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Step-by-step verification of PIC-MCC codes

The Particle-in-Cell (PIC) method with Monte-Carlo collisions (MCC) is widely used in

the simulation of non-equilibrium plasmas for electric propulsion and laboratory applica-

tions. Due to the simplicity of the basic PIC algorithm and the specific modeling needs

of the different research groups, many codes have been independently developed. Verifi-

cation of these codes, i.e. ensuring that the computational code correctly implements the

intended mathematical models and algorithms, is of fundamental importance. Different

benchmark cases, such as one from Turner et al., Charoy et al., and Villafana et al., have

been published in recent years. These have consisted of a complex physical setup, in which

many computation modules interact to yield the final result. Although this approach has

the advantage of testing the code in a realistic case, it may hide some implementation er-

rors. Moreover, in case of disagreement, the previous works do not provide an easy way

to identify the faulty code modules. In this work, we propose a step-by-step approach for

the verification of PIC-MCC codes in a 2D-3V electrostatic setup. The criteria for the test

cases are (i) they should highlight possible implementation errors by testing the modules

separately, whenever possible (ii) they should be free from physical instabilities to avoid

chaotic behavior, and (iii) the numerical result should be accompanied by analytical calcu-

lations, for confirmation purposes. The 7 test cases identified all show excellent agreement

between the authors’ codes.
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Step-by-step verification of PIC-MCC codes

I. INTRODUCTION

With advancements in computational capabilities, numerous codes have been developed for

various types of plasma, including space plasmas, fusion plasmas, and laboratory plasmas. Ideally,

each code should be validated against experimental measurements, but this task is often extremely

challenging. Consequently, in recent years, significant efforts have been made in code-to-code

verification to assure code users about the reliability of their tools, both in the plasma physics

community and in affine ones1–3. In particular, the verification of engineering codes has been

identified as one of the fundamental challenges in assisting the development of Electric Propulsion

devices4. This work proposes several tests to rigorously verify 2D Particle-in-Cell Monte-Carlo

collision (PIC-MCC) simulations of low-temperature, low-pressure plasmas.

In the last decades, several efforts of benchmarking 2D PIC codes have been carried out by

the low-temperature plasmas community5,6, as part of the LANDMARK7 project. However, these

efforts proposed rather complex simulation setups, i.e. mimicking the behavior of a Hall Thruster

(HT) along different planes. This approach, which has the merit of reproducing physical conditions

similar to the ones of experimental devices, does not provide a straightforward way to understand

each code’s elementary inaccuracies. This is why we have sought to propose a different approach,

one that lies between unit testing and mezzanine testing, as previously described by Turner8.

The growing complexity of numerical models requires a conscientious assessment of the valid-

ity of the final results, linked to the correctness of algorithms and models used or to the numerical

uncertainty and noise. The pioneering work of Surendra9 and the more recent of Turner et al.10

dealt with a helium RF discharge, benchmarking it in different pressure conditions. Turner and

collaborators, in particular, were able to put together five different codes and show that their re-

sults were statistically indistinguishable. Also in helium, Carlsson et al.11 performed a two-code

comparison in a parallel-plate glow discharge. Over the past few years, two 2D-PIC benchmark

studies in xenon in HT configuration have been published. In the work of Charoy et al.5, seven dif-

ferent codes have been compared in an axial-azimuthal HT configuration. Villafana et al.6, on their

side, studied the magnetized discharge inside the channel of such devices, comparing the results of

seven groups in a radial-azimuthal configuration. These test cases have shown a good agreement

among the different codes in the selected configuration. In particular, the effect of changing the

macroparticle’s statistical weight has been investigated in both publications. Even though they

have demonstrated to correctly capture the instabilities’ physics, some important physical mecha-
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Step-by-step verification of PIC-MCC codes

nisms, e.g. the collision processes, were neglected. Moreover, the final results are the combination

of the interaction of a large number of modules and physical phenomena. This can lead to an un-

desired disguise of implementation errors, that could emerge elsewhere when the simulation setup

is changed.

The aforementioned benchmark studies5,6 demonstrate that simulation outcomes are highly

sensitive to the selected parameters. Specifically, these works examine code convergence with

respect to the number of macro-particles used. In the same way, the discretization of time and

space can significantly influence the final simulation results, potentially leading to inaccurate es-

timations of macroscopic plasma parameters. Notably, higher order moments of the distribution

function, such as the heat flux, are particularly sensitive to the chosen simulation parameters when

calculated from the discrete particle distribution. Ensuring convergence is therefore even more

critical to obtain accurate estimates of these quantities.

The present work proposes a step-by-step incremental verification of a PIC-MCC code. When

designing the test cases, we aimed to provide the reader with some simple and logical tests to

challenge their code from basic to more complex phenomena, both physically and numerically.

Moreover, whenever possible, we provided analytical calculations to strengthen the confidence

in the numerical result. In this way, one can easily identify the defective code parts and avoid

error propagation in long simulations. Although the present work cannot remedy the regrettable

lack of experimental validation for low temperature plasmas, we believe that having an accurate

verification tool for all parts of a PIC-MCC code is fundamental to building confidence in future

validation studies and predictive simulations.

