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Abstract—WebAssembly is an instruction set architecture and
binary format standard, designed for secure execution by an
interpreter. This technology is identified as an alternative for
current containerization technologies that is suitable for secure
and lightweight orchestration for 5G/6G environments. Previous
work has shown that WebAssembly is vulnerable to buffer
overflow due to the lack of effective protection mechanisms.

In this paper, we evaluate the implementation of Stack Smash-
ing Protection (SSP) in WebAssembly standalone runtimes, and
uncover two weaknesses in their current implementation. The
first one is the possibility to overwrite the SSP reference value
because of the contiguous memory zones inside a WebAssembly
process. The second comes from the reliance of WebAssembly on
the runtime to provide randomness in order to initialize the SSP
reference value, which impacts the robustness of the solution.

We address these two flaws by hardening the SSP implemen-
tation in terms of storage and random generator failure, in a
way that is generalizable to all of WebAssembly. We evaluate
our new, more robust, solution to prove that the implemented
improvements do not reduce the efficiency of SSP.

Index Terms—WebAssembly, Memory bugs, Stack Smashing
Protection

I. INTRODUCTION

WebAssembly [16], [12] has been created as a fast and
secure-by-design answer to the always increasing need for
complex computation in browsers, e.g. 3D workloads.

The success of WebAssembly as a portable Instruction
Set Architecture (ISA) and binary format has prompted its
adoption in many applications besides browsers, such as its
use as a standalone runtime [9]. This has a huge impact on
the cloud world and the computing world in general, and is
considered as an alternative to Linux-based containers [6],
[3], promising to be more portable, lightweight and secure.
Some see in the flexibility of WebAssembly a universal binary
format that could be distributed seamlessly across operating
systems and hardware architectures. As such, WebAssembly
is proposed as a novel approach to 5G/6G service orchestration
as its properties make it suitable for edge and far edge
environments [4], [10].

WebAssembly claims strong security. By default, it provides
sandboxing between different WebAssembly instances and
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between WebAssembly and its host. It also enforces control-
flow integrity, and protection against code reuse attacks. How-
ever, the security of WebAssembly has been challenged in
several works [17], [14]. First, WebAssembly offers weak
protection against memory corruption attacks compared to
native binaries. Some vulnerabilities, such as stack-based
buffer overflows, have been present in native binaries for
a long time, but are mitigated with mechanisms such as
Stack Smashing Protection (SSP). This protection was initially
absent in WebAssembly [2]. Second, differences in design
between WebAssembly and native binaries make the former
vulnerable to attacks that are not possible in native binaries.
One example is the corruption of heap data using a stack-based
buffer overflow.

Stack Smashing Protection has been implemented in Web-
Assembly after the publication of the papers discussed in the
previous paragraph. In this paper, we propose the following
contributions: (i) a thorough analysis of SSP in WebAssembly;
(ii) some proofs of concept to confirm the weaknesses of the
current implementation; (iii) the implementation of a more
robust SSP mechanism in LLVM [1] and wasi-libc;1 (iv)
an evaluation of our solution.

We open-source all our code contributions: the implemen-
tation of SSP in the WebAssembly target of the LLVM
compiler;2 modifications to wasi-libc;3 the adaptation of
CookieCrumbler [7] (a tool used to assess the robustness of
SSP implementations) to WebAssembly; and our proofs of
concept.4

This paper is structured as follows. First, Section II and III
present necessary background and motivation for this work.
Then, Section IV contains our security analysis of WebAssem-
bly SSP and our remediation proposals. Finally, Section V
provides an evaluation of our work and Section VI concludes
and gives some perspective for future work.

II. BACKGROUND

We start by giving a brief introduction to buffer overflows
and Stack Smashing Protection. We also provide a quick
background on WebAssembly and its inner workings.

1https://github.com/WebAssembly/wasi-libc/
2https://github.com/ThalesGroup/llvm-project/tree/new-wasm-ssp
3https://github.com/ThalesGroup/wasi-libc/tree/new-wasm-ssp
4https://github.com/mh4ck-Thales/Robust-SSP-in-Wasm



A. Buffer overflow and Stack Smashing Protection

Buffer overflows are an old and well-known vulnerabil-
ity [15]. They occur when a program stores more data in
a buffer than the buffer may hold. Writing to memory out
of buffer bounds leads to the corruption of memory adjacent
to the buffer. Buffer overflows may also happen during the
execution of a WebAssembly program.

