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Back in the early 90’s, when I was a student, built a theorem proving system
in Common Lisp Object System. It was a fun first contact with object-oriented
programming, even if at the time I did not master all the aspects. The follow-
ing year, we got an excellent lecture on meta-object programming by M. Blay
Fornarino. I loved the lecture where we program metaclasses and mixins. I re-
alize now that it was quite advanced.

However, deep inside me, I knew that I did not fully understand what was the
class Object or what was really a metaclass. Of course, I could repeat the lec-
ture and look smart, but there was this little voice telling me that I wasn’t 100%
sure. Then, I read the article of Pierre Cointe on ObjVlisp. I got blasted by the
simplicity of the model. I spent the next 2 days reimplementing the model be-
cause it was too much fun. For me, it is the key to my deep understanding of
class-based reflective systems. Once I finished implementing it, I went to see
my teacher and told her that she must teach it. She told me to do it. Since then
I’ve been teaching it.

Note that while the project is historically named ObjVlisp, it has not much
to do with LISP. This kernel is similar to the one of Smalltalk-78 with explicit
metaclasses. ObjVlisp is just a little conceptual framework but it provides a
condensed view and explains the forces present in larger systems such as Pharo
that share the everything is an object mantra I love so much.

This book explains the consequence of having classes as objects. In addition, it
describes the design and the consequences of having a self-described reflective
minimal kernel.

By doing so we will learn deeply about objects, object creation instantiation,
message lookup, delegation, inheritance, and much more.

I would like to thank Christopher Fuhrman for his large copy-edit pass and
kksubbu, Imen Sayar, and René-Paul for their suggestions.

— Stéphane Ducasse

1





CHA P T E R 1
A minimal reflective class-based

kernel

The difference between classes and objects has been repeatedly emphasized. In the view
presented here, these concepts belong to different worlds: the program text only con-
tains classes; at run-time, only objects exist. This is not the only approach. One of the
subcultures of object-oriented programming, influenced by Lisp and exemplified by
Smalltalk, views classes as objects themselves, which still have an existence at run-time.
— B. Meyer, Object-Oriented Software Construction [6]

As this quote expresses it, there is a realm where classes are true objects, in-
stances of other classes. In such systems as Smalltalk, Pharo [1], CLOS [7], classes
are described by other classes and form often reflective architectures each one
describing the previous level. In this chapter, we will explore a minimal reflec-
tive class-based kernel, inspired by ObjVlisp. In the following chapter, you will
implement step by step such a kernel with less than 30 methods.

1.1 ObjVlisp inspiration

ObjVlisp was published for the first time in 1987 when the foundation of object-
oriented programming was still emerging [3]. ObjVlisp has explicit metaclasses
and supports metaclass reuse. It was inspired by the kernel of Smalltalk-78.
The IBM SOM-DSOM kernel is similar to ObjVLisp while implemented in C++
[4]. ObjVlisp is a subset of the reflective kernel of CLOS (Common Lisp Object
System) since CLOS reifies instance variables, generic functions, and method
combinations. It is the equivalent of the Closette implementation [5]. In com-
parison to ObjVlisp, Smalltalk, and Pharo have implicit metaclasses and no
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A minimal reflective class-based kernel

metaclass reuse except by basic inheritance. However, they are more stable
as explained by Bouraqadi et al [2].

Studying this kernel is really worth it since it has the following properties:

• It unifies classes and instances (there is only one data structure to repre-
sent all objects, classes included).

• It is composed of only two classes Class and Object (it relies on existing
elements such as booleans, arrays, and strings of the underlying imple-
mentation language).

• It raises the question of meta-circularity infinite regression (a class is
an instance of another class that is an instance of yet another class, etc.)
and how to resolve it.

• It requires consideration of allocation, class, and object initialization,
message passing as well as the bootstrap process.

• It can be implemented in less than 30 methods in Pharo.

Just remember that this kernel is self-described. We will start to explain some
aspects, but since everything is linked, you may have to read the chapter twice
to fully get it.

1.2 ObjVLisp’s six postulates

The original ObjVlisp kernel is defined by six postulates [3]. Some of them look
a bit dated by modern standards, and the 6th postulate is simply wrong as we
will explain later (a solution is simple to design and implement).

Here are the six postulates as stated in the paper for the sake of historical per-
spective.

• P1. An object represents a piece of knowledge and a set of capabilities.

-P2 . The only protocol to activate an object is message passing: a message
specifies which procedure to apply (denoted by its name, the selector) and its
arguments.

• P3. Every object belongs to a class that specifies its data (attributes called
fields) and its behavior (procedures called methods). Objects will be dy-
namically generated from this model; they are called instances of the
class. Following Plato, all instances of a class have the same structure and
shape but differ through the values of their common instance variables.

• P4. A class is also an object, instantiated by another class, called its meta-
class. Consequently (P3), to each class is associated with a metaclass
which describes its behavior as an object. The initial primitive metaclass
is the class Class, built as its own instance.

4



1.3 Kernel overview

• P5. A class can be defined as a subclass of one (or many) other class(es).
This subclassing mechanism allows the sharing of instance variables and
methods and is called inheritance. The class Object represents the most
common behavior shared by all objects.

• P6. If the instance variables owned by an object define a local environ-
ment, there are also class variables defining a global environment shared
by all the instances of the same class. These class variables are defined
at the metaclass level according to the following equation: class variable
[an-object] = instance variable [an-object’s class].

1.3 Kernel overview

If you do not fully grasp the following overview, don’t worry. This full chapter
is here to make sure that you will understand it. Let us get started.

Contrary to a real uniform language kernel, ObjVlisp does not consider arrays,
booleans, strings, numbers or any other elementary objects as part of the ker-
nel as this is the case in a real bootstrap such as the one of Pharo. ObjVLisp’s
kernel focuses on understanding Class/Object core relationships.

Figure 1-1 shows the two core classes of the kernel:

• Object which is the root of the inheritance graph and is an instance of
Class.

• Class is the first class and root of the instantiation tree and instance of
itself as we will see later.

class
error
initialize

Object
new
allocate
initialize

Class

instance of inherits from

Figure 1-1 The ObjVlisp kernel: a minimal class-based kernel.

Figure 1-2 shows that the class Workstation is an instance of the class Class
since it is a class and it inherits from Object the default behavior objects should
exhibit. The class WithSingleton is an instance of the class Class but in addi-
tion, it inherits from Class, since this is a metaclass: its instances are classes.
As such, it changes the behavior of classes. The class SpecialWorkstation is
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A minimal reflective class-based kernel

an instance of the class WithSingleton and inherits from Workstation, since
its instances exhibit the same behavior as Workstation.

originate: aPacket
accept: aPacket

Workstation

aWorkstation (BigMac)

instance of

WithSingleton

SpecialWorkstation

Minna

class
error
initialize

Object
new
allocate
initialize

Classinstance of

inherits from

Figure 1-2 The kernel with specialized metaclasses.

The two diagrams 1-1 and 1-2 will be explained step by step throughout this
chapter.

Note The key point of understanding such a reflective architecture is that
message passing always looks up methods in the class of the receiver of the
message and then follows the inheritance chain (See Figure 1-3).

Figure 1-3 illustrates two main cases:

• When we send a message to BigMac or Minna, the corresponding method
is looked up in their corresponding classes Workstation or Special-
Workstation and follows the inheritance link up to Object.

• When we send a message to the classes Workstation or SpecialWork-
station, the corresponding method is looked up in their class, the class
Class and up to Object.

1.4 Conclusion

ObjVLisp is a minimal kernel with its two main classes. It uses the infrastruc-
ture of the underlying language (integers, strings, booleans...). When the lan-
guage is fully reflective such as Pharo all such infrastructure has to be defined
at the same level as the class Object and Class but the model principles stay
the same.
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new

new

new
    uniqueInstance isNil
        ifTrue: [uniqueInstance := super new].
    ^ uniqueInstance

originate: aPacket
accept: aPacket

Workstation

aWorkstation (BigMac)

instance of

new
WithSingleton

SpecialWorkstation

Minna

class
error
initialize

Object
new
allocate
initialize

Class instance of

inherits from

method lookup

Figure 1-3 Understanding metaclasses using message passing.





CHA P T E R2
Diving into the kernel

In this chapter, we will describe one by one all the aspects of the kernel. We
will cover instance shapes, methods, instance and inheritance relationship in-
terplay, object allocation, object and class initialization...

2.1 Instances

In this kernel, there is only one instantiation link; it is applied at all levels as
shown by Figure 2-1:

• Terminal instances are objects: a workstation named mac1 is an instance
of the class Workstation, a point 10@20 is an instance of the class Point.

• Classes are also objects (instances) of other classes: the class Worksta-
tion is an instance of the class Class, and the class Point is an instance
of the class Class.

In our diagrams, we represent objects (mainly terminal instances) as rounded
rectangles with a list of instance variable values. Since classes are objects, when
we want to stress that classes are objects we use the same graphical convention as
shown in Figure 2-4.

Handling infinite recursion

A class is an object. Thus it is an instance of another class, its metaclass. This
metaclass is an object, too, an instance of a metametaclass that is an object,
too, an instance of another metametametaclass, etc. To stop this potential infi-
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Diving into the kernel

'mac1'
mac2

new

superclass
methodDict
...

Class

P1 & P3

P4

an instance of Workstation

The class Workstation

The class Point
instance of 

instance of 

10
20

send: aPacket
accept: aPacket

name 
nextNode

Workstation

10@20

instance of 

instance of 
distFrom:

x
y

Point

The class Class

| mac1 mac2 |
mac1 := Workstation new 
                     name: #mac2 nextNode: nil.
mac1 := Workstation new 
                     name: #mac1 nextNode: mac2

Point new setX: 10 setY: 20

Figure 2-1 Chain of instantiation: classes are objects, too.

nite recursion, ObjVlisp is similar to solutions proposed in many meta-circular
systems: one instance (e.g., Class) is an instance of itself.

In ObjVLisp:

• Class is the initial class and metaclass,

• Class is an instance of itself, and, directly or indirectly, all other meta-
classes are instances of Class.

We will see later the implication of this self-instantiation at the level of the
class structure itself.

2.2 Understanding metaclasses

The model unifies classes and instances. It follows from the instance-related
postulates of the kernel that:

• Every object is an instance of a class,

• A class is an object instance of a metaclass, and

• A metaclass is only a class that generates classes.

At the implementation level, there is only one kind of entity: objects. There is
no special treatment for classes. Classes are instantiated following the same
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2.3 Instance structure

process as terminal instances. They are sent messages in the same way that
other objects are sent messages.

This unification between instances and classes does not mean that objects and
classes have the same distinction. Indeed not all the objects are classes. In par-
ticular, the sole difference between a class and an instance is the ability to re-
spond to the creation message: new. Only a class knows how to respond to it.
Then, metaclasses are just classes whose instances are classes as shown in Fig-
ure 2-2.