Agreement among several codes tested on the same problem is one way to identify the cor-

rect solution to that problem. However, the obtained solution is valid only within the numerical

framework chosen for the simulations. As mentioned, the previous LANDMARK works5,6 have

started investigating the effect of tightening the numerical constraint in PIC-MCC simulations,

particularly analyzing the effect of the macroparticles’ weight. Nevertheless, a precise analysis of

the error has not been performed. By progressively refining the simulation’s numerical parame-

ters, one can apply methods derived from the theory of Richardson extrapolation to estimate the

numerical error. In the present work, we apply these techniques to understand the evolution of

the solution as the numerical parameters of the simulations are refined. In particular, to verify

that the numerical result is converging, and to estimate the numerical error with respect to a fully

converged solution.
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Step-by-step verification of PIC-MCC codes

In this paper, we first in Section II discuss the main features of a PIC-MCC algorithm and

present the codes used to perform the simulations. Then, we describe the basic simulation domain

and the selected test cases. The results of the simulations are presented and discussed in Section III,

while the error quantification procedure is described in Section IV. Finally, in Section V, we

provide some conclusions and comments.

II. METHODOLOGY AND DESCRIPTION OF THE TEST CASES

In this section, we briefly describe the basic PIC-MCC algorithm and we provide some details

of its implementation in the LPPIC and PANTERA codes, developed respectively at the Laboratoire

de Physique des Plasmas (LPP) and at the von Karman Institute for Fluid Dynamics (VKI). Then,

we describe the different test cases used for step-by-step verification.

A. The PIC-MCC algorithm

Figure 1 summarizes the algorithm of the typical electrostatic, explicit PIC-MCC code, com-

mon to the VKI and LPP implementations. Once the particles are initialized, the charge of the

particles is deposited on the grid as ρg, then Poisson’s equation is solved on the grid for the poten-

tial φg, from which the field Eg is computed. This is then interpolated onto the particles, giving Ep.

The magnetic field Bp acting on the particles is also computed. Finally, particle positions xp and

velocities vp are updated using a discrete version of Newton’s equation of motion with the Lorentz

force. At this point of the cycle, collisions are computed using the MCC algorithm. Further details

on the PIC and MCC algorithms relevant for the present work are available in the appendices.

The results shown in this work are obtained using the MCC algorithm of Vahedi & Surendra12,

described in Appendix A, for the selection of the colliding particles, since it appears to be the most

widely adopted and therefore more appropriate for this benchmarking work. Particles undergoing

collisions are always scattered isotropically (i.e. in a hard-sphere fashion), except for backscatter

(charge-exchange) interactions, where we simply exchange the particles’ velocities.

Different choices can be made in terms of grid type, spatial and temporal discretization of

the equations. We will describe the peculiarities of the two codes used in the present work in

Sections II A 1 and II A 2.
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Step-by-step verification of PIC-MCC codes

Particles

Particle to grid

Particle motion

Grid to particle

MCC collisions

Field solution

initialization

Compute ρg

Update xp and vp Solve for φg and

Compute Ep, Bp at xp

interpolation

interpolation

compute Eg

FIG. 1: Flowchart of the typical PIC-MCC algorithm.

1. PANTERA, the VKI code

PANTERA is the PIC-MCC-DSMC code whose development started in 2019 at VKI for the

simulation of different types of rarefied gas and plasma flows including collisional hypersonic

flows13, the plasma plume generated by laboratory plasma sources14, and electric propulsion de-

vices15. The code uses unstructured grids in 2D and 3D. Poisson’s equation (A5) is discretized

using the Finite Element Method (FEM) with linear elements for the electric potential. The so-

lution is obtained using the GMRES solver of the PETSC library16. Particles are Dirac deltas in

both velocity and configuration space (Sv = Sx = δ ), which results in linear weighting functions,

coincident with the basis functions of the finite elements. For the present work, an explicit time

integration is used, where the equations of motion are discretized using the popular Boris-leapfrog

scheme17. Parallelization of particles and domain is achieved through the Message Passing In-

terface (MPI). The code uses the Mersenne Twister (MT19937) pseudorandom number generator

(PRNG) proposed by Matsumoto & Nishimura18.

2. LPPIC, the LPP code

LPPIC is the PIC-MCC code under development at LPP since 2014. It features a struc-

tured Cartesian mesh and solves the Poisson equation, discretized using the finite-differences

(FD) method, using an iterative parallel multigrid solver (PFMG) from the open source HYPRE
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Step-by-step verification of PIC-MCC codes

library19. The weighting functions for the particles are of the cloud-in-cell (CIC) type20. The

particle pusher uses the classical leapfrog scheme with Boris algorithm17,21. The PRNG em-

ployed is the Fortran 2003 RNG, which is initialized using each CPU’s internal clock. The code

is parallelized via MPI through domain decomposition. It has been verified with the 1D helium

benchmark of Turner et al.10, and also used in the 2D PIC LANDMARK benchmarks5,6. The code

has been successfully used to simulate the radial-azimuthal22 and axial-azimuthal23–26 planes of

HTs. Moreover, the code has been also employed to simulate inductively coupled discharges27.