Stack Smashing Protection (SSP), also known as stack
canaries or stack cookies [11] is a defense mechanism avail-
able to prevent exploitation of stack-based buffer overflows.
SSP provides a detection mechanism for stack-based buffer
overflows and terminates the execution of the program after
the current function is executed. At program start time, the
program initializes a random reference value (named canary
or cookie) and writes it in a memory zone, preferably where
overwrite is made impossible, or at least difficult. Each time
a function is called, the function prologue is executed which
creates a new stack frame and copies the canary reference
value in the stack, in a dedicated variable, the stack canary
located after the buffer. The function epilogue checks this
value against the canary reference value stored in safe memory.
If the stack canary is different from the reference value, it
means that the stack canary has been overwritten and that
a stack-based buffer overflow has occurred. In this case, a
specific function is called to terminate the process.

Stack Smashing Protection is implemented in two different
code bases. The initialization of the reference value and
the function called when the stack canary is overwritten is
provided in the language standard library (e.g., the GNU C
standard library or the musl C standard library). The genera-
tion of the specific function prologue and epilogue for setting
up and verifying the integrity of canaries is implemented in
the compiler.

B. WebAssembly

WebAssembly (commonly abbreviated as Wasm) is a binary
format, designed to be compact, easy to parse and fast at
execution. A WebAssembly file, containing a WebAssembly
program, is named a module. An instance is a module being
executed in a runtime. WebAssembly is also an Instruction Set
Architecture (ISA), designed as a stack-based virtual machine.
It was designed to be fast and secure by design.

WebAssembly bytecode is executed using a stack-based
Virtual Machine (VM). This means that each instruction gets
input operands by popping values off a stack, and pushes its
eventual results on this stack referred as the evaluation stack.
There are no registers in the WebAssembly virtual machine.
The WebAssembly bytecode is located in a specific memory
managed by the virtual machine, that is read to execute an
instruction, but that is not directly accessible by the program.

The WebAssembly virtual machine relies on multiple mem-
ory regions which are represented in Fig. 1.

The managed code memory contains the WebAssembly
program code. It is only accessible by the VM, so the
WebAssembly code cannot read or modify it.

Fig. 1. The memory layout of a WebAssembly virtual machine

The managed call stack contains return addresses. These
return addresses are of WebAssembly’s i32 type, which is
used as the type for memory pointers and addresses.5 It is used
to keep track of all the ongoing function calls, while preventing
control-flow hijacking based on return address overwrite.

The managed evaluation stack is used to give parameters
to instructions and to store their results. This stack can hold
the four WebAssembly basic types, i.e. i32, i64, f32 and
f64 that are respectively integers and floating point numbers
encoded on 32 or 64 bits.

The linear memory is used to store non-scalar types,
e.g., strings, arrays, or lists. This linear memory is a sin-
gle contiguous memory segment with no notion of memory
permissions. As such, all memory in the linear memory is
readable and writable. The management of this memory is
left to the program, but for most programming languages and
their respective compilers, the structure used is the same as the
one widely used in native binaries, which includes a stack,
a heap and a data zone for static or predetermined values.
These memory zones contain most of the data used by the
program, the data being distributed between the different zones
according to the source code and the compiler used.

These three zones can be arranged in several ways in
memory, and in practice different WebAssembly compilers
made different choices resulting in different layouts. For the
purpose of this article, we focus on the two layouts available
with the LLVM toolchain, named stack-first and no-stack-first.
These layouts are represented in Fig. 1.

LLVM default memory layout is no-stack-first. Later, stack-
first was introduced to address the problem of silent data
corruption by a stack overflow in no-stack-first. As of today,
stack-first has been adopted by default in Rust, in Zig, and
LLVM is discussing to make it a default.

The WebAssembly local and global variables are another
memory mechanism. As for the evaluation stack, they are
restricted to the four WebAssembly basic types. The scope
of global variables is the entire module, while local variables
are only accessible by the function being executed. These
variables are manipulated through dedicated instructions and

5A proposed extension of WebAssembly is using the i64 type to address
the memory, but this extension is not addressed in this paper.



are stored in a specific table that is not accessible from the
linear memory. It is however important to notice that current
toolchains do not usually map local and global variables
found in programming languages onto WebAssembly local and
global variables.