Instances
Classes:

respond to new: 
and create instances

Metaclasses:
classes whose 

instances 
are classes

Figure 2-2 Everything is an object. Classes are just objects that can create other

objects, and metaclasses are just classes whose instances are classes.

2.3 Instance structure

The model does not really bring anything new about instance structure when
compared with languages such as Pharo or Java.

Instance variables are represented as a list of instance variable defined by a
class. Such instance variables are shared by all instances. The values of such
instance variables are specific to each instance. Figure 2-3 shows that instances
of Workstation have two values: a name and a next node.

In addition, we note that an object has a pointer to its class. As we will see
when we discuss inheritance later on, every object possesses an instance vari-
able class (inherited from Object) that points to its class.

Note that this management of a class instance variable defined in Object is
specific to the model. In Pharo for example, the class identification is not man-
aged as a declared instance variable, but as an element part of any object. It is
an index in a class table.
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Diving into the kernel

mac1
/

some instances of Workstation

instance of 

send: aPacket
accept

name
nextNode

Workstation

mac2
mac3

mac3
mac1

Figure 2-3 Instances of Workstation have two values: their names and their next

node.

2.4 About behavior

Let us continue with basic instance behavior. As in modern class-based lan-
guages, this kernel has to represent how methods are stored and looked up.

Methods belong to a class. They define the behavior of all the instances of the
class. They are stored in a method dictionary that associates a key (the method
selector) and the method body.

Since methods are stored in a class, the method dictionary should be described
in the metaclass. Therefore, the method dictionary of a class is the value of the
instance variable methodDict defined on the metaclass Class. Each class will
have its own method dictionary.

2.5 Class as an object

Here is the minimal information that a class should have:

• A list of instance variables to describe the values that the instances will
hold,

• A method dictionary to hold methods,

• A superclass to look up inherited methods.

This minimal state is similar to that of Pharo: the Pharo Behavior class has a
format (compact description of instance variables), a method dictionary, and a
superclass link.

In ObjVLisp, we have a name to identify the class. As an instance factory, the
metaclass Class possesses four instance variables that describe a class:

• name, the class name,

12



2.5 Class as an object

• superclass, its superclass (we limit to single inheritance),

• iv, the list of its instance variables, and

• methodDict, a method dictionary.

Since a class is an object, a class has the instance variable class inherited from
Object that refers to its class as any object.

The class Point

Class
'Point'
Object

'x y'
methods...

is instance of Class
named Point
inherits from Object
has instance variables
defines some methods

Figure 2-4 Point class as an object.

Example 1: class Point

Figure 2-4 shows the instance variable values for the class Point as declared by
the programmer and before class initialization and inheritance take place.

• It is an instance of class Class: indeed this is a class.

• It is named 'Point'.

• It inherits from class Object.

• It has two instance variables: x and y. Once the static inheritance of in-
stance variables occurs, it will be three instance variables: class, x, and
y.

• It has a method dictionary.

The class Class

Class
'Class'
Object

'name superclass iv 
methodDict'

methods...

is instance of Class
named Class
inherits from Object
has instance variables

defines some methods

Figure 2-5 Class as an object.
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Diving into the kernel

Example 2: class Class

Figure 2-5 describes the class Class itself. Indeed it is also an object.

• It is an instance of class Class: indeed this is a class.

• It is named 'Class'.

• It inherits from class Object

• It has four locally defined instance variables: name, superclass, iv, and
methodDict.

• It has a method dictionary.

The class Class

Class
'Class'
Object

'class name superclass 
iv methodDict'
methods(new  

allocate..)

instance of 

Class
'Workstation'

Object
'class name nextNode'

methods(accept: 
send:..

The class Workstation

Class
'Point'
Object

'class x y'
methods(distance:...)

The class Point

Workstation
mac1

/
some instances of Workstation

instance of 

Workstation
mac2
mac3

instance of 

Figure 2-6 Through the prism of objects.

Everything is an object

Figure 2-6 describes a typical situation of terminal instances, classes, and meta-
classes when viewed from an object perspective. We see three levels of in-
stances: terminal objects (mac1 and mac2 which are instances of Workstation),
class objects (Workstation and Point which are instances of Class) and the
metaclass (Class which is an instance of itself).

2.6 Sending a message

In this kernel, the second postulate states that the only way to perform compu-
tation is via message passing.

Sending a message is a two-step process as shown by Figure 2-7:

14



2.6 Sending a message

 
Object

accept:
...

id
nextNode

Node

send:

 
Workstation

accept: aPacket

2- execution on
receiver

1- lookup

aWork
station 

instance of

inherits from

method lookup

accept: aPacket
  ^ aPacket target = id
         ....

Figure 2-7 Sending a message is a two-step process: method lookup and execu-

tion.

1. Method lookup: the method corresponding to the selector is looked up in
the class of the receiver and its superclasses.

2. Method execution: the method is applied to the receiver. This means that
self or this in the method will be bound to the receiver.

Conceptually, sending a message can be described by the following function
composition:

sending a message (receiver argument)
return apply (lookup (selector classof(receiver) receiver) receiver
arguments)

Method lookup

Now the lookup process is conceptually defined as follows:

1. The lookup starts in the class of the receiver.

2. If the method is defined in that class (i.e., if the method is defined in the
method dictionary), it is returned.

3. Otherwise the search continues in the superclass of the currently ex-
plored class.

4. If no method is found and there is no superclass to explore (if we are in
the class Object), this is an error (i.e., the method is not defined).
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Diving into the kernel

send:
accept:

Workstation

error:
class?
iv-ref
initialize

Object

name
accept:

name
nextNode

Node

send: aPacket mac1

1 
name

2 

instance of

inherits from

method lookup

Figure 2-8 Looking for a method is a two-step process: first, go to the class of re-

ceiver then follow inheritance.

The method lookup walks through the inheritance graph one class at a time
using the superclass link. Here is a possible description of the lookup algorithm
that will be used for both instance and class methods.

lookup (selector class receiver):
if the method is found in class

then return it
else if class == Object

then send the message error to the receiver
else lookup (selector superclass(class) receiver)

send:
accept:

Workstation

error:
class?
iv-ref
initialize

Object

name
accept:

name
nextNode

Node

coucou mac1

[ mac1 error: #coucou ]

coucou

error:

instance of

inherits from

method lookup

Figure 2-9 When a message is not found, another message is sent to the receiver

supporting reflective operation.
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2.7 Handling unknown messages

When the method is not found, the message error is sent as shown in Figure
2-9. Sending a message instead of simply reporting an error using a trace or
an exception is a key design decision. In Pharo, this is done via the doesNo-
tUnderstand: message, and it is an important reflective hook. Indeed classes
can define their own implementation of the method error and perform spe-
cific actions to the case of messages that are not understood. For example, it is
possible to implement proxies (objects representing other remote objects) or
compile code on the fly by redefining such a message locally.

Now it should be noted that the previous algorithm has a limitation when a
missing method has an arbitrary number of arguments. They are not passed to
the errormessage. A better way to handle this is to decompose the algorithm
differently as follows:

lookup (selector class):
if the method is found in class

then return it
else if class == Object

then return nil
else lookup (selector superclass(class))

And then we redefined sending a message as follows:

sending a message (receiver argument)
methodOrNil = lookup (selector classof(receiver)).
if methodOrNil is nil

then send the message error to the receiver
else return apply(methodOrNil receiver arguments)

Remarks

This lookup is conceptually the same as in Pharo where all methods are pub-
lic and virtual. There are no statically bound methods; even class methods are
looked up dynamically. This allows for defining very elegant and dynamic reg-
istration mechanisms.

While the lookup happens at runtime, it is often cached. Languages usually
have several systems of caches, e.g., global (class, selector), one per call site,
etc.

2.8 Inheritance

In this kernel, there are two aspects of inheritance to consider:
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• One static for the case where subclasses get superclass state. This in-
stance variable inheritance is static in the sense that it happens only
once at class creation time, i.e., at compilation time.

• One dynamic for behavior where methods are looked up during program
execution. In this case, the inheritance tree is walked at run time.

Let’s look at these two aspects.

Instance variable inheritance

Instance variable inheritance is done at class creation time. From that perspec-
tive, it is static and performed once. When a class C is created, its instance vari-
ables are the union of the instance variables of its superclass and the instance
variables defined locally in class C. Each language defines the exact semantics
of instance variable inheritance, for example, if they accept instance variables
with the same name or not. In our model, we decide to use the simplest way:
there should be no duplicate names.

instance-variables(aClass) =
union (instance-variables(superclass(aClass)),

local-instance-variables(aClass))

A word about the union of instance variables: when the implementation of
the language is based on offsets to access instance variables, the union should
make sure that the locations of inherited instance variables are kept ordered
compared to the superclass. In general, we want to be able to apply methods
of the superclass to subclasses without copying them down and recompiling
them. Indeed if a method uses a variable at a given position in the instance
variable lists, applying this method to instances of subclasses should work. In
the implementation proposed next chapter, we will use accessors and will not
support direct access to instance variables from a method body.

Method lookup

As previously described in Section 2.6, methods are looked up at runtime. Meth-
ods defined in superclasses are reused and applied to instances of subclasses.
Contrary to instance variable inheritance, this part of inheritance is dynamic,
i.e., it happens during program execution.

2.9 Object: defining the minimal behavior of any object

Object represents the minimal behavior that any object should understand,
e.g., returning the class of the object, being able to handle errors, and initial-
izing the object. This is why Object is the root of the hierarchy. Depending on
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the language, Object can be complex. In our kernel it is kept minimal as we
will show in the implementation chapter.

Figure 2-10 shows the inheritance graph without the presence of instantiation.
A Workstation is an object (i.e., it should at least understand the minimal be-
havior), so the class Workstation inherits directly or indirectly from the class
Object. A class is also an object (i.e., it should understand the minimal behav-
ior) so the class Class inherits from the class Object. In particular, the class
(note the lowercase) instance variable is inherited from Object class.

send:
accept:

Workstation

new
allocate

name
superclass
iv
methodDict

Class

distanceFrom:
...

x
y

Point

error:
class?
iv-ref

Object

accept:

name
nextNode

Node

Figure 2-10 Full inheritance graph: Every class ultimately inherits from Object.

Remark

In Pharo, the class Object is not the root of inheritance. The root is in fact
ProtoObject, and Object inherits from it. Most of the classes still inherit
from Object. The design goal of ProtoObject is special: It supports the maxi-
mum generation of errors. Such errors can be captured via redefinition of the
message doesNotUnderstand: and can support different scenarios such as
implementing proxies.

2.10 Inheritance and instantiation together

Now that we have seen the instantiation and the inheritance graphs, we can
examine the complete picture. Figure 2-11 shows the graphs and in particular
how such graphs are used during message resolution:

• the instantiation link is used to find the starting class to look for any
methods associated with the received message.
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• the inheritance link is used to find inherited methods.