B. Test cases description

In this section, we give an overview of the setup of all the proposed test cases. First, we

describe the computational domain, initial, and boundary conditions that are common to all test

cases. All test cases are performed in a 2D square domain of dimension 1 m×1 m, as shown in

Figure 2. In all cases where an electric potential is present, the walls of the domain are set at zero

potential. The simulation is always initialized with electrons and H+ ions at a uniform density

ni = ne = 5× 1011 m−3 with velocities following Maxwell-Boltzmann distributions at tempera-

tures Ti = 300 K and Te = 11600 K ≈ 1 eV. All simulations are performed up to a physical time

of 5 µs. Particles always vanish upon reaching the boundary of the domain. This represents a

conductive wall where electrons are conducted away and ions recombine with an electron and be-

come neutrals. Simulation properties common to all test cases are summarized in Table I, while an

overview of all simulations is given in Table II. Physical constants used in the codes are summa-

rized in Table III, and the resulting plasma properties are shown in Table IV. For the results shown

in Section III, the grids are discretized with a cell size ∆x =5×10−3 m, and the time step is set to

∆t =2.5× 10−9 s for both codes. These parameters are sufficiently refined to resolve the Debye

length and the electron plasma frequency, respectively, as listed in Table IV. The macroparticle

weight Fp is set to 1.25× 105 m−1 in PANTERA, and 1× 105 m−1 in LPPIC. A detailed study of

the effect of the statistical weight in this kind of simulation is left for future work. For both codes,

we perform 10 simulations of each test case with different PRNG seeds, in order to evaluate the

effect of the stochastic scatter.

Notice that the results reported in Section III are extracted at the beginning of each timestep.

Moreover, we highlight that no half-timestep is used in plasma diagnostics. If the half-timestep

particles’ push is used in the diagnostics, the results do not agree with the ones presented in the
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Step-by-step verification of PIC-MCC codes

L
=

1
m

L = 1 m

x

y

Bz

Conductive wall

FIG. 2: The 2D simulation domain. The snapshot shows the electron density after 5 µs in a

simulation with electric field only.

current paper.

TABLE I: Simulation parameters.

Quantity Symbol Value Unit

Grid size ∆x 5×10−3 m

Time step ∆t 2.5×10−9 s

Electron temperature Te 11600 K

Ion temperature Ti 300 K

Initial electron density ne,0 5×1011 m−3

Initial ion density ni,0 5×1011 m−3

Background gas density ng 3×1019 or 3×1020 m−3

Total simulation time t f 5×10−6 s

Domain size L 1 m

Magnetic field magnitude |B| 2×10−5 or 2×10−4 T

1. Test case 1 - free effusion

This represents the simplest case, where neither the charge of the particles nor collisions are

considered. Particles are therefore free to effuse to the wall according to their initial velocity. Here,

we check that particle velocities are correctly initialized, that the mover behaves correctly in the

absence of the Lorentz force, and that particles are correctly deleted at the boundary. In addition,
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Step-by-step verification of PIC-MCC codes

TABLE II: Overview of all simulation test cases.

# Description E field B field MCC collisions

1 Free effusion no Bz = 0 no

2 Electric field only yes Bz = 0 no

3a Low external magnetic field yes Bz = 2×10−5 T no

3b High external magnetic field yes Bz = 2×10−4 T no

4a Collisions, low pressure yes Bz = 0 yes, ng = 3×1019 m−3

4b Collisions, high pressure yes Bz = 0 yes, ng = 3×1020 m−3

5 Ionization, high-pressure yes Bz = 0 yes, ng = 3×1020 m−3

TABLE III: Physical constants.

Constant Symbol Value Unit Source

Electron mass me 9.1093837015×10−31 kg NIST28

Hydrogen ion mass mi 1.67262192369×10−27 kg NIST28

Boltzmann constant kB 1.380649×10−23 J/K NIST28

Elementary charge e 1.602176634×10−19 C NIST28

the diagnostics for the number of particles, total momentum, and kinetic energy can be verified.

The initial flux of particles of species α to the wall can be analytically computed, using the

TABLE IV: Derived initial plasma properties.

Constant Symbol Value Unit

Debye length λD 1.0511×10−2 m

Electron plasma frequency ωpe 3.9891×107 rad/s

Ion plasma frequency ωpi 9.3432×105 rad/s

Electron thermal velocity vth,e 6.6912×105 m/s

Ion thermal velocity vth,i 2.5112×103 m/s

Ion acoustic velocity cs 9.7853×103 m/s
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formula for the flux of particles from a Maxwell-Boltzmann distribution:

Γα =
1

4
nα,0

√

8kBTα

πmα
A, (1)

where A is the area of the wall, nα,0 is the initial number density, Tα is the initial temperature,

and mα is the molecular mass of species α . Inserting the corresponding initial values, we obtain

Γi = 1.256×1015 s−1 and Γe = 3.346×1017 s−1. This value should correspond to the initial slope

of the plot of the total number of particles in time.

2. Test case 2 - electric field only

In this test case, we activate the electric field, therefore we consider the effect of the particles’

charge on their motion. Initially, since the plasma is quasineutral and with uniform density, the

electric field is very small and only due to stochastic noise from the random initial particle posi-

tions. The behavior at the very beginning of the simulation is therefore similar to that of test case

1. In a few electron oscillation periods (ω−1
pe ), the higher flux of electrons to the wall causes a de-

pletion of electrons and the formation of a sheath at the boundary, which preserves quasineutrality

in the plasma bulk. This fast transient in proximity to the walls causes the formation of Langmuir

waves that propagate from the sheaths toward the center of the domain.

This test case verifies, in addition to the procedures of the previous test case, the correct imple-

mentation of the deposition of the particles’ charge on the grid, the correct solution of Poisson’s

equation, the interpolation of the force on the particles, and the mover with the addition of the

electric force.