By design, WebAssembly does not provide access to the
host environment in which the WebAssembly program is
executed. It can only be performed using functions provided
by the WebAssembly runtime, that will then interact with
the host environment as requested and store the results in
linear memory or in the evaluation stack, as an internal
WebAssembly function would do. It is up to the runtime
to implement or not these special functions. In order for a
WebAssembly binary to work with a large panel of runtimes
and host environments, standardizing such special functions
was needed.

For standalone WebAssembly, this led to the creation of the
WebAssembly System Interface (WASI). It is composed of a
set of modular standards regrouped around different use cases.

WASI [5] is still evolving as a standard, but it is already
widely used. Two main versions of WASI exist to this day:
WASI preview 1 (WASIp1), released in late 2020 and WASI
preview 2 (WASIp2), released in the beginning of 2024. This
paper along with its proposed proofs of concept is using
WASIp1, as most research was done before the publication
of WASIp2. However, we believe that the work conducted in
this paper is applicable to WASIp2 as well.

III. MOTIVATION AND RELATED WORK

A. WebAssembly lack of memory protection

WebAssembly security has already been studied in several
works. Lehmann et al. [14] conduct an in-depth security
analysis of the WebAssembly linear memory, and how it
is used by programs compiled from various languages. It
shows that common memory protections are missing from
WebAssembly, and demonstrates how this lack makes code
less secure than when compiled to a native binary. It concludes
by discussing some mitigations, including the proposition to
port protections provided by compilers to WebAssembly. One
of these mitigations is Stack Smashing Protection. Our first
proof of concept, corresponding to the -no-ssp files in our
artifact repository, is inspired by their work and proves that
buffer overflows in standalone WebAssembly are exploitable
in practice.

However, the effectiveness of Stack Smashing Protection in
WebAssembly is not guaranteed due to the great differences
between WebAssembly and native binaries, and the security
of its implementations has not been assessed yet. Other
propositions of mitigation mainly require significant work in
the WebAssembly specifications and its extensions, and thus
have not been adopted yet.

In [17], Stiévenart et al. study a corpus of thousands of
C programs vulnerable to stack-based and heap-based buffer
overflows. They compare the behavior of these programs
when they are compiled as x86 binaries with state-of-the-
art protections (including Stack Smashing Protection) and

WebAssembly binaries, that did not have Stack Smashing
Protection at the time of the study. They observe that x86
binaries are subject to many crashes, for the most part triggered
by SSP. On the contrary, WebAssembly binaries are continuing
execution after the buffer overflow and memory corruption
most of the time.

The difference is attributed to the absence of SSP in
WebAssembly binaries, which allows an attacker to exploit
buffer overflows in a stealthier fashion. This means that Web-
Assembly binaries are more vulnerable to memory corruption
due to buffer overflows than native ones. At least, it means
that WebAssembly binaries can see their internal memory
corrupted and their data integrity violated. In the worst case,
it may be the enabler of more complex and dangerous attacks
on WebAssembly (such as attacking the WebAssembly VM),
as exemplified by [14].

Since Stiévenart et al. work, SSP has been implemented
in a subset of WebAssembly using LLVM and wasi-libc.
This means that there is no SSP available in non-WASI
WebAssembly binaries, such as in the browser or depending on
Node.js. However, it could still be implemented in toolchains
of these other environments using our work as the base for a
secure implementation.

Zhang et al. [18] propose VMCanary, an alternative im-
plementation of SSP for all of WebAssembly. However, VM-
Canary relies on an extension of the ISA and thus is non-
standard, making it incompatible with current WebAssembly
runtimes and tooling. On the contrary, our work is based
on the existing implementation in LLVM and wasi-libc,
building on a solution which is fully compliant with the
WebAssembly specifications. Our solution has no adherence
with any WebAssembly tooling, and its principles can be
extended to other toolchains without breaking compatibility.

These papers conclude that WebAssembly is lacking protec-
tions that are present in native binaries. Some security features
are included in the design of WebAssembly, but there are no
guarantees that they fulfill the role of the protections that are
missing. The introduction of Stack Smashing Protection on the
WebAssembly world can be seen as an improvement, but its
effectiveness has not been assessed yet.

