data zone
at the lowest addresses, followed by the stack growing downwards, and the heap
growing upwards. Due to the lack of memory separation in WebAssembly, a
stack overflow (i.e. a situation where the stack grows too much and collides with
another memory region) in this layout silently corrupts data in the data zone.
Because of this drawback, Rust developers introduced the stack-first memory
layout which puts the stack growing downwards in lower addresses, with the
data zone and the heap at higher address. This layout makes the WebAssembly
runtime crash in case of stack overflow, because the stack will grow until it
reaches non-existent (negative) memory addresses. This crash happens without
overwriting other data first, hence indicating that a stack overflow occurred, and
removing the possibility of undefined behavior because of stack overflow. As of
today, It has been adopted by default in Rust, in Zig, and LLVM is discussing
to make it a default.

3 Motivation and related work

3.1 WebAssembly lack of memory protection

WebAssembly security has already been studied in several works. Lehmann et
al. [12] conduct an in-depth security analysis of the WebAssembly linear memory,
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and how it is used by programs compiled from various languages. It shows that
common memory protections are missing from WebAssembly, and demonstrates
how this lack makes code less secure than when compiled to a native binary.
It concludes by discussing some mitigations, including the proposition to port
protections provided by compilers to WebAssembly. One of these mitigations
is Stack Smashing Protection. Our first proof of concept, corresponding to the
-no-ssp files in our artifact repository, is inspired by their work and proves that
buffer overflows in standalone WebAssembly are exploitable in practice.

However, the effectiveness of Stack Smashing Protection in WebAssembly is
not guaranteed due to the great differences between WebAssembly and native bi-
naries, and the security of its implementations have not been assessed yet. Other
propositions of mitigation mainly require significant work in the WebAssembly
specifications and its extensions, and thus have not been adopted yet.

In [22], Stiévenart et al. study a corpus of thousands of C programs vulnera-
ble to stack-based [15] and heap-based buffer overflows [16]. They compare the
behavior of these programs when they are compiled as x86 binaries with state-
of-the-art protections (including Stack Smashing Protection) and WebAssembly
binaries, that did not have Stack Smashing Protection at the time of the study.
They observe that x86 binaries are subject to many crashes, for the most part
triggered by SSP. On the contrary, WebAssembly binaries are continuing execu-
tion after the buffer overflow and memory corruption most of the time.

The difference is attributed to the absence of SSP in WebAssembly binaries,
which allows an attacker to exploit buffer overflows in a stealthier fashion. This
means that WebAssembly binaries are more vulnerable to memory corruption
due to buffer overflows than native ones. At least, it means that WebAssem-
bly binaries can see their internal memory corrupted and their data integrity
violated. In the worst case, it may be the enabler of more complex and dan-
gerous attacks on WebAssembly (such as attacking the WebAssembly VM), as
exemplified by [12].

Since Stiévenart et al. work, SSP has been implemented in a subset of Web-
Assembly using LLVM and wasi-libc. This means that there is no SSP avail-
able in non-WASI WebAssembly binaries, such as in the browser or depending
on Node.js. However, it could still be implemented in toolchains of these other
environments using our work as the base for a secure implementation.

Zhang et al. [30] propose VMCanary, an alternative implementation of SSP
for all of WebAssembly. However, VMCanary relies on an extension of the ISA
and thus is non-standard, making it incompatible with current WebAssembly
runtimes and tooling. On the contrary, our work is based on the existing im-
plementation in LLVM and wasi-libc, building on a solution which is fully
compliant with the WebAssembly specifications. Our solution has no adherence
with any WebAssembly tooling, and its principles can be extended to other
toolchains without breaking compatibility.

These papers conclude that WebAssembly is lacking protections that are
present in native binaries. Some security features are included in the design
of WebAssembly, but there are no guarantees that they fulfill the role of the
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protections that are missing. The introduction of Stack Smashing Protection on
the WebAssembly world can be seen as an improvement, but its effectiveness
has not been assessed yet.