3. Test case 3a - low external magnetic field, magnetized electrons

In this test case, we have the addition, with respect to test case 2, of an external uniform

magnetic field in the direction perpendicular to the simulation plane, Bz = 2× 10−5 T. Symme-

try considerations make it irrelevant to define the direction (positive or negative along z) of the

magnetic field vector. The magnetic field amplitude has been chosen such that the electrons start

being magnetized (re < L), while ions are unmagnetized (ri > L). Here, r j is the gyroradius of the

species, which can be computed as

r j =
m jv⊥, j

|q|Bz
, (2)
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with v⊥, j taken as the thermal velocity of species j. Notice that, although being non-magnetized,

the Lorentz force including the magnetic field is considered also for the ions. This test case verifies

the correct implementation of the mover (i.e., both codes are using the Boris rotation scheme17)

with the addition of a uniform magnetic field.

4. Test case 3b - high external magnetic field, magnetized ions

In this test case, the magnetic field is increased to Bz = 2× 10−4 T. With this value electrons

are well magnetized, and ions start being magnetized (ri < L). The physical consequence is that

electrons move in orbits around an almost fixed center of gyration. Those electrons that are within

a distance of approximately re from the wall are therefore lost within the first gyroperiod. This

number of electrons can be estimated as:

Ne = [L2 − (L−2rc)
2]ne,0 = 3.728×1010. (3)

This test case verifies the correct behavior of the mover for highly magnetized electrons and weakly

magnetized ions.

5. Test case 4a - collisions with a low-pressure background gas

This test case is identical to test case 2, with the addition of MCC between the simulated parti-

cles and a background of neutral H gas. The properties of the gas are fixed at ng = 3×1019 m−3,

Tg = 300 K. We simulate elastic and charge exchange H+−H, elastic e−H, and two electron im-

pact excitation processes, although the latter have almost no effect due to their high activation

energy. The cross-section for elastic e−H and electron impact excitation are taken from the Mor-

gan database on LXCat29, and are shown in Figure 3. The cross sections for H+−H elastic and

charge exchange collisions are taken from the tabulated data in Schultz et al.30, and are shown in

Figure 4. This test case verifies the correct implementation of elastic and charge exchange colli-

sions, which consists of interacting particles with the correct probability and computing correctly

the velocities of the scattered particles.
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FIG. 3: Cross sections for electron impact processes with the background H gas. The energy is

measured as the kinetic energy of both colliding particles in the center of mass frame. The

ionization energy has been scaled down by a factor of 10 with respect to the one of Janev et al.31.
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FIG. 4: Cross sections for H+ ion impact processes with the background H gas. The energy is

measured as the kinetic energy of both colliding particles in the center of mass frame.

6. Test case 4b - collisions with a high-pressure background gas

In this test case, the density of the background gas is increased by one order of magnitude, to

ng = 3×1020 m−3. This is expected to have a significant effect on the discharge physics, changing
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the collision frequencies. It also tests the collision algorithm in a regime where the collision

probability approaches the accuracy limit of the algorithm of Vahedi & Surendra32 (V&S), set at

Pj = 0.1 (see Appendix A).

7. Test case 5 - ionization reactions with a high-pressure background gas

This test case corresponds to the setup of test case 2 with the addition of the electron impact

ionization reaction. The cross-section corresponds to the fit of Janev et al.31, where the energy has

been scaled down by a factor of 10, as shown in Figure 3. The same scaling has been applied to the

activation energy of the reaction, which is also the ionization energy, resulting in Eiz = 1.43 eV.

This has been done so that sufficient reactions can occur without modifying the initial conditions

of the test case with respect to test case 2. With this test case, we verify the correct implementation

of a reaction with two reactants and three products, where the ionization energy has to be deducted

from the reactants and the remaining energy redistributed among the products. In this case, it is

always equally shared between the product electrons.

III. CODE-TO-CODE COMPARISON AND ANALYSIS

In this section, we present the simulation outputs of the code-to-code comparison on some

fundamental plasma parameters, using the test cases described in Section II B. Firstly, we identify

the most relevant plasma parameters to consider. The choice of these parameters has been made

taking into account the final benchmarking goal of this paper.

The primary parameter we naturally opted to assess is the total particle count within the sys-

tem, or equivalently, the average plasma density. One should notice, that the average plasma

plasma density must be carefully accounted for at the domain boundaries. This parameter pro-

vides insights into the accuracy of particle initialization using a Maxwellian velocity distribution,

as well as the efficacy of the particle pusher (and associated modules). The second parameter un-

der consideration is the total kinetic and potential energies of the species, which are presented both

individually for each species and collectively. Analyzing the evolution of these energy parameters

will enable us to confirm that the system does not undergo any non-physical heating and that the

codes experience the same energy relaxation. The potential energy is computed in the two codes
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as the sum of the potential energy of each particle, e.g.:

E
α
p = ∑

i

qαφi(xi), (4)

where φi(xi) is the electric potential at the position xi of the ith particle and α indicates the particle

type. In PANTERA, the total potential energy can equivalently be computed as the one stored by

the field over the domain:

Ep = ∑
α

E
α
p =

1

2
ε0

∫

|E|2 dV, (5)

thanks to the properties of the FEM discretization, while the equivalence is not exact for the FD

discretization in LPPIC.