B. Global impact of memory corruption and protections

In addition to assessing the possibilities of memory corrup-
tion in WebAssembly, Lehmann et al. [14] analyze the impacts
of such corruption. Their work places buffer overflow vulner-
abilities as a way to potentially gain further, more impactful
attack primitives. For example, considering a program that
reads and writes from and to different files, overwriting the
memory contents may allow the attacker to modify a filename
and thus trigger an arbitrary file read or write.

Another possibility of exploit is using restricted control
flow hijacking, by abusing the call_indirect instruction
of WebAssembly. This instruction allows WebAssembly to
support function pointers, which are required when the com-
piler cannot statically determine the exact function to call
(e.g. callback functions, dynamic methods in object-oriented



programming). This makes the implicitly enforced control-
flow integrity in WebAssembly weaker in the case of indirect
calls. As a result, the attacker may be able to control the
function that will be called, and thus control the code that
will be executed.

Hilbig et al. [13] study a dataset of more than 8,000
WebAssembly binaries collected from various sources in late
2020. Among other research questions, they investigate which
tools and source languages are used to produce WebAssembly
binaries. This question is more and more relevant as the
popularity of WebAssembly grows and WebAssembly binaries
are increasingly used in new domains. More specifically,
as the tools and use cases for WebAssembly diversify, the
work needed to spread the new security propositions for
WebAssembly becomes longer and longer.

One of the findings of Hilbig et al. is that 64.2% of
WebAssembly binaries are written in C or C++, which are
memory-unsafe languages. This strongly suggests that the
work on assessing memory safety in WebAssembly is relevant.
Furthermore, it underlines the importance of Stack Smashing
Protection for the global security of WebAssembly binaries
and the WebAssembly ecosystem.

Another finding is that nearly 80% of all collected binaries
are compiled with the help of the LLVM toolchain. Thus,
implementing a security mechanism in LLVM, such as Stack
Smashing Protection, would allow introducing increased pro-
tection in most WebAssembly programs without additional
engineering efforts.

C. Potential weaknesses in SSP implementations

Implementing SSP does not mean that a binary is fully
protected against stack-based buffer overflows. SSP can be
bypassed when the underlying assumptions are not met. In-
deed, weak implementations of SSP allow an attacker to target
the SSP mechanism in order to exploit a stack-based buffer
overflow undetected.

Bierbaumer et al. [7] conduct an analysis of the imple-
mentation of SSP across various platforms (OS, architectures
and libraries) to identify potential implementation weaknesses.
They propose a list of security properties that robust SSP
implementations should satisfy, and a framework named Coo-
kieCrumbler to automatically assess the implementations.

The authors assume a buffer overflow that is contiguous and
located from a buffer in the stack. This means that the overflow
does not allow the attacker to skip some bytes in memory. The
security properties that robust SSP implementations should
satisfy are as follows:

P1 The canary value placed behind user-controlled buffers
must be unknown to the attacker.

P2 The reference value is placed at a location in memory
that is distinct from the location of canaries and ideally
mapped read-only.

P3 If a canary is corrupted, the program execution ter-
minates immediately (or as soon as possible) without
accessing any attacker controlled data.

The main goal of Bierbaumer et al. was to prove these
properties wrong due to implementation weaknesses. Their
findings show that the robustness or SSP implementations
is heterogeneous, and that some implementations are indeed
vulnerable, allowing an attacker to completely bypass the
protection. Making the same analysis for the implementation
of SSP in WebAssembly is interesting, as no such work has
been done to the best of our knowledge.

In addition, the work of Bierbaumer et al. was mainly
targeting x86 binaries, alongside a few other results on other
platforms such as ARM or PowerPC. The inner workings of
these native platforms are very far from the one of Web-
Assembly. Therefore, the implementation of Stack Smashing
Protection may differ a lot from the ones of native platforms,
and the evaluation of the security of such an implementation
is even more relevant.

IV. SECURITY ANALYSIS OF WEBASSEMBLY SSP

A. Description of existing WebAssembly SSP and methodology

The implementation of SSP cannot be uniform across the
whole ecosystem of WebAssembly. More precisely, an SSP
implementation in WebAssembly relies on three elements, that
are dependent on the target use. The compiler, that will provide
the code for loading and checking the canaries; a library, that
will provide the code for initializing the canary reference value
and the abort function that is called if a canary is overwritten;
and the host environment, as by nature, SSP needs randomness,
that WebAssembly cannot provide by itself, so it is reliant on
the host and on the way it can access or request resources
from the host.