This process is the same when we send messages to the classes themselves.
There is no difference between sending a message to an object or a class. The
system always performs the same steps.

mac1
/

instance of 

mac2
mac3

instance of 

send:
accept:

Workstation

new
allocate
initialize

Class

instance of 
error:
class?
iv-ref
initialize

Object

name
accept:

name
nextNode

Node

new

name

instance of

inherits from

method lookup

Figure 2-11 Kernel with instantiation and inheritance link.

2.11 Review of self and super semantics

Since our experience showed us that even some book authors got the essential
semantics of object-oriented programming wrong, we review here some facts
that programmers familiar with object-oriented programming should master.
For further readings refer to Pharo By Example or the Pharo Mooc available at
http://mooc.pharo.org.

As explained in Section 2.6, sending a message to an object always starts the
lookup the corresponding method in the class of the receiver.

Now we should distinguish two cases: self and super. In the body of a method,
both self (also called this in languages like Java) and super always represent
the receiver of the message. Yes you read it well, both self and super always
represent the receiver!

The difference lies in the class from where the lookup starts:

• For self. When a message is sent to self, the lookup of the method to
execute starts in the class of the receiver.

When a message is sent to super, the lookup starts in the superclass of the
method’s class.
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2.11 Review of self and super semantics

• For super. When a message is sent to super, the method lookup starts in
the superclass of the class containing the super expression.

This distinction between self and super is required to handle the case where
a method is redefined locally in a class but that you need to invoke the behav-
ior defined in its superclasses. Note that the superclass method may be defined
not in a direct superclass but one of the class ancestor, so there is a need for a
method lookup and this method lookup should start above the method rede-
fined it (here the method containing the super expression). Hence the name
super.

Note that the lookup of a method in the case of super does not look in the su-
perclass of the class of the receiver, since this would mean that it may loop for-
ever in the case of inheritance tree with three classes.

Looking at Figure 2-12 we see that the key point is that B new bar returns 50
since the method is dynamically looked up and self represents the receiver, i.e.,
the instance of the class B. What is important to see is that sendings of self act
as a hook and that subclasses’ code can be injected in superclass code.

A new foo
>>> 10
B new foo
>>> 50
A new bar
>>> 10
B new bar
>>> 50

foo
bar

A

foo
B

aB

foo
   ^ 10

bar 
   ^ self foo

foo
   ^ 50

Figure 2-12 self always represents the receiver.

For super, the situation depicted in Figure 2-14 shows that super represents
the receiver, but that when super is the receiver of a message, the method is
looked up differently (starting from the superclass of the class using super)
hence R new bar returns 100, but neither 20 nor 60.
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Self lookup - Sequence Diagram

:A

:B

:A

:B

Playground

A new :A

... foo

10

B new :B

... foo

50

A new :A

... bar

foo
self

10

B new :B

... bar A's bar

foo
self

50

Figure 2-13 Sequence diagram of self always represents the receiver.



2.12 Object creation

foo
bar

P

bar
Q

foo
    ^ 10

bar 
   ^ self foo

foo
    ^ 50foo

R

bar 
   ^ super bar + self foo

Figure 2-14 super represents the receiver, but the method lookup starts in the

superclass of the class of the method using super.

Q new bar
>>> 20
R new bar
>>> 100

As a conclusion, we can say that self is dynamic and super static. Let us ex-
plain this view:

• When sending a message to self the lookup of the method begins in the
class of the receiver. self is bound at execution-time. We do not know its
value until execution time.

• super is static in the sense that while the object it will point to is only
known at execution time, the place to look for the method is known at
compile time: it should start to look in the class above the one containing
super.

2.12 Object creation

Now we are ready to understand the creation of objects. In this model, there is
only one way to create instances: we should send the message new to the class
with a specification of the instance variable values as arguments.

2.13 Creation of instances of the class Point

The following examples show several point instantiations. What we see is that
the model inherits from the Lisp tradition of passing arguments using keys and
values, and that the order of arguments is not important.
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Point new :x 24 :y 6
>>> aPoint (24 6)
Point new :y 6 :x 24
>>> aPoint (24 6)

When there is no value specified, the value of an instance variable is initialized
to nil. It is worth to see that in CLOS (Common Lisp Object System) [7] provides
the notion of default values for instance variable initialization. It can be added
to ObjVlisp as an exercise and does not bring conceptual difficulties.

Point new
>>> aPoint (nil nil)

When the same argument is passed multiple times, then the implementation
takes the first occurrence.

Point new :y 10 :y 15
>>> aPoint (nil 10)

We should not worry too much about such details: The point is that we can
pass multiple arguments with a tag to identify them.

2.14 Creation of the class Point instance of Class

Since the class Point is an instance of the class Class, to create it, we should
send the message new to the class as follows:

Class new
:name 'Point'
:superclass 'Object'
:iv #(x y)

>>> aClass

What is interesting to see here is that we use exactly the same way to create
an instance of the class Point as the class itself. Note that the possibility of
having the same way to create objects or classes is also due to the fact that the
arguments are specified using a list of pairs.

An implementation could have two different messages to create instances and
classes. As soon as the same new, allocate, or initializemethods are in-
volved, the essence of the object creation is similar and uniform.

Instance creation: Role of the metaclass

The following diagram (Figure 2-15) shows that despite what one might ex-
pect when we create a terminal instance the metaclass Class is involved in the
process. Indeed, we send the message new to the class, to resolve this message,
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2.14 Creation of the class Point instance of Class

the system will look for the method in the class of the receiver (here Worksta-
tion) which is the metaclass Class. The method new is found in the metaclass
and applied to the receiver, the class Workstation. Its effect is to create an
instance of the class Workstation.

new
accept:
send:

Workstation

mac1

instance of 

new
allocate
initialize

name
superclass
iv
methodDict

Class

instance of 

accept:
send:

Workstation

instance of 

instance of 

new
allocate
initialize

name
superclass
iv
methodDict

Class

Figure 2-15 Metaclass role during instance creation: Applying plain message reso-

lution. Right: situation before - Left: situation after the instance creation.

The same happens when creating a class. Figure 2-16 shows the process. We
send a message, now this time, to the class Class. The system makes no ex-
ception and to resolve the message, it looks for the method in the class of the
receiver. The class of the receiver is itself, so the method new found in Class is
applied to Class (the receiver of the message), and a new class is created.

[ Class new
    :name 'Workstation'
    :superclass 'Object'
    :iv #()
    :methodDict (send: ....)]

instance of 
new
allocate
initialize

name
superclass
iv
methodDict

Class

accept:
send:

Workstation

instance of 
new
allocate
initialize

name
superclass
iv
methodDict

Class

instance of 

Figure 2-16 Metaclass role during class creation: Applying plain message resolu-

tion - the self instantiation link is followed.

new = allocate and initialize

Creating an instance is the composition of two actions: a memory allocation
allocatemessage and an object initialization message initialize.
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In Pharo syntax, it means:

aClass new: args = (aClass allocate) initialize: args

We should see the following:

• The message new is a message sent to a class. The method new is a class
method.

• The message allocate is a message sent to a class. The method allo-
cate is a class method.

• The message initialize: will be executed on any newly created in-
stance. If it is sent to a class, a class initialize: method will be in-
voked. If it is sent to a terminal object, an instance initialize: method
will be executed (defined in Object).

Object allocation: the message allocate

Allocating an object means allocating enough space to the object state but
there’s more: instances should be marked with their class name or id. There
is an invariant in this model and in general in object-oriented programming
models. Every single object must have an identifier to its class, else the system
will break when trying to resolve a message.

Object allocation should return a newly created instance with:

• empty instance variables (pointing to nil for example);

• an identifier to its class.

In the ObjVLisp model, the marking of an object as an instance of a class is per-
formed by setting the value of the instance variable class inherited from Ob-
ject. In Pharo, this information is not recorded as an instance variable but
encoded in the internal object representation in the virtual machine.

The allocatemethod is defined on the metaclass Class. Here are some exam-
ples of allocation.

Point allocate
>>> #(Point nil nil)

A point allocation allocates three slots: one for the class and two for x and y
values.

Class allocate
>>> #(Class nil nil nil nil nil)

The allocation for an object representing a class allocates six slots: one for class
and one for each of the class instance variables: name, super, iv, keywords (see
below), and methodDict.
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Object initialization

Object initialization is the process of passing arguments as key/value pairs and
assigning the value(s) to the corresponding instance variable(s).

This is illustrated in the following snippet. An instance of class Point is cre-
ated and the key/value pairs (:y 6) and (:x 24) are specified. In the following
snippet :y and :x are keywords in ObjVLisp parlance. They are built automati-
cally from the instance variables and are used to uniquely identify values.

In the following snippet, the instance is created and it receives the initial-
ize: message with the key/value pairs. The initialize: method is responsi-
ble for setting the corresponding variables in the receiver.

Point new :y 6 :x 24
>>> #(Point nil nil) initialize: (:y 6 :x 24)]
>>> #(Point 24 6)

When an object is initialized as a terminal instance, two actions are performed:

• First, we should get the values specified during the creation, i.e., get that
the y value is 6 and the x value is 24,

• Second, we should assign the values to the corresponding instance vari-
ables of the created object.

Class initialization

During its initialization, a class should perform several steps:

• First, as with any initialization it should get the arguments and assign
them to their corresponding instance variables. This is basically imple-
mented by invoking the initializemethod of Object via a super call,
since Object is the superclass of Class.

• Second the inheritance of instance variables should be performed. Be-
fore this step, the class iv instance variable just contains the instance
variables that are locally defined. After this step, the instance variable iv
will contain all the instance variables inherited and local. In particular,
this is where the class instance variable inherited from Object is added
to the instance variables list of the subclass of Object.

• Third the class should be declared as a class pool or namespace so that
programmers can access it via its name.

2.15 The Class class

Now we get a better understanding of what is the class Class:
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• It is the initial metaclass and initial class.

• It defines the behavior of all the metaclasses.

• It defines the behavior of all the classes.

In particular, metaclasses define three messages related to instance creation.

• The newmessage, which creates an initialized instance of the class. It
allocates the instance using the class message allocate and then initial-
izes it by sending the message initialize: to this instance.

• The allocatemessage. Like the message new, it is a class message. It
allocates the structure for the newly created object.

• Finally the message initialize:. This message has two definitions, one
on Object and one on Class.

There is a difference between the method initialize: executed on any in-
stance creation and the class initialize: method only executed when the
created instance is a class.

• The first one is a method defined on the class of the object and poten-
tially inherited from Object. This initialize: method just extracts the
values corresponding to each instance variable from the argument list
and sets them in the corresponding instance variables.

• The class initialize: method is executed when a new instance rep-
resenting a class is executed. The message initialize: is sent to the
newly created object but its specialization for classes will be found dur-
ing method lookup and it will be executed. Usually, this method invokes
the default ones, because the class parameter should be extracted from
the argument list and set in their corresponding instance variables. But
in addition, instance variable inheritance and class declaration in the
class namespace is performed.