Among the parameters that have been inquired, we mention the electrons’ and ions’ momen-

tum. By analyzing the time evolution of these quantities we noticed that they strongly depend

on the initial random velocities of the particles. When averaging over several simulations, the

dispersion around the mean value was significant. For this reason, we decided not to include any

analysis of the total momentum in this work. However, we provide in the supplementary data in

Zenodo33 the temporal evolution of these quantities. The reader is expected to obtain a similar

temporal evolution and order of magnitude. The repository also contains flow field data, including

bulk velocity, translational temperatures, and electric potential, of the last time step for all test

cases at different levels of refinement, as obtained with the VKI code.

In Figure 5 we show the results for test case 1 (free effusion), where electrons and ions are two

non-interacting gases. In (a) and (b) we show the temporal evolution over the simulated interval of

the ions’ and electrons’ normalized densities, respectively. The dotted line represents the theoreti-

cal results calculated using Eq. (1). The slow ion motion makes the predicted theoretical evolution

valid all along the simulated interval. Conversely, the fast electron loss makes the theoretical pre-

dictions of Eq. (1) valid only at the beginning of the simulation, since the hypotheses of uniform

distribution in space and Maxwellian velocity distribution from which Eq. (1) is derived become

inaccurate for electrons. In this free effusion case, where no wall-sheath can form, within 5 µs only

around 3.5% of the initial electrons remain inside the simulation box. The insets show the different

results obtained in 10 simulations. The random initialization is responsible for a deviation smaller

than 1h if compared to the initial density.

Figure 5 (c) and (d) report the temporal evolution of the total energy for ions and electrons,

respectively. As one can see, the ion energy decreases linearly. The electron energy experiences
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FIG. 5: Test-case 1. Normalized mean density for ions (a) and electrons (b). Total kinetic energy

of ions (c) and electrons (d). The black dotted line represents the losses from Eq. (1).

a different behavior, since after around 2 µs only 20% of the initial electrons remain inside the

simulation box. As before, the dispersion for the energy is lower than 1h.

In Figure 6 we observe the results for test case 2 (electric field only). Notice that, for the

sake of clarity, in this and in the following plots of plasma parameters we show the data averaged

over the 10 simulations. One can see in (a) that the presence of the electric field, which causes

the formation of the sheaths at the boundaries, increases the ion losses and greatly decreases the

electron ones with respect to test case 1. One should notice from (c) and (d) that the potential

energy is exchanged between ions and electrons at the electron plasma frequency, i.e. ωpe =

3.9891× 107 rad/s or τpe = 2π/ωpe = 1.5751× 10−7 s. Figure 7 shows the value of the electric
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FIG. 6: Test-case 2. Normalized mean density for ions and electrons (a). The sum of the total

(kinetic + potential) energy for electrons and ions (b). Total kinetic energy of ions (c) and

electrons (d).

field Ex along the horizontal line at y = 0.5 m in time. One can observe the sheaths forming and

increasing in size during time. By applying a 2D discrete Fourier transform (DFT) algorithm to the

data in Figure 7, one obtains what is shown in Figure 8. Here, the dispersion relation for Langmuir

waves (or electron plasma waves),

ω = ω2
pe +

3kBTe

me
k2, (6)

is shown with the dashed line. The wave dispersion perfectly superposes the spectrum calculated

with the DFT.
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FIG. 7: Plot of the x component of the electric field, Ex, along the horizontal line at y = 0.5m in

time. Waves are seen to propagate from the boundaries where the plasma sheath forms towards

the interior of the domain, eventually intersecting and forming stationary waves, while decreasing

in intensity.
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FIG. 8: Numerical dispersion map obtained by computing the 2D Discrete Fourier Transform

(DFT) of the same data of Figure 7, after application of the Hann filter. The axes are normalized

with the electron plasma frequency, ωpe, and the Debye length λDe. The dashed line represents

the dispersion relation for Langmuir waves in Eq. (6).

In Figures 9 and 10 we show the evolution of the plasma parameters when we add to the

simulation a low and high magnetic field, respectively (test cases 3a and 3b). Test case 3a shows

some not extremely significant differences in the parameters evolution with respect to test case 2.

This is consistent with the low magnetization of the plasma in these conditions. On the contrary,
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FIG. 9: Test-case 3a. Normalized mean density for ions and electrons (a). The sum of the total

(kinetic + potential) energy for electrons and ions (b). Total kinetic energy of ions (c) and

electrons (d).

when we use a high magnetic field (test case 3b), some strong differences are present. The field

causes a decrease in the particle losses since more particles are orbiting around the magnetic field

lines, and so they are retained inside the system. We verify that the initial jump in the number of

electrons matches well with the analytical calculation of Eq. (3).

As discussed in Section A, collisions play an important and challenging role when simulating

a plasma, since any difference in the algorithms may affect the final result. The results of test

cases 4a and 4b are reported in Figures 11 and 12. In both cases, the plasma density is affected

by the presence of collisions. However, the most visible effect of the collisions is on the particle’s
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FIG. 10: Test-case 3b. Normalized mean density for ions and electrons (a). The sum of the total

(kinetic + potential) energy for electrons and ions (b). Total kinetic energy of ions (c) and

electrons (d).

potential energy. Even at lower pressure, the plasma frequency oscillations are smoother than in

the previous cases. At high pressure, the collisions completely damp these oscillations.