To the best of our knowledge, there is only one existing
implementation of SSP in WebAssembly. This implemen-
tation relies on both LLVM (providing the compiler) and
wasi-libc (a C standard library targeting WASI). As such,
it is restricted to standalone WebAssembly.

In order to assess the robustness of the Stack Smashing
Protection implementation, we use the properties introduced in
Section III-C. These criteria can be evaluated independently.
We use several methods to assess each of the properties,
including source code analysis, disassembly of compiled bi-
naries, and the CookieCrumbler tool provided by the authors.

B. Evaluating the generation of canaries

We first assess whether the reference value is unknown
to the attacker (property P1). Reference values are gener-
ated using (pseudo-)randomness. However, not all randomness
guarantees a complete unpredictability. Furthermore, one may
wonder if the attacker can alter the generation of randomness,
and thus compromise the generation of the reference value.

In standalone WebAssembly, the randomness is provided
using WASI. At the time of writing, the wasi-libc only
supports WASIp1. In this version, randomness can be ac-
quired from the host using the random_get function.
random_get is able to return an error code if it is not able
to provide randomness. In the following paragraphs, we detail



how this method changes across the different underlying host
platforms.

We can first assess the behavior of wasi-libc if
random_get returns an error code. The code initializing the
reference value is present in the init_ssp function, whose
relevant extracts of the source code is available in Fig. 2.

void __init_ssp(void *entropy)
{
if (entropy) memcpy(&__stack_chk_guard,

entropy, sizeof(uintptr_t));↪→

else __stack_chk_guard =
(uintptr_t)&__stack_chk_guard * 1103515245;↪→

Fig. 2. Extract of the init_ssp C function

In this listing, the entropy variable contains either 0 if the
return code of random_get is different of zero, or a pointer
to the generated randomness otherwise. We can see in the
code that if random_get returns an error code, the reference
value is set to a deterministic value. Indeed, dereferencing
the __stack_chk_guard variable will always return the
same value, as in WebAssembly there is no randomization
of the memory addresses. Each variable is thus stored at
the exact same memory location at each execution. This
location can be extracted directly from the WebAssembly
binary before execution. If the attacker does not have access
to the WebAssembly binary, it can also be easily bruteforced.
Along with the code, this value can be multiplied with the
1103515245 constant to obtain the reference value. This means
SSP in WebAssembly is fragile, as a failure to get randomness
through the random_get function will systematically result
in a predictable reference value.

However, we do not know in which situations the
random_get function may return an error code. This does
not depend on the wasi-libc source code, and as such we
need to consider the software used to provide randomness
to WebAssembly as an indirect part of the Stack Smashing
Protection. The implementation of how the random_get
WASI function is providing randomness depends on the
WebAssembly runtime, and subsequently the host. As such,
the Stack Smashing Protection in WebAssembly is inherently
dependent on the runtime implementation.

In order to further assess the robustness of the SSP im-
plementation in WebAssembly, we need to evaluate the im-
plementation of runtimes. Evaluating thoroughly runtimes and
hosts is impractical due to the great amount of possibilities. In
order to get a glimpse of the attacking possibilities, we choose
to evaluate the most common WebAssembly standalone run-
times on a classic Linux machine. We evaluate the robustness
of the implementations using two methods:

M1 We block the getrandom Linux syscall that is com-
monly used to acquire randomness on Linux.

M2 In addition to M1, we block all access to the /dev
folder on Linux, which contains the other common
source of randomness, the /dev/urandom block de-
vice.

To assess whether the implementations of various Linux
runtimes are correctly providing randomness, we use a simple
C program compiled to WebAssembly, that displays the value
of the reference value. This value is supposed to change at each
execution of the program. If the value repeats itself throughout
several executions, it means that the implementation is not
able to provide randomness and is returning an error with
random_get.

We describe here the methodology used to assess the
robustness of runtimes regarding their implementation of
random_get. The experimentation was made on the latest
version available of the most popular standalone WebAssem-
bly runtimes at the time of the experiment. The machine used
was running Arch Linux with a Linux kernel of version 6.8.5,
but the experiment is not dependent on the operating system
nor the Linux version up to a point, and should be reproducible
in any recent Linux distribution.

The mentioned files (poc.c and seccomp.c), along with
the detailed commands used for the experiment, are made
available in our GitHub repository.6

These testing methods are simulating potential attacks, mis-
configurations, or other cases. For example, a WebAssembly
runtime in a hardened container may have restricted access to
some Linux resources available in the /dev folder.