2.16 Conclusion

At this stage you saw all the concepts of this minimal object-oriented kernel
where classes are themselves instances of other classes. In the following chap-
ter, we explore more metaclasses and we encourage you to read it because it
will shed an interesting light on the model.
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CHA P T E R3
First metaclasses

In this chapter, we will study how all the concepts explained in the previous
chapter fit together to let us define powerful metaclasses. Studying such en-
tities will reinforce your understanding of the instantiation and inheritance
relationships as well as their interplay. At the end of the chapter, we will ex-
plain why the sixth predicate of ObjVLisp is wrong and propose a solution that
elegantly fits the model.

3.1 Defining a new Metaclass

Now we can study how we can add new metaclasses and see how the system
handles them. To create a new metaclass is simple; it is enough to inherit from
an existing one. Maybe this is obvious to you, but this is what we will check
now.

Abstract

Imagine that we want to define abstract classes. We state that a class is abstract
if it cannot create instances. To control the creation of instances of a class, we
should define a new metaclass that forbids it. Therefore we will define a meta-
class whose instances (abstract classes) cannot create instances.

We create a new metaclass named AbstractMetaclass which inherits from
Class and we redefine the method new in this metaclass to raise an error (as
shown in Figure 3-1). The following code snippet defines this new metaclass.
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mac1
/

instance of 

mac2
mac3

send:
accept:

Workstation

new
allocate

Classinstance of 

error:
class?

Object

name
accept:

Node

new

Abstract

instance of

inherits from

Figure 3-1 Abstract metaclass: its instance (i.e., the class Node) is abstract.

Class new
:name 'AbstractMetaclass'
:superclass 'Class'

AbstractMetaclass
addMethod: #new
body: [ :receiver :initargs | receiver error: 'Cannot create

instance of class' ]

Two facts describe the relations between this metaclass and the class Class:

• AbstractMetaclass is a class, an instance of Class.

• AbstractMetaclass defines class behavior: It inherits from Class.

Now we can define an abstract class Node in ObjVLisp syntax:

AbstractMetaclass new
:name 'Node'
:super 'Object'

Sending a message new to the class Node will raise an error.

Node new
>>> Cannot create instance of class

A subclass of Node, for example, Workstation, can be a concrete class by being
an instance of Class instead of AbstractMetaclass but still inheriting from
Node. What we see in Figure 3-2 is that there are two links, instantiation and
inheritance. The method lookup follows them as we presented previously. It
always starts in the class of the receiver and follows the inheritance path.
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mac1
/

instance of 

mac2
mac3

send:
accept:

Workstation

new
allocate
initialize

Classinstance of 

error:
class?
initialize

Object

name
accept:

Node

new

Abstract

new

new

new
    ^ self error

instance of

inherits from

method lookup

Figure 3-2 Abstract metaclass at work: Using message passing as a key to navigate

the graph.

What is key to understand is that when we send the message new to the class
Workstation, we look for methods first in the metaclass Class. When we
send the message new to class Node, we look in its class: AbstractMetaclass
as shown in Figure 3-2. In fact we do what we do for any instances: we look at
the class of the receiver.

A class method is just implemented and follows the same semantics as instance
methods: Sending the message error to the class Node starts in Abstract-
Metaclass. Since we did not redefine it locally and it is not found there, the
lookup will continue in the superclass of AbstractClass: the class Class and
then the superclass of class Class, the class Object.

3.2 About class state

Imagine that we define a metaclass WithSingleton whose instances are classes
that will have a unique instance. The situation is described in Figure 3-3. The
class WithSingleton inherits from Class since it wants to reuse all of the class
mechanisms. It is also an instance of class Class, since WithSingleton is a
class and it can create instances. The class Node is an instance of class With-
Singleton. When it receives the message new, the method new defined in the
class WithSingleton is executed. If the unique instance variable is nil, it in-
vokes the behavior defined in Class and stores it in the unique instance vari-
able, and returns it.

Several questions still should be asked and answered.

• What is the instance variable list for the WithSingletonmetaclass?
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mac1
mac2

new
allocate
initialize

Class

error:
initialize

Object

name
accept:

Node

new
uniqueInstance

unique
WithSingleton

instance of inherits from

new
    unique 
       ifNil: [ unique := super new].
   ^ unique

Node new
>>> mac1
Node new 
>>> mac1 

Figure 3-3 A WithSingleton metaclass: its instances can only have one instance.

• Where is the unique instance of the class Node or Process actually stored?

Instance variable of WithSingleton

As with any class, a subclass gets its instance variables as well as the instance
variables of its superclass. Hence WithSingleton instance variables are the
same as the one of Class, and it also has unique instance variable as shown in
Fig. 3-4.

Singleton objIVs
>>> #(class name superclass iv keywords methodDict unique)

mac1
mac2

new
allocate
initialize

Class

error:
initialize

Object

name
accept:

Node

new
uniqueInstance

unique
WithSingleton

instance of

inherits from

new
    unique 
       ifNil: [ unique := super new].
   ^ unique

scheduleTasks

Process

Singleton ivs
>>> #(class name super ivs keywords methodDict unique)

Figure 3-4 Storing unique instance.
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Where is the singleton stored?

Each class instance of WithSingleton will have an additional value after its
method dictionary. This is where the actual singleton of the class is stored. The
class Node and Process are instances of the metaclass WithSingleton. There-
fore they have one extra field in their structure to hold the unique instance
variable values. Each instance of WithSingleton will have its own value: the
instance of class playing the singleton role.

3.3 About the 6th postulate

As mentioned at the start of this chapter, the 6th postulate of ObjVLisp is wrong.
Let us read it again:

”If the instance variables owned by an object define a local environment, there are also
class variables defining a global environment shared by all the instances of a same
class. These class variables are defined at the metaclass level according to the follow-
ing equation: class variable [an-object] = instance variable [an-object’s class].”

This says that class instance variables are equivalent to shared variables be-
tween instances, and this is wrong. Let us study this. According to the 6th pos-
tulate, a shared variable between instances is equal to an instance variable of
the class. The definition is not totally clear so let us look at an example given in
the article.

Illustrating the problem

Imagine that we would like the constant character ’*’ to be a class variable
shared by all the points of the same class. We redefine the Point class as be-
fore, but metaclass of which (let us call it MetaPoint) specifies this common
character For example, if a point has a shared variable named char, this in-
stance variable should be defined in the class of the class Point called Meta-
Point. The author proposes to define a new metaclass MetaPoint to hold a
new instance variable to represent a shared variable between points.

Class new
:name 'MetaPoint'
:superclass 'Class'
:iv #(char)

Then he proposes to use it as follows:

MetaPoint new
:name Point
:superclass 'Object'
:iv #(x y)
:char '*'
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The class Point can define a method that accesses the character just by going
to the class level. So why is this approach is wrong? Because it mixes levels.
The instance variable char is not class information. It describes the termi-
nal instances and not the instance of the metaclass. Why would the metaclass
MetaPoint need a char instance variable?

The solution

The solution is that the shared variable char should be held in a list of the
shared variables of the class Point. Any point instance can access this vari-
able. The implication is that a class should have extra information to describe
it. That is, an instance variable sharedVariable holding pairs, i.e., variable
and its value. We should then be able to write:

Class new
:name Point
:superclass 'Object'
:iv #(x y)
:sharedivs {#char -> '*'}

Therefore the metaclass Class should get an extra instance variable named
sharedivs, and each of its instances (the classes Point, Node, Object) can
have different values. Such values can be shared among their instances by the
compiler.

What we see is that sharedivs is from the Class vocabulary and we do not
need an extra metaclass each time we want to share a variable. This design is
similar to the one of Pharo where a class has a classVariable instance variable
holding variables shared in all the subclasses of the class defining it.

3.4 Conclusion

We presented a small kernel composed of two classes: Object, the root of the
inheritance tree, and Class, the first metaclass root of the instantiation tree.
We revisited all the key points related to method lookup, object and class cre-
ation, and initialization. In the subsequent chapter, we propose to you how to
implement such a kernel.

Further readings

The kernel presented in this chapter is a kernel with explicit metaclasses and
as such it is not a panacea. Indeed it results in problems with metaclass compo-
sition as explained in Bouraqadi et al.’s excellent article.
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CHA P T E R 4
Getting started with the

implementation

During the previous chapters, you saw the main conceptual points of the Ob-
jVLisp model, now you will implement it. The objective of this chapter is to
help you to implement step by step the model. To do so, we offer a skeleton of
the implementation where key method bodies have been removed and replaced
with an indication that you should implement them. In addition, a set of tests
specifies the methods that are missing and that you should implement. Making
the tests pass will guide you during your implementation.

4.1 Preparation

In this section, we discuss the setup that you will use, the implementation
choices, and the conventions that we will follow during the rest of this book.

Getting Pharo 11

You need to download and install Pharo from http://www.pharo.org/. You
need a virtual machine, and a couple image and changes. The best way is to
use the PharoLauncher that is available at http://www.pharo.org/download.

You can also use http://get.pharo.org to get a script to download Pharo.

The current version of this book is working with Pharo 11.0.

wget -O- get.pharo.org/110+vm | bash
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Getting started with the implementation

You can use the book Pharo by Example from http://www.pharo.org/PharoByEx-
ample/ for an overview of the syntax and the system.

Getting infrastructure definitions

All the necessary method or class definitions are provided as a package. It
contains all the classes, the method categories, and the method signatures of
the methods that you have to implement. It provides additional functionality
that will make your life easy and help you to concentrate on the essence of the
model. It contains also all the tests of the functionality you have to implement.

To load the code, execute the following expression:

Metacello new
baseline: 'ObjV';
repository: 'github://Ducasse/ObjVLispSkeleton/tree/master/src';
load

Running tests

For each functionality, you will have to run some tests.

For example to run a particular test named testPrimitiveStructure,

• evaluate the expression (ObjTest run: #testPrimitiveStructure),
or

• click on the icon of the method named testPrimitiveStructure.

4.2 Naming conventions

We use the following conventions: we name as primitives all the Pharo methods
that are used to build ObjVLisp. These primitives are mainly implemented as
methods of the class Obj. Note that in a Lisp implementation, such primitives
would be just lambda expressions, in a C implementation such primitives would
be represented by C functions.

We also talk about objInstances, objObjects, and objClasses to refer to specific in-
stances, objects, or classes defined in ObjVLisp.

To help you to distinguish between classes in the implementation language
(Pharo) and the ObjVLisp model, we prefix all the ObjVLisp classes by Obj. Fi-
nally, some of the crucial and confusing primitives (mainly the class structure
ones) are all prefixed by obj.

For example, the primitive that given an objInstance returns its class identifier
is named objClassId.
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4.3 Helping develop the kernel

4.3 Helping develop the kernel

To help you implement step by step the kernel of ObjVLisp, we defined tests
that you will be able to execute one by one for each new aspect of ObjVLisp that
you will define.