By introducing ionization reactions, we observe some macroscopic variations in the plasma

parameters, as shown in Figure 13. Indeed, both the ion and electron densities, after a small drop

in the first tens of nanoseconds due to the particle absorption at the walls, increase significantly.

The total energy in the system, consistently with the significant part of the energy lost to ionize the

background gas, is lower than in the previous cases. Since the elastic and excitation collisions have

been switched off, we see that the high-frequency plasma fluctuations reappear in the potential
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FIG. 11: Test-case 4a. Normalized mean density for ions and electrons (a). The sum of the total

(kinetic + potential) energy for electrons and ions (b). Total kinetic energy of ions (c) and

electrons (d).

energy evolution.

In Figure 14 we show the density profiles of ions and electrons near the walls. These profiles are

obtained by taking the last snapshot (not time-averaged) of each test case and by averaging along

y between y = 0.4m and y = 0.6m. Consistently with the observation made earlier in this section,

we observe that the profiles of test cases 2, 3a, and 4a are almost superimposed. Conversely, the

sheath dimension is affected by a strong magnetic field and by a higher pressure. In the case of

free effusion, we do not have a sheath: the electron density is equally low along all the domain.

In case 5, ionization generates a significant increment of the density in the bulk, for both electrons
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FIG. 12: Test-case 4b. Normalized mean density for ions and electrons (a). The sum of the total

(kinetic + potential) energy for electrons and ions (b). Total kinetic energy of ions (c) and

electrons (d).

and ions.
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FIG. 13: Test-case 5. Normalized mean density for ions and electrons (a). The sum of the total

(kinetic + potential) energy for electrons and ions (b). Total kinetic energy of ions (c) and

electrons (d).
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FIG. 14: Density profiles for ions (a) and electrons (b) in the sheath region for the different test

cases. These profiles are calculated by averaging in space, and not in time, the final density

snapshot between y = 0.4m and y = 0.6m. The dotted line reports the results from LPP, while the

dashed shows the VKI ones. The shaded area represents a confidence interval around the mean

value, obtained as described in Section IV.
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IV. NUMERICAL ERROR QUANTIFICATION

In this section, we evaluate the accuracy of the simulation results and their convergence to-

ward the exact solution. It is common, for benchmarks and numerical validation studies for PIC,

to consider the stochastic scatter between different realizations of the same simulation to form

a confidence band to compare different codes. This is reasonable if the models are implemented

similarly in all codes and if the benchmarks are performed with the same numerical parameters. In

principle, however, it should also be verified that the results converge towards the exact spatial and

temporal profiles, which should not depend on the chosen numerical discretization. In PIC simula-

tions, we identified three numerical parameters that determine the error: the spatial discretization

of the grid, ∆x, the temporal discretization, ∆t, and the macroparticles’ weight, Fp.

In classic computational fluid dynamics (CFD), an estimate of the numerical error is typically

obtained by performing simulations at multiple discretization levels. The most common method

for estimating the fully-converged solution is Richardson extrapolation, and error quantification

methods are typically based on it. One such method is the grid convergence index (GCI) method

by Roache34, further refined in the works of Stern et al.35, Wilson et al.36, Xing & Stern37, and

Eça & Hoekstra38. Researchers are starting to tackle the additional complications presented by the

stochastic nature of PIC simulations: Riva et al.39 developed a methodology based on the method

of manufactured solutions, and Radtke et al.40 developed a method based on robust verification.

Both methods are adapted for stochastic code outputs. However, the former requires a modification

of the model equations, which is outside the scope of the present work. The latter provides detailed

statistics of code response, but requires a large number of simulations with different combinations

of discretization parameters. In the present work, we will focus on obtaining a sufficiently conser-

vative error estimate using the GCI method and building confidence in the convergent behavior of

the simulation response.

As a generalization of Richardson Extrapolation, the GCI method assumes an error model of

the form34:

Y ⋆ = Y (h j)+Chp
j +O(hp+1

j ). (7)

Here, Y is a local or integrated flow quantity. With Y (h j) we indicate the code response corre-

sponding to the discretization parameter h j at level j. Quantity Y ⋆ is the exact solution, which

is unknown, p is the effective convergence rate, and C is a constant. The error estimate ε̄(hi) =
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Y ⋆−Y (hi) can be obtained by performing simulations at three different levels of refinement:

ε̄(hi) = Y ⋆−Y (hi)≈Chp
i ≈

Y (hi)−Y (h j)

rp −1
, (8)

where r = hk/h j = h j/hi > 1 is the discretization parameter ratio, such that hk > h j > hi, i.e. hi

corresponds to the finest and hk to the coarsest grid discretization. The effective convergence rate

can be determined from:

rp =
Y (h j)−Y (hk)

Y (hi)−Y (h j)
. (9)

Roache34 recommended as an error estimate for Y (h j), the result at the intermediate level of re-

finement:

ε̄(h j) =
rp

rp −1

[

Y (hi)−Y (h j)
]

. (10)

In this work, we refine the time step and particle weight together with the spatial discretization,

such that the numerical stability constraints are respected:

∆x = ∆x0rℓ, ∆t = ∆t0rℓ, Fp = Fp,0r2ℓ. (11)

We choose a grid ratio r = 2, and three level of refinement: ℓ ∈ {0,1,2}. The first one, ℓ = 1,

corresponds to the numerical settings described in Section II. We perform 5 replications (m ∈