3.2 Global impact of memory corruption and protections

In addition to assessing the possibilities of memory corruption in WebAssembly,
Lehmann et al. [12] analyze the impacts of such corruption. Their work places
buffer overflow vulnerabilities as a way to potentially gain further, more im-
pactful attack primitives. For example, considering a program that reads and
writes from and to different files, overwriting the memory contents may allow
the attacker to modify a filename and thus trigger an arbitrary file read or write.

Another possibility of exploit is using restricted control flow hijacking, by
abusing the call_indirect instruction of WebAssembly. This instruction al-
lows WebAssembly to support function pointers, which are required when the
compiler cannot statically determine the exact function to call (e.g. callback
functions, dynamic methods in object-oriented programming). This makes the
implicitly enforced control-flow integrity in WebAssembly weaker in the case of
indirect calls. As a result, the attacker may be able to control the function that
will be called, and thus control the code that will be executed.

Hilbig et al. [10] study a dataset of more than 8,000 WebAssembly binaries
collected from various sources in late 2020. Among other research questions,
they investigate which tools and source languages are used to produce Web-
Assembly binaries. This question is more and more relevant as the popularity
of WebAssembly grows and WebAssembly binaries are increasingly used in new
domains. More specifically, as the tools and use cases for WebAssembly diver-
sify, the work needed to spread the new security propositions for WebAssembly
becomes longer and longer.

One of the findings of Hilbig et al. is that 64.2% of WebAssembly binaries
are written in C or C++, which are memory-unsafe languages. This strongly
suggests that the work on assessing memory safety in WebAssembly is relevant.
Furthermore, it underlines the importance of Stack Smashing Protection for the
global security of WebAssembly binaries and the WebAssembly ecosystem.

Another finding is that nearly 80% of all collected binaries are compiled with
the help of the LLVM toolchain. Thus, implementing a security mechanism in
LLVM, such as Stack Smashing Protection, would allow introducing increased
protection in most WebAssembly programs without additional engineering ef-
forts.

3.3 Potential weaknesses in SSP implementations

Implementing SSP does not mean that a binary is fully protected against stack-
based buffer overflows. SSP can be bypassed when the underlying assumptions
are not met. Indeed, weak implementations of SSP allow an attacker to target
the SSP mechanism in order to exploit a stack-based buffer overflow undetected.
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Bierbaumer et al. [2] conduct an analysis of the implementation of SSP across
various platforms (OS, architectures and libraries) to identify potential imple-
mentation weaknesses. They propose a list of security properties that robust
SSP implementations should satisfy, and a framework named CookieCrumbler
to automatically assess the implementations.

The authors assume a buffer overflow that is contiguous and located from a
buffer in the stack. This means that the overflow does not allow the attacker to
skip some bytes in memory. The security properties that robust SSP implemen-
tations should satisfy are as follows:

P1 The canary value placed behind user-controlled buffers must be unknown to
the attacker.

P2 The reference value is placed at a location in memory that is distinct from
the location of canaries and ideally mapped read-only.

P3 If a canary is corrupted, the program execution terminates immediately (or
as soon as possible) without accessing any attacker controlled data.

The main goal of Bierbaumer et al. was to prove these properties wrong due
to implementation weaknesses. Their findings show that the robustness or SSP
implementations is heterogeneous, and that some implementations are indeed
vulnerable, allowing an attacker to completely bypass the protection. Making
the same analysis for the implementation of SSP in WebAssembly is interesting,
as no such work has been done to the best of our knowledge.

In addition, the work of Bierbaumer et al. was mainly targeting x86 binaries,
alongside a few other results on other platforms such as ARM or PowerPC. The
inner workings of these native platforms are very far from the one of WebAssem-
bly. Therefore, the implementation of Stack Smashing Protection may differ a
lot from the ones of native platforms, and the evaluation of the security of such
an implementation is even more relevant.