The problem is that to run a test, the kernel should be fully finished and we
are defining it step by step. So we are trapped. Now to make sure that you
can execute tests as soon as you define a method, we implemented manually
some mocks of the objects that represent instances and classes in the ObjVLisp
world: we basically created arrays and stuffed them with the correct informa-
tion to mimick what the kernel once created will do. If you look at the methods
setUp of the test classes you will see how we created them. Now pay attention
because the setups are often taking shortcuts, so do not copy them blindly.

Finally, if you want to interact with objects during your development, for ex-
ample to check manually that a pharo method is working or to explore your ob-
jClasses you can simply define a test method and put a breakpoint using self
halt. When you execute this test, it will open a debugger and you will be able
to execute code. For example the class RawObjectTest has several instances
holding objects representing: the objClass Object, an objInstance of the ob-
jClass Point, the objClass Point.... Check the instance variables of the class
RawObjectTest.

Figure 4-1 shows a method named testBidouille with a halt. It also shows
that we can interact and send messages to the objects that were manually cre-
ated. Here we executed the primitive objName on the objClass pointClass and
it returned #ObjPoint.

4.4 Inheriting from class Array

We do not want to implement a scanner, a parser, and a compiler for ObjVLisp
but concentrate on the essence of the language. That’s why we chose to use as
much as possible the implementation language, here Pharo. In our implemen-
tation, every object in the ObjVLisp world is an instance of the class Obj. The
class Obj is a subclass of Array.

Since the Pharo class Obj is a subclass of the Pharo class Array, the following
array #(#ObjPoint 10 15) represents an objInstance of the objClass Obj-
Point. From an implementation point of view, this objClass ObjPoint is just an
instance of the Pharo class Obj.

As we will see:

• #(#ObjPoint 10 15) represents an objPoint (10,15). It is an objInstance
of the objClass ObjPoint.
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Figure 4-1 Interacting in the debugger with some objinstances.

• #(#ObjClass #ObjPoint #ObjObject #(class x y) #(:x :y) nil
) is the array that represents the objClass ObjPoint.

4.5 Facilitating objClass class access

In the previous chapter, we wrote some expressions using some objClass such
as ObjPoint objIVs that returns the instance variables of the objClass Obj-
Point.

If you simply execute this expression in Pharo you will get an error. Indeed, the
objClass ObjPoint is not a Pharo class and it is not known to Pharo: It is not
added to the Pharo namespace and this is normal because it is another world.

The question is then how can we provide simple access to objClasses once they
are created. For this, we need a way to store and access ObjVLisp classes. As a
solution, on the class level of the Pharo class Obj, we defined a dictionary hold-
ing the defined classes. The keys of this dictionary are the objClass names and
the values are the objClasses with the corresponding name. This dictionary
acts as the namespace for our language. We defined the following methods to
store and access defined classes.

• declareClass: anObjClass stores the objInstance anObjClass given
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4.5 Facilitating objClass class access

as an argument in the class repository (here a dictionary whose keys are
the class names and values the ObjVLisp classes themselves).

• giveClassNamed: aSymbol returns the ObjVLisp class named aSymbol
if it exists. The class should have been declared previously.

With such methods, we can write code like the following: Here we get access to
the objClass ObjPoint.

Obj giveClassNamed: #ObjPoint
>>> #(#ObjClass 'ObjPoint' #ObjObject #(class x y) #(:x :y) ... )

Then we can access some of its state. For example we access the instance vari-
ables of the class as follows:

(Obj giveClassNamed: #ObjPoint) objIVs
>>> #(class x y)

To make class access less heavy, we also implemented a shortcut: We trap mes-
sages not understood sent to Obj and look into the defined class dictionary.
Since ObjPoint is an unknown message, this same code is then written as:

Obj ObjPoint
>>> #(#ObjClass 'ObjPoint' #ObjObject #(class x y) #(:x :y) ... )

Now you are ready to start.
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CHA P T E R 5
Primitives for a reflective

class-based kernel

Now that all the infrastructure has been explained you are ready to start. The
first tasks are to define how we will manipulate objObjects. We will define
Pharo methods that will act as primitive functionalities to build later the lan-
guage kernel. Such primitives could be written in C, assembly or any other lan-
guages. They are the low-level functionalities on top of which we will build the
object model of ObjVLisp: mainly the class ObjObject and ObjClass.

5.1 Structure and primitives

The first issue is how to represent objects. We have to agree on an initial rep-
resentation. In this implementation, we chose to represent the objInstances as
arrays (instances of Obj a subclass of Array). In the following, we use the term
’array’ for talking about instances of the class Obj.

Your job.

Check that the class Obj exists and inherits from Array.

5.2 Structure of a class

The first object that we will have to create is the class ObjClass. Therefore we
focus now on the minimal structure of the classes in our language.
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Primitives for a reflective class-based kernel

An objInstance representing a class has the following structure: an identifier
to its class, a name, an identifier to its superclass (we limit the model to single
inheritance), a list of instance variables, a list of initialization keywords, and a
method dictionary.

For example, the class ObjPoint has the following structure:

#(#ObjClass #ObjPoint #ObjObject #(class x y) #(:x :y) nil)

It means that the objClass ObjPoint is an instance of ObjClass, is named #Ob-
jPoint, inherits from a class named ObjObject, has three instance variables,
two initialization keywords, and an uninitialized method dictionary. To access
this structure we define some primitives as shown in Figure 5-1.

#(
    #ObjClass 
    #ObjPoint 
    #ObjObject 
    #(class x y) 
    #(:x :y) 
    nil 
)

offsetForClassId (1)

offsetForSuperclassId (3)
offsetForName (2)

offsetForIVs (4)
offsetForKeywords (5)
offsetForMethodDict (6)

Figure 5-1 Class structure representation.

To avoid manipulating numbers we defined some Pharo methods returning
the corresponding constants of the object and class structure. These methods
start with the offset term. We have offsetForClassIdId, offsetForName,
offsetOfSuperclassId, and more. Figure 5-2 shows how offsets are used to
access the information of an objClass.

Here is the definition of offsetForName: It just defines that given an objobject
representing an objclass the name of the class is located at the second position.

Obj >> offsetForName
^ 2

Using the method offsetForName we can simply define a Pharo primitive
named objName that returns the name of a class as follows:

Obj >> objName
^ self at: self offsetForName

The corresponding setter objName: is then defined as follows:

Obj >> objName: aString
^ self at: self offsetForName put: aString
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5.2 Structure of a class

#(Class 'Point' 'Object' '(x y) ....)

objName
   ^ self at: self offsetForName

name superclass instancevariables

Figure 5-2 Using offset to access information.

Your job.

The test methods of the class RawObjTest that are in the categories 'step01-
tests-structure of objects' and 'step02-tests-structure of classes'
give some examples of structure accesses. Here are two examples of such test
methods:

RawObjTest >> testPrimitiveStructureObjClassId
self assert: pointClass objClassId equals: #ObjClass

RawObjTest >> testPrimitiveStructureObjIVs
self assert: pointClass objIVs equals: #(#class #x #y)

Access of ClassId for any objects.

Using the method offsetForClassIdId, implement in protocol 'object
structure primitives' the primitives objClassId and objClassId: aSym-
bol. The receiver is an objObject. This means that this primitive can be ap-
plied on any objInstances (be it a class or an instance such as a point objObject)
to get its class identifier. Execute the test method testPrimitiveStructure-
ObjClassId.

Class structure access.

Now we can focus on the other primitives that give access to class information.

Implement in protocol 'class structure primitives' the primitives that
manage:

• the class name. Methods objName andobjName: aSymbol. The receiver
is an objClass. Execute test method testPrimitiveStructureObj-
Name.

• the superclass. Methods objSuperclassId and objSuperclassId:
aSymbol. The receiver is an objClass. Execute test method testPrimi-
tiveStructureObjSuperclassId
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• the instance variables. Methods objIVs and objIVs: anOrderedCol-
lection. The receiver is an objClass. Execute test method testPrimi-
tiveStructureObjIVs.

• the keyword list. Methods objKeywords and objKeywords: anOrdered-
Collection. The receiver is an objClass. Execute test method test-
PrimitiveStructureObjKeywords.

• the method dictionary. Methods objMethodDict and objMethodDict:
anIdentityDictionary. The receiver is an objClass. Execute test
method testPrimitiveStructureObjMethodDict.

5.3 Finding the class of an object

Every object keeps the identifier of its class (its name). For example, an in-
stance of ObjPoint has then the following structure: #(#ObjPoint 10 15)
where #ObjPoint is a symbol identifying the class ObjPoint.

Your job.

Using the primitive giveClassNamed: aSymbol defined at the class level of
Obj (See Section 4.5), define the primitive objClass in the protocol 'object-
structure primitive' that returns the objInstance that represents its
class (classes are objects too in ObjVLisp).

Make sure that you execute the test method: testClassAccess

RawObjTest >> testClassAccess
self assert: aPoint objClass equals: pointClass

Now we will be ready to manipulate objInstances via proper API. We will now
use the class ObjTest for more elaborate tests.

5.4 Accessing object instance variable values

A first simple method.

Now you will implement a primitive that when sent to an objClass returns the
offset of the instance variable represented by the symbol. It returns 0 if the
variable is not defined. The following test illustrates the behavior of this primi-
tive ivClassOffset: (It could have been named classOffsetForIV:)

ObjTest >> testIVOffset
self
assert: (pointClass ivClassOffset: #x)
equals: 2.
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5.4 Accessing object instance variable values

ivClassOffset: #x

>>> 2

#(
    #ObjClass 
    #ObjPoint 
    #ObjObject 
    #(class x y) 
    #(:x :y) 
    nil 
)

Figure 5-3 Instance variable offset asked to the class.

self
assert: (pointClass ivClassOffset: #lulu)
equals: 0

Your job.

In the protocol 'iv management' define a method called ivClassOffset:
aSymbol Look at the tests #testIVOffset of the class ObjTest. Make sure that
you execute the test method: testIVOffset.

Hints: Use the Pharo method indexOf:. Pay attention that such a primitive is
applied to an objClass as shown in the test.

ivOffset: #x

>>> 2

#( #ObjClass 
   #ObjPoint 
   #ObjObject #(class x y) #(:x :y)  nil )

#(Point 100 200)

Figure 5-4 Instance variable offset asked to the instance itself.

Two simple methods.

Now that we know from the class the offset for a given instance variable, we
can define a primitive that performs a similar behavior but that is sent to an
instance and not a class. Using it we can easily get access to the value of an in-
stance variable of an instance.
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The following test illustrates the expected behavior:

ObjTest >> testIVOffsetAndValue

self
assert: (aPoint ivOffset: #x)

equals: 2.
self
assert: (aPoint valueOfInstanceVariable: #x)

equals: 10

Your job.