For each configuration, we execute our test program twice.
If the reference value holds the same value, it means that the
implementation is not able to provide randomness, and thus
returns an error with random_get. This situation is marked
with ✗. If the reference value holds a different value, it means
that random_get returned randomness. This does not mean
that the provided randomness is secure, merely that the runtime
chose to provide randomness and not return an error. This
situation is marked with ✓. The results of this evaluation are
presented in Table I.

TABLE I
SUMMARY OF THE DIFFERENT CONFIGURATIONS W.R.T. THE ACCESS TO

RANDOM SOURCES

Test configuration Baseline M1 M2
wasmtime (v19.0.1) ✓ ✓ crash
wasmedge (v0.13.5) ✓ ✓ ✓

wasmer (v4.2.8) ✓ ✓ crash
iwasm (v1.3.2) ✓ ✗ ✗
wasm3 (v0.5.0) ✓ ✗ ✗
wasmi (v0.31.2) ✓ ✓ crash

Two runtimes out of the six tested are failing to provide
randomness with the situation M1. In situation M2, the same
runtimes are failing to provide randomness, along with three
more runtimes that are crashing when trying to provide ran-
domness in this situation. The remaining runtime is seemingly
able to provide randomness. However, further inspection of the
source code is required to ensure the quality of the returned
randomness.

Reconsidering the global problem again, we find that the
shifting of randomness acquisition from the host (through the
libc) to the runtimes may be a problem for the robustness

6https://github.com/mh4ck-Thales/Robust-SSP-in-Wasm/



of the SSP implementation. Most tested runtimes are either
unable to provide randomness, triggering wasi-libc to use
a predictable value, or are crashing when trying to provide
randomness. One may argue that crashing, at least, does
impeach the potential exploitation of weak SSP. However, a
runtime crash is not desirable, especially as random_get has
the possibility to return an error, letting the wasi-libc, and
as such the program, handle such a case.

P1 is depending both on wasi-libc and on the runtime.
We conclude that the wasi-libc implementation is weak if
runtimes are failing to provide randomness, and that several
runtimes do in fact fail to provide randomness in some
situations. P1 is thus not verified in several of the tested
runtimes.

C. Evaluating the SSP reference value location
In this part, we assess the property P2 which states that the

location of the reference value must not allow for a bypass
of the SSP. Indeed, if the reference value can be overwritten
by a buffer overflow, this can be used to bypass the canary
protection. The attacker just needs to overwrite both the canary
and the reference value to the same value. Two properties can
be used to protect against such an attack:
P2a The reference value is not located in a position that is

accessible with the overflow of the target buffer.
P2b The memory in which the reference value is located is

not writable, or some memory between the buffer and
the reference value is not writable.

In order to assess P2a, we modified the CookieCrumbler
tool from Bierbaumer et al. [7] for WebAssembly. The func-
tionalities allowing to check if the range between the buffer
and the reference value is writable and the code testing the
threads were removed, as they are not relevant to WebAssem-
bly.

We execute CookieCrumbler compiled with the clang
LLVM compiler in both the stack-first and no-stack-first lay-
outs. The results are presented in Fig. 3.

Fig. 3. The results of CookieCrumbler in the stack-first and no-stack-first
layouts

We draw the following conclusions:
• A buffer overflow in the no-stack-first situation cannot

access the reference value, but it is important to note that
a stack overflow could. P2a is thus verified in the no-
stack-first layout.

• With the stack-first layout, a buffer overflow from any
memory zone, as soon as the overflow is long enough,
can overwrite the reference value and bypass the canary
protection. P2a is thus not verified in the stack-first
layout.

Regarding P2b, the very design of the WebAssembly linear
memory makes it impossible to verify this condition. Indeed,
with the lack of memory permissions in WebAssembly, all
addresses in the linear memory are writable. This makes
the mapping of the memory containing the reference value
as read-only impossible. Likewise, all the addresses located
between the buffer and the reference value are guaranteed to
be writable.

P2b is thus not verified in both the stack-first and no-stack-
first layouts. Consequently, P2 is not verified in both layouts.
However, the two layouts are not equal in terms of robustness.
While the stack-first layout does not verify P2 at all, the
no-stack-first layout does not allow an overwrite of the
reference value with a stack-based buffer overflow. This layout
may still be exploited using another attack primitive alongside
the stack-based buffer overflow, but this is a more complex
attack.