4 Security analysis of WebAssembly SSP

4.1 Description of existing WebAssembly SSP and methodology

The implementation of SSP cannot be uniform across the whole ecosystem of
WebAssembly. More precisely, an SSP implementation in WebAssembly relies
on three elements, that are dependent on the target use:

– The compiler, that will provide the code for loading and checking the ca-
naries.

– A library, that will provide the code for initializing the canary reference value
and the abort function that is called if a canary is overwritten.

– The host environment : by nature, SSP needs randomness, that WebAssembly
cannot provide by itself, so it is reliant on the host and on the way it can
access or request resources from the host.
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To the best of our knowledge, there is only one existing implementation of
SSP in WebAssembly. This implementation relies on both LLVM (providing the
compiler) and wasi-libc (a C standard library targeting WASI). As such, it is
restricted to standalone WebAssembly.

In order to assess the robustness of the Stack Smashing Protection imple-
mentation, we use the properties introduced in Section 3.3. These criteria can
be evaluated independently. We use several methods to assess each of the prop-
erties, including source code analysis, disassembly of compiled binaries, and the
CookieCrumbler tool provided by the authors.

4.2 Evaluating the generation of canaries

We first assess whether the reference value is unknown to the attacker (prop-
erty P1). Reference values are generated using (pseudo-)randomness. However,
not all randomness guarantees a complete unpredictability. Furthermore, one
may wonder if the attacker can alter the generation of randomness, and thus
compromise the generation of the reference value.

In standalone WebAssembly, the randomness is provided using WASI. At the
time of writing, the wasi-libc only supports WASIp1. In this version, random-
ness can be acquired from the host using the random_get function. random_get
is able to return an error code if it is not able to provide randomness. In the
following paragraphs, we detail how this method changes across the different
underlying host platforms.

We can first assess the behavior of wasi-libc if random_get returns an
error code. The code initializing the reference value is present in the init_ssp
function, whose relevant extracts of the source code is available in Figure 2.

void __init_ssp(void *entropy)
{

if (entropy) memcpy(&__stack_chk_guard, entropy, sizeof(uintptr_t));
else __stack_chk_guard = (uintptr_t)&__stack_chk_guard * 1103515245;

Fig. 2. Extract of the init_ssp C function

In this listing, the entropy variable contains either 0 if the return code
of random_get is different of zero, or a pointer to the generated randomness
otherwise. We can see in the code that if random_get returns an error code,
the reference value is set to a deterministic value. Indeed, dereferencing the
__stack_chk_guard variable will always return the same value, as in Web-
Assembly there is no randomization of the memory addresses. Each variable
is thus stored at the exact same memory location at each execution. This loca-
tion can be extracted directly from the WebAssembly binary before execution.
If the attacker does not have access to the WebAssembly binary, it can also be
easily bruteforced. Along with the code, this value can be multiplied with the



11

1103515245 constant to obtain the reference value. This means SSP in Web-
Assembly is fragile, as a failure to get randomness through the random_get
function will systematically result in a predictable reference value.

However, we do not know in which situations the random_get function may
return an error code. This does not depend on the wasi-libc source code, and as
such we need to consider the software used to provide randomness to WebAssem-
bly as an indirect part of the Stack Smashing Protection. The implementation
of how the random_get WASI function is providing randomness depends on the
WebAssembly runtime, and subsequently the host. As such, the Stack Smashing
Protection in WebAssembly is inherently dependent on the runtime implemen-
tation.

In order to further assess the robustness of the SSP implementation in Web-
Assembly, we need to evaluate the implementation of runtimes. Evaluating thor-
oughly runtimes and hosts is impractical due to the great amount of possibilities.
In order to get a glimpse of the attacking possibilities, we choose to evaluate the
most common WebAssembly standalone runtimes on a classic Linux machine.
We evaluate the robustness of the implementations using two methods:

M1 We block the getrandom Linux syscall that is commonly used to acquire
randomness on Linux.