Using the previous method, define in the protocol 'iv management':

1. When sent to an objObject, the primitive ivOffset: aSymbol that re-
turns the offset of the instance variable. Note that this time the method
is applied to an objInstance presenting an instance and not a class (as
shown in Figure 5-4). (It could have been named objectOffsetForIV:).

2. the method valueOfInstanceVariable: aSymbol that returns the
value of this instance variable in the given object as shown in the test
below.

Note that for the method ivOffset: you can check that the instance variable
exists in the class of the object and else raise an error using the Pharo method
error:.

Make sure that you execute the test method: testIVOffsetAndValue and it
passes.

5.5 Object allocation and initialization

The creation of an object is the composition of two elementary operations: its
allocation and its initialization. We now define the primitives that allow us to
allocate and initialize an object. Remember that:

• allocation is a class method that returns a nearly empty structure, nearly
empty because the instance represented by the structure should at least
know its class, and

• initialization is an instance method that given a newly allocated instance
and a list of initialization arguments fill the instance.
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Instance allocation

As shown in the class ObjTest, if the class ObjPoint has two instance vari-
ables: ObjPoint allocateAnInstance returns #(#ObjPoint nil nil).

ObjTest >> testAllocate

| newInstance |
newInstance := pointClass allocateAnInstance.
self assert: (newInstance at: 1) equals: #ObjPoint.
self assert: (newInstance size) equals: 3.
self assert: (newInstance at: 2) isNil.
self assert: (newInstance at: 3) isNil.
self assert: newInstance objClass equals: pointClass

Your job.

In the protocol 'instance allocation' implement the primitive called al-
locateAnInstance that when sent to an objClass returns a new instance whose
instance variable values are nil and whose objClassId represents the objClass.

Hints: in Pharo we use the message new: to specify the size of Arrays. For ex-
ample, Array new: 5 will create an array of 5 elements.

Make sure that you execute the test method: testAllocate

5.6 Keywords primitives

The original implementation of ObjVLisp uses the facility offered by the Lisp
keywords to ease the specification of the instance variable values during in-
stance creation. It also provides a uniform and unique way to create objects.
We have to implement some functionality to support keywords. However, as
this is not really interesting that you lose time we give you all the necessary
primitives.

Your job.

All the functionality for managing the keywords are defined in the protocol
'keyword management'. Read the code and the associated test called testKey-
words in the class ObjTest.

ObjTest >> testKeywords

| dummyObject |
dummyObject := Obj new.
self

assert: (dummyObject generateKeywords: #(#titi #toto #lulu))
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equals: #(#titi: #toto: #lulu:).
self

assert:
(dummyObject

keywordValue: #x
getFrom: #(#toto 33 #x 23)
ifAbsent: 2)

equals: 23.
self

assert:
(dummyObject

keywordValue: #x
getFrom: #(#toto 23)
ifAbsent: 2)

equals: 2.
self

assert:
(dummyObject

returnValuesFrom: #(#x 22 #y 35)
followingSchema: #(#y #yy #x #y))

equals: #(35 nil 22 35)

Make sure that you execute the test method: testKeywords and that it passes.

5.7 Object initialization

Once an object is allocated, it may be initialized by the programmer by spec-
ifying a list of initialization values. We can represent such a list by an array
containing alternatively a keyword and a value like #(#toto 33 #x 23) where
33 is associated with #toto and 23 with #x.

Your job.

Read in the protocol 'instance initialization' the primitive initial-
izeUsing: anArray that, when sent to an object along with an initialization
list, returns the initialized object.

ObjTest >> testInitialize

| newInstance |
newInstance := pointClass allocateAnInstance.
newInstance initializeUsing: #(#y: 2 #z: 3 #t: 55 #x: 1).
self assert: (newInstance at: 1) equals: #ObjPoint.
self assert: (newInstance at: 2) equals: 1.
self assert: (newInstance at: 3) equals: 2.
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5.8 Static inheritance of instance variables

Instance variables are statically inherited at class creation time. The simplest
form of instance variable inheritance is to define the complete set of instance
variables as the ordered fusion between the inherited instance variables and
the locally defined instance variables. For simplicity and similarity with most
languages, we chose to forbid duplicated instance variables in the inheritance
chain.

Your job.

In the protocol 'iv inheritance', read and understand the primitive com-
puteNewIVFrom: superIVOrdCol with: localIVOrdCol.

The primitive takes two ordered collections of symbols and returns an ordered
collection containing the union of the two ordered collections but with the
extra constraint that the order of elements of the first ordered collection is
kept. Look at the test method testInstanceVariableInheritance below for
examples.

Make sure that you execute the test method: testInstanceVariableInheri-
tance and that it passes.

ObjTest >> testInstanceVariableInheritance
"a better choice would be to throw an exception if there are
duplicates"

self
assert:
(Obj new

computeNewIVFrom: #(#a #b #c #d)
with: #(#a #z #b #t))

equals: #(#a #b #c #d #z #t).
self

assert: (Obj new
computeNewIVFrom: #()
with: #(#a #z #b #t))

equals: #(#a #z #b #t)

Side remark

You could think that keeping the same order of the instance variables between
a superclass and its subclass is not an issue. This is partly true in this simple
implementation because the instance variable accessors compute each time
the corresponding offset to access an instance variable using the primitive iv-
ClassOffset:. However, the structure (instance variable order) of a class is
hardcoded by the primitives. That’s why your implementation of the primitive
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computeNewIVFrom:with: should take care of that aspect. In real language,
compilers will try to ensure that a method defined in a superclass can be ap-
plied to instances of the subclasses.

5.9 Method management

A class defines the instance behavior expressed by methods stored in a method
dictionary. As such they are shared by all the instances of a class. In our imple-
mentation, we represent methods by associating a symbol to a Pharo block (a
lexical closure). The block is then stored in the method dictionary of an obj-
Class.

In this implementation, we do not offer the ability to directly access instance
variables of the class in which the method is defined. This could be done by
sharing a common environment among all the methods. The programmer has
to use accessors or the setIV and getIV objMethods defined on ObjObject to
access the instance variables. You can find the definition of those methods in
the bootstrap protocol on the class side of Obj.

In our ObjVLisp implementation, we do not have a specific (non Pharo) syntax
for message passing. Instead, we call the primitives using the Pharo syntax for
message passing using the message send:withArguments:. The objVLisp ex-
pression objself getIV: #x is expressed as follows: objself send: #getIV
withArguments: #(#x).

Method definition.

We need a way to define a method, e.g., add a block to the method dictionary.
We use the method addUnaryMethod: aName withBody: aString.

The following code describes the definition of the accessor method x defined on
the objClass ObjPoint that invokes a field access using the message getIV.

ObjPoint
addUnaryMethod: #x
withBody: 'objself send: #getIV withArguments: #(#x)'.

As a first approximation, this code will create the following block that will get
stored in the class method dictionary: [ :objself | objself send: #getIV
withArguments: #(#x) ]. As you may notice, in our implementation, the
receiver is always an explicit argument of the method. Here we named it obj-
self.

We propose two variations for the method definition: The primitives addUnaryMethod:with-
Body: and addMethod:args:withBody:. The first one is a version that avoids
having an empty list of arguments.
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ObjPoint
addMethod: #x
args: ''
withBody: 'objself send: #getIV withArguments: #(#x)'.

Note that the arguments of args: are expressed in a string where arguments
are separated by a space.

Defining a method and sending a message

As we want to keep this implementation as simple as possible, we define only
one primitive for sending a message: it is send:withArguments:. To see the
mapping between Pharo and ObjVlisp ways of expressing message sent, look at
the comparison below:

Pharo Unary: self odd
ObjVLisp: objself send: #odd withArguments: #()

Pharo Binary: a + 4
ObjVLisp: a send: #+ withArguments: #(4)

Pharo Keyword: a max: 4
ObjVLisp: a send: #max: withArguments: #(4)

While in Pharo you would write the following method definition:

bar: x
self foo: x

In our implementation of ObjVlisp you write:

anObjClass
addMethod: #bar:
args: 'x'
withBody: 'objself send: #foo: withArguments: #(x)'.

Your job.

We provide all the primitives that handle method definition.

• Read the methods addMethod: aSelector args: aString withBody:
aStringBlock, removeMethod: aSelector, and doesUnderstand: aS-
elector - they are grouped in the protocol 'method management'.

• Implement bodyOfMethod: aSelector.

Make sure that you execute the test method: testMethodManagement
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ObjTest >> testMethodManagement

self assert: (pointClass doesUnderstand: #x).
self assert: (pointClass doesUnderstand: #xx) not.

pointClass
addUnaryMethod: #xx
withBody: 'objself valueOfInstanceVariable: #x '.

self assert: ((pointClass bodyOfMethod: #xx) value: aPoint) equals:
10.

self assert: (pointClass doesUnderstand: #xx).
pointClass removeMethod: #xx.
self assert: (pointClass doesUnderstand: #xx) not.
self assert: ((pointClass bodyOfMethod: #x) value: aPoint) equals:
10

5.10 Message passing and dynamic lookup

Sending a message is the result of the composition of method lookup and execu-
tion.

The following basicSend:withArguments:from: primitive just implements
it. First, it looks up the method into the class or superclass of the receiver then
if a method has been found it executes it, else lookup: returns nil and we raise
a Pharo error.

Obj >> basicSend: selector withArguments: arguments from: aClass
"Execute the method found starting from aClass and whose name is
selector.

The core of message sending reused for both a normal send or a
super one."

| methodOrNil |
methodOrNil := aClass lookup: selector.
^ methodOrNil

ifNotNil: [ methodOrNil valueWithArguments: (Array with: self) ,
arguments ]
ifNil: [ Error signal: 'Obj message' , selector asString, ' not

understood' ]

Based on this primitive we can express send:withArguments: as follows:

Obj >> send: selector withArguments: arguments
"send the message whose selector is <selector> to the receiver. The
arguments of the messages are an array <arguments>. The method is
looked up in the class of the receiver. self is an objObject or a
objClass."
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^ self basicSend: selector withArguments: arguments from: self
objClass

Note that the definition above of basicSend:withArguments:from: does not
let us ObjVLisp developers redefine the error handing. We will propose a solu-
tion in subsequent sections.

5.11 Method lookup

The primitive lookup: selector applied to an objClass should return the
method associated to the selector if it found it, else nil to indicate that it failed.

Your job.

Implement the primitive lookup: selector that when sent to an objClass
with a method selector, a symbol, and the initial receiver of the message, re-
turns the method-body of the method associated with the selector in the obj-
Class or its superclasses. Moreover, if the method is not found, nil is returned.

Make sure that you execute the test methods: testNilWhenErrorInLookup
and testRaisesErrorSendWhenErrorInLookup whose code is given below:

ObjTest >> testNilWhenErrorInLookup

self assert: (pointClass lookup: #zork) isNil.
"The method zork is NOT implemented on pointClass"

ObjTest >> testRaisesErrorSendWhenErrorInLookup

self should: [ pointClass send: #zork withArguments: { aPoint } ]
raise: Error.