{1, ..,5}) with different PRNG seeds of each test case at the 3 different levels of refinement. Only

the VKI code has been used to perform this error quantification study, due to the large number

of simulations required.The responses for any given local or integrated flow variable are denoted

as Yℓ,m. Following the same method as Radtke et al.40, we compute 100 averages (indexed using

b ∈ {1, ...,100}) of bootstrap samples, as:

Ȳ b
ℓ =

1

5

5

∑
w=1

Yℓ,w′ , (12)

where samples are drawn with replacement from the available simulations, i.e. w′ ∼ U [1, ...,5],

where U is the discrete uniform distribution. First, we analyze the effective convergence rate of

the total number of ions and electrons in time, by computing Eq. (9) for each of the bootstrapped

responses, as

rp
b =

Ȳ b
1 − Ȳ b

0

Ȳ b
2 − Ȳ b

1

. (13)

As an example, the result for test case 2 is shown in Figure 15. An analogous plot for all test cases

is available in the supplementary material in Zenodo33. In all the test cases, the response does not
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FIG. 15: Effective convergence rate as a function of time, computed from (9) for the mean

density of electrons (a) and ions (b) for test case 2, using 100 bootstrap samples. The same plots

for all test cases are available in Zenodo33.

show a clear monotonic convergence behavior until t = 4 µs, when the observed convergence rate

p tends to 2. Test case 1 (i.e., free effusion) represents an exception, in fact, in the absence of

field-particle interaction, the code response only contains stochastic scatter around the mean, and

the convergence rate is undetermined. Assuming an effective convergence rate p = 2, we compute

a confidence interval ±ε̄ for the mean electron and ion density using Eq. (10), where the maximum

difference among all bootstrap samples is chosen, thus incorporating the statistical scatter in the

confidence interval, i.e.:

ε̄ =
rp

rp −1
max

b

∣

∣

∣
Ȳ b

2 − Ȳ b
1

∣

∣

∣
. (14)

The error estimate for the mean density tends to increase with time, and does not exceed 2.5×

10−3 n0 in all test cases, where n0 = ne,0 = ni,0 is the initial number density of electrons or ions.

Figure 16 shows the difference between the mean of LPP and VKI code responses for all test cases,

and the uncertainty bands show the error estimates. We find that the results from the two codes are

in agreement within the computed uncertainty band, with small exceptions in the first part of the

simulation, where in fact the convergence rate is not well determined and the error may be slightly

underestimated. The same procedure has been applied to the spatial density profiles, for which the

confidence bands are shown in Figure 14. Error quantification for the other quantities that have

been compared in Section III is left for future work.
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FIG. 16: Plot of the error between the two codes of the mean density of electrons (red solid lines)

and ions (blue dashed lines), normalized by the initial number density n0, as a function of time

for all test cases. The error estimate (shaded area) is computed using (9) and reported in red and

blue, for electrons and ions, respectively.

V. DISCUSSION AND CONCLUSION

In this work, we presented a general approach to test and verify 2D PIC-MCC codes for low-

temperature, low-pressure plasmas. The proposed methods do not require any particular code

configuration: they remain very general and can be easily applied to any code. We defined clearly

the working framework (physical constants, dimensions, etc.) to avoid discrepancies issued by
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slightly different input data. The proposed incremental approach will help the reader identify

any failing part of their implementation. Especially, the proposed schemes allow the user to test

the majority of a magnetized low-temperature (LTP) code. We highlight the fact that the ones

presented here are not simply unit tests: the reader will notice that once a part of the code is

verified, it is used in the subsequent test case. This approach helps to verify not only the modules

individually but also their coupling.

Even though we have not used these test cases to compare the execution time and performance

of each implementation precisely, we emphasize that the computational cost of such an approach

remains minimal. Being the execution time of some minutes on a few tens of CPUs, one can easily

deduct that these test cases can be run on personal computers or small servers. The present test

cases could be used to compare implementation performances. This is, per contra, out of the scope

of the current paper and will be left for future work.

The results discussed in Section III show a very good agreement between the codes and the

proposed models. Even though the implementation of PANTERA and LPPIC are different (e.g.,

the grid is unstructured in the former and Cartesian in the latter), we noticed that the time evolution

of the analyzed spatially-integrated plasma parameters is substantially the same, i.e. the difference

is ≪ 1%. We also verified that the random-number-seeds chosen in every single simulation have

a limited effect on the plasma evolution, confirming the non-chaotic nature of the test cases.

By applying an error quantification procedure derived from the GCI method, as shown in Sec-

tion IV, we estimated the error deriving from the numerical discretization. The procedure, com-

monly applied in computational fluid dynamics, is complicated to some degree by the presence of

stochastic noise due to the nature of PIC-MCC. Bootstrapping has been used here to account for

the effect of random variations on the distribution of derived quantities such as the rate of conver-

gence. The procedure has shown that the results for the densities of electrons and ions for the two

codes are in agreement within the computed uncertainty bounds. Given the small magnitude of

the latter, we deem the selected level of refinement sufficient to face the verification goal, which

remains the main ambition of this work.