M2 In addition to M1, we block all access to the /dev folder on Linux, which
contains the other common source of randomness, the /dev/urandom block
device.

To assess whether the implementations of various Linux runtimes are cor-
rectly providing randomness, we use a simple C program compiled to Web-
Assembly, that displays the value of the reference value. This value is supposed
to change at each execution of the program. If the value repeats itself through-
out several executions, it means that the implementation is not able to provide
randomness and is returning an error with random_get.

We describe here the methodology used to assess the robustness of runtimes
regarding their implementation of random_get. The experimentation was made
on the latest version available of the most popular standalone WebAssembly
runtimes at the time of the experiment. The machine used was running Arch
Linux with a Linux kernel of version 6.8.5, but the experiment is not dependent
on the operating system nor the Linux version up to a point, and should be
reproducible in any recent Linux distribution.

The steps are detailed below. They suppose that the runtimes to evaluate are
already installed, along with the wasi-sdk in /opt. The mentioned files (poc.c
and seccomp.c) are made available in our GitHub repository.8

1. Compile poc.c with /opt/wasi-sdk/bin/clang -fstack-protector-all
poc.c -o poc.wasm

2. Compile seccomp.c with clang seccomp.c -lseccomp -o seccomp
3. For assessing M1, run ./seccomp <tested runtime> poc.wasm.
8 https://github.com/mh4ck-Thales/Robust-SSP-in-Wasm
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4. For assessing M2:
(a) Enter a user namespace with unshare -mUr. You should see that you

are now root in the new namespace.
(b) Run mkdir /tmp/empty
(c) Run mount –bind /tmp/empty /dev
(d) Run ./seccomp <tested runtime> poc.wasm

These testing methods are simulating potential attacks, misconfigurations,
or other cases. For example, a WebAssembly runtime in a hardened container
may have restricted access to some Linux resources available in the /dev folder.

For each configuration, we execute our test program twice. If the reference
value holds the same value, it means that the implementation is not able to
provide randomness, and thus returns an error with random_get. This situation
is marked with ✗. If the reference value holds a different value, it means that
random_get returned randomness. This does not mean that the provided ran-
domness is secure, merely that the runtime chose to provide randomness and not
return an error. This situation is marked with ✓. The results of this evaluation
are presented in Table 4.2.

Test configuration Baseline M1 M2
wasmtime (v19.0.1) ✓ ✓ crash
wasmedge (v0.13.5) ✓ ✓ ✓

wasmer (v4.2.8) ✓ ✓ crash
iwasm (v1.3.2) ✓ ✗ ✗

wasm3 (v0.5.0) ✓ ✗ ✗

wasmi (v0.31.2) ✓ ✓ crash

Table 1. Summary of the different configurations w.r.t. the access to random sources

Two runtimes out of the six tested are failing to provide randomness with
the situation M1. In situation M2, the same runtimes are failing to provide
randomness, along with three more runtimes that are crashing when trying to
provide randomness in this situation. The remaining runtime is seemingly able to
provide randomness. However, further inspection of the source code is required
to ensure the quality of the returned randomness.

Reconsidering the global problem again, we find that the shifting of ran-
domness acquisition from the host (through the libc) to the runtimes may be a
problem for the robustness of the SSP implementation. Most tested runtimes are
either unable to provide randomness, triggering wasi-libc to use a predictable
value, or are crashing when trying to provide randomness. One may argue that
crashing, at least, does impeach the potential exploitation of weak SSP. However,
a runtime crash is not desirable, especially as random_get has the possibility to
return an error, letting the wasi-libc, and as such the program, handle such a
case.

P1 is depending both on wasi-libc and on the runtime. We conclude that
the wasi-libc implementation is weak if runtimes are failing to provide random-
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ness, and that several runtimes do in fact fail to provide randomness in some
situations. P1 is thus not verified in several of the tested runtimes.