5.12 Managing super

To invoke a superclass hidden method, in Java and Pharo you use super, which
means that the lookup up will start above the class defining the method con-
taining the super expression. In fact, we can consider that in Java or Pharo, su-
per is a syntactic sugar to refer to the receiver but changes where the method
lookup starts. This is what we see in our implementation where we do not have
syntactic support.

Let us see how we will express the following situation.

bar: x
super foo: x
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In our implementation of ObjVlisp we do not have a syntactic construct to ex-
press super, you have to use the super:withArguments:from: Pharo message
as follows.

anObjClass
addMethod: #bar:
args: 'x'
withBody: 'objself super: #foo: withArguments: #(#x) from:
superclassOfClassDefiningTheMethod'.

Note that superclassOfClassDefiningTheMethod is a variable that is bound
to the superclass of anObjClass i.e., the class defining the method bar (see
later).

Pharo Unary: super odd
ObjVLisp: objself super: #odd withArguments: #() from:

superclassOfClassDefiningTheMethod

Pharo Binary: super + 4
ObjVLisp: objself super: #+ withArguments: #(4) from:

superclassOfClassDefiningTheMethod

Pharo Keyword: super max: 4
ObjVlisp: objself super: #max: withArguments: #(4) from:

superclassOfClassDefiningTheMethod

5.13 Representing super

We would like to explain to you where the superclassOfClassDefiningTh-
eMethod variable comes from. When we compare the primitive send:withAr-
guments: to its variation using super, for super sends we added a third param-
eter to the primitive and we called it super:withArguments:from:.

This extra parameter corresponds to the superclass of the class in which the
method is defined. This argument should always have the same name, i.e.,
superclassOfClassDefiningTheMethod. This variable will be set when the
method is added to the method dictionary of an objClass.

If you want to understand how we bind the variable, here is the explanation: In
fact, a method is not only a block but it needs to know the class that defines it
or its superclass. We added such information using a currification. A currifica-
tion is the transformation of a function with n arguments into function with
less arguments but an environment capture: f(x,y)= (+ x y) is transformed
into a function f(x)=f(y)(+ x y) that returns a function of a single argu-
ment y and where x is bound to a value and obtain a function generator. For
example, f(2,y) returns a function f(y)=(+ 2 y) that adds its parameter to
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2. A currification acts as a generator of functions where one of the arguments
of the original function is fixed.

In Pharo, we wrap the block representing the method around another block
with a single parameter and we bind this parameter with the superclass of the
class defining the method. When the method is added to the method dictio-
nary, we evaluate the first block with the superclass as a parameter as illus-
trated as follows:

method := [ :superclassOfClassDefiningTheMethod |
[ :objself :otherArgs |

... method code ...
]]

method value: (Obj giveClassNamed: self objSuperclassId)

So now you know where the superclassOfClassDefiningTheMethod variable
comes from. Make sure that you execute the test method: testMethodLookup
and that i passes.

Your job.

Now you should implement super: selector withArguments: arguments
from: aSuperclass using the primitive basicSend:withArguments:from:.

5.14 Handling not understood messages

Now we can revisit error handling. Instead of raising a Pharo error, we want to
send an ObjVlisp message to the receiver of the message to give him a chance
to trap the error.

Compare the two following versions of basicSend: selector withArgu-
ments: arguments from: aClass and propose an implementation of sendEr-
ror: selector withArgs: arguments.

Obj >> basicSend: selector withArguments: arguments from: aClass

| methodOrNil |
methodOrNil := (aClass lookup: selector).
^ methodOrNil

ifNotNil: [ methodOrNil valueWithArguments: (Array with: self) ,
arguments ]
ifNil: [ Error signal: 'Obj message' , selector asString, ' not

understood' ]

55



Primitives for a reflective class-based kernel

Obj >> basicSend: selector withArguments: arguments from: aClass

| methodOrNil |
methodOrNil := (aClass lookup: selector).
^ methodOrNil

ifNotNil: [ methodOrNil valueWithArguments: (Array with: self) ,
arguments ]
ifNil: [ self sendError: selector withArgs: arguments ]

It should be noted that the obj method is defined as follows in the ObjObject
class (see the bootstrap method on the class side of the class Obj). The obj er-
rormethod expects a single parameter: an array of arguments whose first ele-
ment is the selector of the not understood message.

objObject
addMethod: #error
args: 'arrayOfArguments'
withBody: 'Transcript show: ''error '', arrayOfArguments first.
''error '', arrayOfArguments first'.

Obj >> sendError: selector withArgs: arguments
"send error wrapping arguments into an array with the selector as
first argument. Instead of an array we should create a message
object."

^ self send: #error withArguments: {(arguments copyWithFirst:
selector)}

Make sure that you read and execute the test method: testSendErrorRais-
esErrorSendWhenErrorInLookup. Have a look at the implementation of the
#errormethod defined in ObjObject and in the assembleObjectClass of the
ObjTest class.
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Defining the language kernel

Now you have implemented all the primitives we need, you are ready to define
the two classes that represent the ObjVLisp kernel: ObjClass and ObjObject.
Once such classes will exist we will be able to code using ObjVLisp and not in
Pharo anymore. The moment where we go from the low-level world (here
Pharo) to the high-level one (here ObjVLisp) is generally called the bootstrap
of the language. Indeed after this last phase, our new language exists.

To implement these two classes we could them by manipulating low-level prim-
itives and doing all the plumbing ourselves as what we did in the test setUp
methods. But there is something better to do. We can use the high level lan-
guage to use itself to define itself. This is what we will explain in this chapter.

6.1 About bootstrap

to bootstrap the system: this means creating the kernel consisting of ObjOb-
ject and ObjClass classes from themselves. The idea of a smart bootstrap is
to be as lazy as possible and to use the system to create itself by creating a fake
but working first class with which we will build the rest.

Three steps compose the ObjVlisp bootstrap:

1. Create by hand the minimal part of the objClass ObjClass and then

2. Use it to create normally ObjObject objClass and then

3. Recreate normally and completely ObjClass.
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These three steps are described by the following bootstrap method of Obj class.
Note the bootstrap is defined as class methods of the class Obj.

Obj class >> bootstrap
"self bootstrap"

self initialize.
self manuallyCreateObjClass.
self createObjObject.
self createObjClass.

To help you to implement the functionality of the objClasses ObjClass andObjObject,
we defined another set of tests in the class ObjTestBootstrap. Read them.

6.2 Manually creating ObjClass

The first step is to create manually the class ObjClass. By manually we mean
create an array (because we chose an array to represent instances and classes
in particular) that represents the objClass ObjClass, then define its methods.
You will implement/read this in the primitive manuallyCreateObjClass as
shown below:

Obj class >> manuallyCreateObjClass
"self manuallyCreateObjClass"

| class |
class := self manualObjClassStructure.
Obj declareClass: class.
self defineManualInitializeMethodIn: class.
self defineAllocateMethodIn: class.
self defineNewMethodIn: class.
^ class

We will comment some of the methods called in manuallyCreateObjClass.

For this purpose, you have to implement/read all the primitives that compose
it.

Your job.

At the class level in the protocol 'bootstrap objClass manual' read or im-
plement: the primitive manualObjClassStructure that returns an objObject
that represents the class ObjClass.

Make sure that you execute the test method: testManuallyCreateObjClassStruc-
ture
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• As the initialize of this first phase of the bootstrap is not easy we give
you its code. Note that the definition of the objMethod initialize is
done in the primitive method defineManualInitializeMethodIn:.

Obj class >> defineManualInitializeMethodIn: class

class
addMethod: #initialize
args: 'initArray'
withBody:

'| objsuperclass |
objself initializeUsing: initArray. "Initialize a class as an

object. In the bootstrapped system will be done via super"
objsuperclass := Obj giveClassNamed: objself objSuperclassId

ifAbsent: [nil].
objsuperclass isNil
ifFalse:

[ objself
objIVs: (objself computeNewIVFrom: objsuperclass objIVs

with: objself objIVs)]
ifTrue:

[ objself objIVs: (objself computeNewIVFrom: #(#class) with:
objself objIVs)].
objself

objKeywords: (objself generateKeywords: (objself objIVs
copyWithout: #class)).
objself objMethodDict: (IdentityDictionary new: 3).
Obj declareClass: objself.
objself'

Note that this method works without inheritance since the class ObjObject
does not exist yet.

The primitive defineAllocateMethodIn: anObjClass defines in anObjClass
passed as argument the objMethod allocate. This allocatemethod takes
only one argument: the class for which a new instance is created as shown be-
low:

defineAllocateMethodIn: class

class
addUnaryMethod: #allocate
withBody: 'objself allocateAnInstance'

Its definition is simple, it just calls the primitive allocateAnInstance.

Following the same principle, define the primitive defineNewMethodIn: anOb-
jClass that defines in anObjClass passed as argument the objMethod new. new
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takes two arguments: a class and an initargs-list. It invokes the objMethod al-
locate and initialize.

Your job.

Make sure that you read and execute the test method: testManuallyCre-
ateObjClassAllocate

Remarks

Read carefully the following remarks below and the code.

• In the objMethod manualObjClassStructure, the instance variable in-
heritance is simulated. Indeed the instance variable array (that repre-
sents the instance variable of the class) contains #class that should nor-
mally be inherited from ObjObject as we will see in the third phase of
the bootstrap.

• Note that the class is declared into the class repository using the method
declareClass:.

• Note the method #initialize is method of the metaclass ObjClass:
when you create a class the initialize method is invoked on a class! The
initialize objMethod defined on ObjClass has two aspects: the first
one deals with the initialization of the class like any other instance (first
line). This behavior is normally done using a super call to invoke the
initializemethod defined in ObjObject. The final version of the ini-
tializemethod will do it using perform. The second one deals with the
initialization of classes: it performs the instance variable inheritance,
then computes the keywords of the newly created class. Note in this fi-
nal step that the keyword array does not contain the #class: keyword
because we do not want to let the user modify the class of an object.

6.3 Creation of ObjObject

Now you are in the situation where you can create the first real and normal
class of the system: the class ObjObject. To do that you send the message new
to class ObjClass specifying that the class you are creating is named #ObjOb-
ject and only has one instance variable called class. Then you will add the
methods defining the behavior shared by all the objects.
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Your job: objObjectStructure

Implement/read the following primitive objObjectStructure that creates the
ObjObject by invoking the newmessage to the class ObjClass:

Obj class >> objObjectStructure

^ (self giveClassNamed: #ObjClass)
send: #new
withArguments: #(#(#name: #ObjObject #iv: #(#class)))

The class ObjObject is named ObjObject, has only one instance variable class,
and does not have a superclass because it is the root of the inheritance graph.