D. Evaluating quick termination on canary corruption

This part is assessing if the Stack Smashing Protection
mechanism is aborting quickly in case of a canary corruption,
i.e. P3. If the canary value is corrupted, data in the linear
memory is probably corrupted as well. This means that the
program must abort as soon as possible in order to prevent the
use of corrupted data. In all SSP implementations, the detec-
tion of canary corruption is made at the end of each function.
Thus, the detection of a memory corruption is bounded by the
duration of the execution of the current function.

The abort procedure is implemented in wasi-libc, more
precisely in the __stack_chk_fail function. Its source
code is shown in Fig. 4.

void __stack_chk_fail(void)
{

a_crash();
}

Fig. 4. The __stack_chk_fail C function

To verify that the a_crash function is indeed abort-
ing as soon as possible, we disassemble the compiled
__stack_chk_fail WebAssembly function to get its as-
sembly code in the WebAssembly Text (WAT) format, shown
in Fig. 5.

(func $__stack_chk_fail (type 7)
unreachable
unreachable

)

Fig. 5. Disassembly of the __stack_chk_fail WebAssembly function

This function is called directly as soon as the corruption
is detected. By inspecting the code, we can see that the



function seems to abort the program directly, by executing
a WebAssembly unreachable instruction. Thus, this SSP
implementation aborts immediately once the canary value is
detected as corrupted. We conclude that P3 is verified.

E. Main findings and remediation proposals
Among the three criteria given to assess the robustness of an

SSP implementation, only the quick termination criteria P3 is
verified by the SSP implementation in standalone WebAssem-
bly. The criteria on the unpredictability of the canary value
P1 can be violated in some WebAssembly runtimes which do
not crash when access to the host random number generator
is impossible. This lack of randomness can be used to guess
the canary value.

Sadly, there is no reliable way to prevent against a weak
randomness if it is coming from the host or the runtime.
However, if the runtime is correctly implemented, it should
return an error with random_get if it detects that the host
or itself is not able to provide strong enough randomness. The
library is then in charge of dealing with the error.

To deal with an error from the random_get function,
the library may try to call the function later. However, this
is not generally a relevant approach since it often comes from
a permanent failure situation.

Developers might be tempted to generate a random value
themselves from the library, but they would need to find
another source of randomness using WASI, which seems
improbable. Falling back on using the current time, despite
being a popular idea, is not a robust solution.

This is why we believe the only acceptable course of action
when random_get fails is to abort the program during its
preamble, thus avoiding running a program with a weak SSP.
While this stance may be controversial on availability and
practical considerations, it is the only safe way to enforce
security against a weak randomness coming from the host or
the runtime.

The criteria on safe location of canary reference value P2
is also violated since the WebAssembly SSP reference value
is stored in linear memory without protection against as a
vulnerable stack buffer. The WebAssembly linear memory
does not allow to store the canary reference value safely, as
it may always be overwritten no matter where it is stored. As
a result, it is necessary to store the canary reference value in
another WebAssembly memory region. Moreover, we need to
be able to access to this value from the whole WebAssembly
module.

Global variables are the only memory mechanism that
meet these requirements. They can only be accessed using
WebAssembly instructions, and they are stored in a safe, VM-
managed memory. Thanks to the WebAssembly protections,
an attacker cannot execute arbitrary code to try and access the
canary reference value.

The weaknesses found in this analysis are exploitable in
practice, as our second proof of concept, corresponding to the
files ending with -ssp in the artifact repository7, illustrates.

7https://github.com/mh4ck-Thales/Robust-SSP-in-Wasm

To protect against such attacks, we implemented our reme-
diation proposals in the LLVM and wasi-libc projects.
This modified toolchain is the one evaluated in the following
section.

V. EVALUATION

In this section, we propose to evaluate the efficiency of our
implementation of SSP in WebAssembly. We use an approach
similar to Stiévenart et al. [17] which compares the execution
of programs of the Juliet test suite v1.3 [8]. The Juliet test suite
is a large collection of vulnerability scenarios written in C and
organized by MITRE CWE numbers. In our experiment, we
only analyze CWE121 and CWE122 tests which respectively
correspond to stack-based and heap-based buffer overflows.
We observe the root cause of crashes in the test and clas-
sify them in four categories: silent execution, memory fault,
SSP fault, timeout. A silent execution is an execution which
terminates without a crash. Since all executions lead to an out-
of-bound write operation, a silent execution corresponds to a
failure to detect a buffer overflow. A timeout occurs as some
programs never terminate, which forces us to use a timeout
value of 20 seconds. A memory fault is an execution aborted
by a memory fault such as SEGFAULT or SIGBUS. An SSP
fault is a crash triggered by the SSP mechanism.