4.3 Evaluating the SSP reference value location

In this part, we assess the property P2 which states that the location of the
reference value must not allow for a bypass of the SSP. Indeed, if the reference
value can be overwritten by a buffer overflow, this can be used to bypass the
canary protection. The attacker just needs to overwrite both the canary and the
reference value to the same value. Two properties can be used to protect against
such an attack:

P2a The reference value is not located in a position that is accessible with the
overflow of the target buffer.

P2b The memory in which the reference value is located is not writable, or some
memory between the buffer and the reference value is not writable.

In order to assess P2a, we modified the CookieCrumbler tool from Bier-
baumer et al. [2] for WebAssembly with the following modifications:

– The functionalities allowing to check if the range between the buffer and
the reference value is writable was removed. This functionality could have
been used to assess P2b, however its implementation is using signals, which
are not supported by WebAssembly. Moreover, this part is useless in Web-
Assembly, as explained below.

– The way CookieCrumbler is accessing the memory address of the reference
value was adapted to WebAssembly.

– The code testing the threads was removed. Threads support in WebAssembly
is in the process of being standardized, and some WebAssembly runtimes
support threads in beta, but the adoption is not wide enough to be studied
in this work.

We execute CookieCrumbler C program compiled with the clang LLVM com-
piler in both the stack-first and no-stack-first layouts. The results are presented
in Figure 3.

We draw the following conclusions:

– A buffer overflow in the no-stack-first situation cannot access the reference
value, but it is important to note that a stack overflow could. P2a is thus
verified in the no-stack-first layout.

– With the stack-first layout, a buffer overflow from any memory zone, as soon
as the overflow is long enough, can overwrite the reference value and bypass
the canary protection. P2a is thus not verified in the stack-first layout.

Regarding P2b, the very design of the WebAssembly linear memory makes it
impossible to verify this condition. Indeed, with the lack of memory permissions
in WebAssembly, all addresses in the linear memory are writable. This makes the
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Fig. 3. The results of CookieCrumbler in the stack-first and no-stack-first layouts

mapping of the memory containing the reference value as read-only impossible.
Likewise, all the addresses located between the buffer and the reference value
are guaranteed to be writable.

P2b is thus not verified in both the stack-first and no-stack-first layouts.
Consequently, P2 is not verified in both layouts. However, the two layouts are
not equal in terms of robustness. While the stack-first layout does not verify
P2 at all, the no-stack-first layout does not allow an overwrite of the reference
value with a stack-based buffer overflow. This layout may still be exploited using
another attack primitive alongside the stack-based buffer overflow, but this is a
more complex attack.

4.4 Evaluating quick termination on canary corruption

This part is assessing if the Stack Smashing Protection mechanism is aborting
quickly in case of a canary corruption, i.e. P3. If the canary value is corrupted,
data in the linear memory is probably corrupted as well. This means that the
program must abort as soon as possible in order to prevent the use of corrupted
data. In all SSP implementations, the detection of canary corruption is made at
the end of each function. Thus, the detection of a memory corruption is bounded
by the duration of the execution of the current function.

The abort procedure is implemented in wasi-libc, more precisely in the
__stack_chk_fail function. Its source code is shown in Figure 4.

To verify that the a_crash function is indeed aborting as soon as possible,
we disassemble the compiled __stack_chk_fail WebAssembly function to get
its assembly code in the WebAssembly Text (WAT) format, shown in Figure 5.

This function is called directly as soon as the corruption is detected. By
inspecting the code, we can see that the function seems to abort the program
directly, by executing a WebAssembly unreachable instruction. Thus, this SSP
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void __stack_chk_fail(void)
{

a_crash();
}

(func $__stack_chk_fail (type 7)
unreachable
unreachable

)

Fig. 4. The __stack_chk_fail C function

void __stack_chk_fail(void)
{

a_crash();
}

(func $__stack_chk_fail (type 7)
unreachable
unreachable

)

Fig. 5. Disassembly of the __stack_chk_fail WebAssembly function

implementation aborts immediately once the canary value is detected as cor-
rupted. We conclude that P3 is verified.