Your job: createObjObject

Now implement the primitive createObjObject that calls objObjectStruc-
ture to obtain the objObject representingobjObject class and define meth-
ods in it. To help you we give here the beginning of such a method

Obj class >> createObjObject
| objObject |
objObject := self objObjectStructure.
objObject addUnaryMethod: #class withBody: 'objself objClass'.
objObject addUnaryMethod: #isClass withBody: 'false'.
objObject addUnaryMethod: #isMetaclass withBody: 'false'.
...
...
^ objObject

Implement the following methods in ObjObject

• the objMethod class that given an objInstance returns its class (the ob-
jInstance that represents the class).

• the objMethod isClass that returns false.

• the objMethod isMetaClass that returns false.

• the objMethod error that takes two arguments the receiver and the se-
lector of the original invocation and raises an error.

• the objMethod getIV that takes the receiver and an attribute name,
aSymbol, and returns its value for the receiver.

• the objMethod setIV that takes the receiver, an attribute name and a
value and sets the value of the given attribute to the given value.

• the objMethod initialize that takes the receiver and an initargs-list
and initializes the receiver according to the specification given by the
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initargs-list. Note that here the initializemethod only fills the in-
stance according to the specification given by the initargs-list. Compare
with the initializemethod defined on ObjClass.

Make sure that you read and execute the test method: testCreateObjObject-
Structure

In particular, notice that this class does not implement the class method new
because it is not a metaclass but does implement the instance method ini-
tialize because any object should be initialized.

Your job: run the tests

• Make sure that you read and execute the test method: testCreateOb-
jObjectMessage

• Make sure that you read and execute the test method: testCreateOb-
jObjectInstanceMessage

6.4 Creation of ObjClass

Following the same approach, you can now recreate completely the class Ob-
jClass. The primitive createObjClass is responsible for creating the final
class ObjClass. So you will implement it and define all the primitives it needs.
Now we only define what is specific to classes, the rest is inherited from the
superclass of the class ObjClass, the class ObjObject.

Obj class >> createObjClass
"self bootstrap"

| objClass |
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.
self defineInitializeMethodIn: objClass.
objClass

addUnaryMethod: #isMetaclass
withBody: 'objself objIVs includes: #superclass'.

"an object is a class if is class is a metaclass. cool"

objClass
addUnaryMethod: #isClass
withBody: 'objself objClass send: #isMetaclass withArguments:#()'.

^ objClass
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To make the method createObjClass work we should implement the method
it calls. Implement then:

• the primitive objClassStructure that creates the ObjClass class by
invoking the newmessage to the class ObjClass. Note that during this
method the ObjClass symbol refers to two different entities because
the new class that is created using the old one is declared in the class
dictionary with the same name.

Your job.

Make sure that you read and execute the test method: testCreateObjClassStruc-
ture. Now implement the primitive createObjClass that starts as follow:

Obj class >> createObjClass

| objClass |
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.
self defineInitializeMethodIn: objClass.
...
^ objClass

Also define the following methods:

• the objMethod isClass that returns true.

• the objMethod isMetaclass that returns true.

objClass
addUnaryMethod: #isMetaclass
withBody: 'objself objIVs includes: #superclass'.

"an object is a class if is class is a metaclass. cool"

objClass
addUnaryMethod: #isClass
withBody: 'objself objClass send: #isMetaclass withArguments:#()'.

• the primitive defineInitializeMethodIn: anObjClass that adds
the objMethod initialize to the objClass passed as argument. The ob-
jMethod initialize takes the receiver (an objClass) and an initargs-list
and initializesthe receiver according to the specification given by the
initargs-list. In particular, it should be initialized as any other object,
then it should compute its instance variable (i.e., inherited instance vari-
ables are computed), the keywords are also computed, the method dictio-
nary should be defined and the class is then declared as an existing one.
We provide the following template to help you.
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Obj class>>defineInitializeMethodIn: objClass

objClass
addMethod: #initialize
args: 'initArray'
withBody:

'objself super: #initialize withArguments: {initArray} from:
superclassOfClassDefiningTheMethod.

objself objIVs: (objself
computeNewIVFrom:

(Obj giveClassNamed: objself objSuperclassId)
objIVs

with: objself objIVs).
objself computeAndSetKeywords.
objself objMethodDict: IdentityDictionary new.
Obj declareClass: objself.
objself'

Obj class >> defineInitializeMethodIn: objClass

objClass
addMethod: #initialize
args: 'initArray'
withBody:

'objself super: #initialize withArguments: {initArray} from:
superclassOfClassDefiningTheMethod.

objself objIVs: (objself
computeNewIVFrom: (Obj giveClassNamed: objself

objSuperclassId) objIVs
with: objself objIVs).

objself computeAndSetKeywords.
objself objMethodDict: IdentityDictionary new.
Obj declareClass: objself.
objself'

Your job.

Make sure that you execute the test method: testCreateObjClassMessage.

Note the following points:

• The locally specified instance variables now are just the instance vari-
ables that describe a class. The instance variable class is inherited from
ObjObject.

• The initializemethod now does a super send to invoke the initializa-
tion performed by ObjObject.
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6.5 First User Classes: ObjPoint

Now that ObjVLisp is created and we can start to program some classes. Imple-
ment the class ObjPoint and ObjColoredPoint. Here is a possible implemen-
tation.

You can choose to implement it at the class level of the class Obj or even better
in class named ObjPointTest.

Pay attention that your scenario covers the following aspects:

• First just create the class ObjPoint.

• Create an instance of the class ObjPoint.

• Send some messages defined in ObjObject to this instance.

Define the class ObjPoint so that we can create points as below (create a Pharo
method to define it).

ObjClass send: #new
withArguments: #((#name: #ObjPoint #iv: #(#x y) #superclass:
#ObjObject)).

aPoint := pointClass send: #new withArguments: #((#x: 24 #y: 6)).
aPoint send: #getIV withArguments: #(#x).
aPoint send: #setIV withArguments: #(#x 25).
aPoint send: #getIV withArguments: #(#x).

Then add some functionality to the class ObjPoint like the methods x, x:,
display which prints the receiver.

Obj ObjPoint
addUnaryMethod: #givex
withBody: 'objself valueOfInstanceVariable: #x '.

Obj ObjPoint
addUnaryMethod: #display
withBody:
'Transcript cr;

show: ''aPoint with x = ''.
Transcript show: (objself send: #givex withArguments: #())
printString;

cr'.

Then test these new functionalities.

aPoint send: #x withArguments: #().
aPoint send: #x: withArguments: #(33).
aPoint send: #display withArguments: #().
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6.6 First User Classes: ObjColoredPoint

Following the same idea, define the class ObjColored.

Create an instance and send it some basic messages.

aColoredPoint := coloredPointClass
send: #new
withArguments: #((#x: 24 #y: 6 #color: #blue)).

aColoredPoint send: #getIV withArguments: #(#x).
aColoredPoint send: #setIV withArguments: #(#x 25).
aColoredPoint send: #getIV withArguments: #(#x).
aColoredPoint send: #getIV withArguments: #(#color).

Your job.

Define some functionality and invoke them: the method color, implement the
method display so that it invokes the superclass and adds some information
related to the color. Here is an example:

coloredPointClass addUnaryMethod: #display
withBody:

'objself super: #display withArguments: #() from:
superclassOfClassDefiningTheMethod.
Transcript cr;

show: '' with Color = ''.
Transcript show: (objself send: #giveColor withArguments: #())

printString; cr'.

aColoredPoint send: #x withArguments: #().
aColoredPoint send: #color withArguments: #().
aColoredPoint send: #display withArguments: #()

6.7 A First User Metaclass: ObjAbstract

Now implement the metaclass ObjAbstract that defines instances (classes)
that are abstract i.e., that cannot create instances. This class should raise an
error when it executes the newmessage.

Then the following shows you a possible use of this metaclass.

ObjAbstractClass
send: #new
withArguments: #(#(#name: #ObjAbstractPoint

#iv: #()
#superclass: #ObjPoint)).
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ObjAbstractPoint send: #new
withArguments: #(#(#x: 24 #y: 6)) "should raise an error"

You should redefine the newmethod. Note that the ObjAbstractClass is an
instance of ObjClass because this is a class and inherits from it because this is
a metaclass.

6.8 New features that you could implement

You can implement some simple features:

• define a metaclass that automatically defines accessors for the specified
instances variables.

• avoid that we can change the selector and the arguments when calling a
super send.

Shared Variables

Note that contrary to the proposition made in the 6th postulate of the original
ObjVLisp model, class instance variables are not equivalent to shared variables.
According to the 6th postulate, a shared variable will be stored in the instance
representing the class and not in an instance variable of the class represent-
ing the shared variables. For example, if a workstation has a shared variable
named domain. But the domain should not be an extra instance variable of the
class of Workstation. Indeed domain has nothing to do with class description.

The correct solution is that domain is a value held into the list of the shared
variable of the class Workstation. This means that a class has extra informa-
tion to describe it: an instance variable sharedVariable holding pairs. So we
should be able to write:

Obj Workstation getIV: #sharedVariable
or
Obj Workstation sharedVariableValue: #domain

and get
#((domain 'inria.fr'))

Introduce shared variables: add a new instance variable in the class ObjClass
to hold a dictionary of shared variable bindings (a symbol and a value) that can
be queried using specific methods:sharedVariableValue: and sharedVari-
ableValue:put:.
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Selected definitions

Smith was the first to introduce reflection in a programming language with
3Lisp. He defines reflection as:

• An entity’s integral ability to represent, operate on, and otherwise deal
with itself in the same way that it represents, operates on, and deals with
its primary subject matter.

In the context of meta-object protocols, Bobrow refines the definition as fol-
lows:

• Reflection is the ability of a program to manipulate as data, something
representing the state of the program during its own execution. There
are two aspects of such manipulation: introspection and intercession (...)
Both aspects require a mechanism for encoding the execution state as
data; providing such an encoding is called reification.

Maes proposed some definitions for reflexive programming:

• A computational system is something that reasons about and acts upon
some part of the world, called the domain of the system.

• A computational system may also be causally connected to its domain. This
means that the system and its domain are linked in such a way that if one
of the two changes, this leads to an effect upon the other.

• A meta-system is a computational system that has as its domain another
computational system, called its object-system. (...) A meta-system has
a representation of its object-system in its data. Its program specifies
meta-computation about the object-system and is therefore called a meta-
program.
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• Reflection is the process of reasoning about and/or acting upon oneself.

• A reflective system is a causally connected meta-system that has as object-
system itself. The data of a reflective system contain, besides the repre-
sentation of some part of the external world, also a causally connected
representation of itself, called self-representation of the system. [...] When
a system is reasoning or acting upon itself, we speak of reflective computa-
tion.

• A language with a reflective architecture is a language in which all systems
have access to a causally connected representation of themselves.

• A programming environment has a meta-level architecture if it has an ar-
chitecture that supports meta-computation, without supporting reflec-
tive computation.

• The meta-object of an object X represents the explicit information about
X (e.g. about its behavior and its implementation). The object X itself
groups the information about the entity of the domain it represents.
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