In our experiment, we consider five configurations selected
according to two parameters. The first parameter is whether
the binary is a native x86 binary or a WebAssembly binary.
The second parameter is the presence or absence of SSP. In
all configurations, we use LLVM with clang and clang++
compilers in version 17. WebAssembly configurations use the
wasmtime runtime and wasi-sdk in version 21. We focus
exclusively on the stack-first memory layout after observing
that using the default memory layout of LLVM or stack-first
yields similar results.

1) Observations: The results of our experiment are pre-
sented in Fig. 6. For CWE 121, we observe that 24% of
crashes are caused by memory faults for WebAssembly with
SSP disabled. In x86 binaries using SSP, we observe that
53% of crashes are caused by an SSP fault. Both the existing
implementation and our proposal are able to detect 60% of
buffer overflows. This proves that our solution is as performant
as the original one.

For CWE 122, we observe 22% of memory faults for
WebAssembly with SSP disabled. x86 with SSP results in
21% of SSP faults. Both the existing implementation of SSP
in WebAssembly and our proposal are able to detect 20% of
buffer overflows.

The results presented here are consistent with figures re-
ported by Stiévenart et al. [17].

2) Interpretation: First, native and WebAssembly configu-
rations using SSP mitigate more than half stack-based buffer
overflows (CWE 121). This confirms that SSP in WebAssem-
bly is efficient at mitigating stack-based buffer overflows,
compared to the situation without protection. Surprisingly, we
observe that some heap-based buffer overflow (CWE 122)
of the Juliet test suite crash because of an SSP fault. This

https://github.com/mh4ck-Thales/Robust-SSP-in-Wasm
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Fig. 6. Execution outcome of each binary in the Juliet test suite

behavior is not expected since a heap overflow grows farther
from stack memory, i.e., from the canary. We found that all
CWE 122 SSP faults occur because the corresponding Juliet
tests have been mistakenly tagged as CWE 122, while they
are effectively stack-based buffer overflow (CWE 121). This
confirms the expected result that SSP cannot detect heap-based
buffer overflows.

Second, our implementation of SSP has the same coverage
as the existing implementation. However, as pointed out in
Section IV, the existing SSP implementation can easily be
bypassed.

Third, our implementation is not able to cover the entirety of
buffer overflows, in particular a buffer overflow is not detected
when the overflow does not reach the canary. This can happen
with small overflows, when e.g. other variables are allocated
between the vulnerable buffer and the top of the stack frame.
However, this defect is common to all SSP implementations.

These results validate the effectiveness of SSP in Web-
Assembly, and prove that our proposed implementation is as
safe and efficient as the existing one.

VI. CONCLUSION

In this paper, we focused on the mitigation of stack-based
buffer overflows in WebAssembly with the Stack Smashing
Protection mechanism. SSP is particularly interesting as it is
one of the few binary protections that does not require to
modify the WebAssembly specification.

We evaluated the existing implementation of SSP in Web-
Assembly. Two weaknesses were identified: the possibility to
overwrite the canary reference value and a fragile fallback in
case of a random generator failure.

An SSP solution for WebAssembly that mitigates these
weaknesses was specified and implemented. The solution
improves the robustness of the existing SSP implementation
by proposing secure storage of the canary reference value and
a hardened fallback in case of a random generator failure,
without any loss of efficiency in detection.

We evaluated our solution and demonstrated that it mitigates
a significant portion of stack-based buffer overflows, while be-

ing more robust than the already existing one. This proves the
positive impact of this protection on WebAssembly security,
leading us to believe that SSP should become a default in all
WebAssembly binaries in the future.

The theoretical analysis detailed in this paper is general-
izable to all WebAssembly toolchain implementations. We
publish as open-source software the tools used for our analysis,
as well as our implementation of SSP. We hope our work and
the related code will be useful to help the community to build
safe and secure WebAssembly applications and tooling.
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