4.5 Main findings

Among the three criteria given to assess the robustness of an SSP implementa-
tion, only the quick termination criteria P3 is verified by the SSP implementation
in standalone WebAssembly. The criteria on the unpredictability of the canary
value P1 can be violated in some WebAssembly runtimes which do not crash
when access to the host random number generator is impossible. This lack of
randomness can be used to guess the canary value. The criteria on safe location
of canary reference value P2 is violated since the WebAssembly SSP reference
value is stored in linear memory without protection against as a vulnerable stack
buffer.

These weaknesses are exploitable in practice, as our second proof of concept,
corresponding to the files ending with -ssp in the artifact repository9, illustrates.

4.6 Remediation proposals

To fix the weaknesses uncovered in our analysis, we design and implement mod-
ifications to the WebAssembly SSP implementation.

Implementing overwrite protection. The WebAssembly linear memory does
not allow to store the canary reference value safely, as it may always be overwrit-
ten no matter where it is stored. As a result, it is necessary to store the canary
reference value in another WebAssembly memory region. Moreover, we need to
be able to access to this value from the whole WebAssembly module.

Global variables are the only memory mechanism that meet these require-
ments. They can only be accessed using WebAssembly instructions, and they
9 https://github.com/mh4ck-Thales/Robust-SSP-in-Wasm

https://github.com/mh4ck-Thales/Robust-SSP-in-Wasm
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are stored in a safe, VM-managed memory. Thanks to the WebAssembly pro-
tections, an attacker cannot execute arbitrary code to try and access the canary
reference value.

Implementing protection against weak randomness. Weak randomness
can manifest itself in several ways in an SSP implementation. It can come from
the host machine, the runtime, or the library handling SSP. As a consequence,
the SSP implementation should be able to handle all these possibilities.

Sadly, there is no reliable way to prevent against a weak randomness if it
is coming from the host or the runtime. However, if the runtime is correctly
implemented, it should return an error with random_get if it detects that the
host or itself is not able to provide strong enough randomness. The library is
then in charge of dealing with the error.

To deal with an error from the random_get function, the library may try to
call the function later. However, this is not generally a relevant approach since
it often comes from a permanent failure situation.

Developers might be tempted to generate a random value themselves from
the library, but they would need to find another source of randomness using
WASI, which seems improbable. Falling back on using the current time, despite
being a popular idea, is not a robust solution.

This is why we believe the only acceptable course of action when random_get
fails is to abort the program during its preamble, thus avoiding running a pro-
gram with a weak SSP. While this stance may be controversial on availability
and practical considerations, it is the only safe way to enforce security against
a weak randomness coming from the host or the runtime.

We implemented these proposals in the LLVM and wasi-libc projects. This
modified toolchain is the one evaluated in the following section.

5 Evaluation

In this section, we propose to evaluate the efficiency of our implementation of
SSP in WebAssembly. We use an approach similar to Stiévenart et al. [22] which
compares the execution of programs of the Juliet test suite v1.3 [3]. The Juliet
test suite is a large collection of vulnerability scenarios written in C and organized
by MITRE CWE numbers. In our experiment, we only analyze CWE121 [15] and
CWE122 [16] tests which respectively correspond to stack-based and heap-based
buffer overflows. We observe the root cause of crashes in the test and classify
them in four categories: silent execution, memory fault, SSP fault, timeout. A
silent execution is an execution which terminates without a crash. Since all exe-
cutions lead to an out-of-bound write operation, a silent execution corresponds
to a failure to detect a buffer overflow. A timeout occurs as some programs never
terminate, which forces us to use a timeout value of 20 seconds. A memory fault
is an execution aborted by a memory fault such as SEGFAULT or SIGBUS. An
SSP fault is a crash triggered by the SSP mechanism.
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In our experiment, we consider five configurations selected according to two
parameters. The first parameter is whether the binary is a native x86 binary or a
WebAssembly binary. The second parameter is the presence or absence of SSP. In
all configurations, we use LLVM with clang and clang++ compilers in version 17.
WebAssembly configurations use the wasmtime runtime and wasi-sdk in version
21. We focus exclusively on the stack-first memory layout after observing that
using the default memory layout of LLVM or stack-first yields similar results.

Observations. The results of our experiment are presented in Figure 6. For
CWE 121, we observe that 24% of crashes are caused by memory faults for
WebAssembly with SSP disabled. In x86 binaries using SSP, we observe that
53% of crashes are caused by an SSP fault. Both the existing implementation
and our proposal are able to detect 60% of buffer overflows. This proves that
our solution is as performant as the original one.

Fig. 6. Execution outcome of each binary in the Juliet test suite

For CWE 122, we observe 22% of memory faults for WebAssembly with
SSP disabled. x86 with SSP results in 21% of SSP faults. Both the existing
implementation of SSP in WebAssembly and our proposal are able to detect
20% of buffer overflows.

The results presented here are consistent with figures reported by Stiévenart
et al. [22].
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Interpretation. First, native and WebAssembly configurations using SSP mit-
igate more than half stack-based buffer overflows (CWE 121). This confirms
that SSP in WebAssembly is efficient at mitigating stack-based buffer overflows,
compared to the situation without protection. Surprisingly, we observe that some
heap-based buffer overflow (CWE 122) of the Juliet test suite crash because of an
SSP fault. This behavior is not expected since a heap overflow grows farther from
stack memory, i.e. from the canary. We found that all CWE 122 SSP faults occur
because the corresponding Juliet tests have been mistakenly tagged as CWE 122,
while they are effectively stack-based buffer overflow (CWE 121). This confirms
the expected result that SSP cannot detect heap-based buffer overflows.

Second, our implementation of SSP has the same coverage as the existing
implementation. However, as pointed out in Section 4, the existing SSP imple-
mentation can easily be bypassed.

Third, our implementation is not able to cover the entirety of buffer overflows,
in particular a buffer overflow is not detected when the overflow does not reach
the canary. This can happen with small overflows, when e.g. other variables are
allocated between the vulnerable buffer and the top of the stack frame. However,
this defect is common to all SSP implementations.

These results validate the effectiveness of SSP in WebAssembly, and prove
that our proposed implementation is as safe and efficient as the existing one.

6 Conclusion

In this paper, we focused on the mitigation of stack-based buffer overflows in
WebAssembly with the Stack Smashing Protection mechanism. SSP is particu-
larly interesting as it is one of the few binary protections that does not require
to modify the WebAssembly specification.

We evaluated the existing implementation of SSP in WebAssembly. Two
weaknesses were identified: the possibility to overwrite the canary reference value
and a fragile fallback in case of a random generator failure.

An SSP solution for WebAssembly that mitigates these weaknesses was spec-
ified and implemented. The solution improves the robustness of the existing SSP
implementation by proposing secure storage of the canary reference value and
a hardened fallback in case of a random generator failure, without any loss of
efficiency in detection.

We evaluated our solution and demonstrated that it mitigates a significant
portion of stack-based buffer overflows, while being more robust than the already
existing one. This proves the positive impact of this protection on WebAssembly
security, leading us to believe that SSP should become a default in all Web-
Assembly binaries in the future.

The theoretical analysis detailed in this paper is generalizable to all Web-
Assembly toolchain implementations. We publish as open-source software the
tools used for our analysis, as well as our implementation of SSP. We hope our
work and the related code will be useful to help the community to build safe
and secure WebAssembly applications and tooling.
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