Undeniably, even though we believe to have proposed some tests for the major modules of a

2D PIC-MCC code for LTPs, some physical features remain out of the picture. In particular, we

only considered limited plasma chemistry and we did not discuss effects related to magnetic field

gradients or plasma heating procedures. However, we believe that those effects could be later

added in such a framework to pursue the work started in the current paper.
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Appendix A: Details on the PIC-MCC algorithm

Particles and field representation

The idea behind the PIC method is that real particles are represented by a smaller number

of finite-sized particles, which interact due to their electric charge (i.e. electrostatically in the

current work) through the field computed on a grid. The PIC method can be derived from physical

intuition, as shown in the books of Birdsall & Langdon20 and Hockney & Eastwood41. Different

types of discretization in space and in time have been adopted by the developers of PIC codes,

however, the underlying principles remain the same. The distribution function fα for particles of

species α is represented by macroparticles with a certain shape function Sv in velocity space and

Sx configuration space, such that:

fα(x,v, t) = ∑
p∈α

FpSx(x−xp)Sv(v−vp), (A1)

where the sum is performed over all macroparticles p of species α , with position xp, velocity vp,

and particle weight Fp. Alternatively, the particle weight factor can be defined as

Fp =
Nreal

Nmacro
,

with Nmacro the number of macroparticles, corresponding to a number Nreal of real particles. Typ-

ically, a Dirac delta function is used in velocity space Sv = δ , while b-splines of various orders

are typically used in configuration space. This family of functions with compact support includes

the Dirac delta function as well as the multi-dimensional equivalent of “hat” functions. One can

show that the evolution of the distribution function according to the Vlasov equation corresponds

to particles moving according to the Newton-Lorentz equations of motion,

dxp

dt
= vp(t) (A2)

dvp

dt
=

qp

mp
[E(xp)+vp ×B(xp)]. (A3)

Where E(xp) is computed as the value of the electric field on grid element g interpolated to the

particle p through a weighting function W E
pg, as

Ep = ∑
g

W E
pgEg. (A4)
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The electric potential φ is computed on the grid, by discretizing and solving Poisson’s equation,

which reads:

∇ · (εr∇φ) =−
ρ

ε0
. (A5)

The charge density ρ in the previous expression is accumulated on grid nodes also through a

weighting function W ρ
pg,

ρg = ∑
p

W ρ
pgFpqp. (A6)

Typically, these weighting functions have the same functional form (i.e., W E
pg = W ρ

pg), so to min-

imize the force that a particle exerts on itself due to interpolation errors. Within this framework,

collisions and reactions between the particles and a background gas can be included by MCC

techniques.

MCC collision algorithm

In weakly ionized plasmas, collisions between particles and the neutral background gas are

relevant since they represent the mechanism through which the discharge is sustained. Collisions

are usually included in PIC codes by a specific module, which mimics the interaction of simu-

lated particles with a background gas. The usual MCC algorithm used in the low-temperature

plasma community10,42,43 is the one proposed by Vahedi & Surendra12 (V&S), appearing also in

the work by Birdsall44. Similar algorithms were proposed by Nanbu45. Notice that an entire set

of algorithms sharing many similarities with the previous ones, but meant for collisions between

two simulated particles, originates from the Direct Simulation Monte-Carlo (DSMC) community.

These are, for instance: the Time-Counter, No-Time-Counter (NTC), Majorant frequency scheme,

and Bernoulli trials algorithms. A summary of these algorithms and their origin is given by Roohi

& Stefanov46. We discuss below a few details of the MCC algorithm that could potentially have a

significant effect on the accuracy of the results.

We consider a certain number of collisional and reactive processes with their cross sections

σ1, ...,σN , and particles that can undergo at most one collision per time step. In the algorithm of

V&S12, first, a “null” collision frequency ν ′ is estimated as an upper bound for the combination

of all collisional processes, as:

ν ′ = max
x

(ng(x))max
E

(σT (E )v), (A7)
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with

σT (E ) = ∑
j

σ j(E ) (A8)

the total cross section, ng the neutral target density, and v the relative velocity of the colliding

particles in the center-of-mass reference frame (i.e. v =
√

2E /mr, with mr = m1m2/(m1+m2) the

reduced mass of the colliding particles, which have mass m1 and m2). This collision frequency is

then used to select particles to be tested for collisions with a probability:

Pnull = 1− exp(−ν ′∆t). (A9)

Then, every single collisional process occurs with a probability:

Pi(E ) =
ngσi(E )v

ν ′
. (A10)

Therefore, at each time step, the number of particles undergoing process i is, on average:

NMCC = Np[1− exp(−ν ′∆t)]
ng⟨σi(E )v⟩

ν ′
. (A11)

As noted in the original paper12, the algorithm is accurate in the limit of ν ′∆t ≪ 1. This essentially

imposes a limit on the time step. For this verification work it is especially relevant to notice that,

using the algorithm as originally described, the number of collisions depends on the chosen value

of ν ′. Different codes may use various methods, more or less conservative, to estimate this value.

This can introduce differences in the simulated collision frequency of O(ν ′∆t) between codes.

Therefore, we replace Eq. (A10) with the following expression:

Pi =
ngσi(E )v∆t

Pnull

, (A12)

such that the number of particles undergoing process i does not depend on the chosen value for ν ′,

and is, on average:

NMCC = Npng⟨σi(E )v⟩∆t. (A13)

This way, the value of ν ′ becomes merely a factor that optimizes the efficiency of the algorithm,

without affecting its result.

Appendix B: Notes on collision algorithms of Vahedi & Surendra and the classic DSMC

We aim here to clarify some fundamental discrepancies between the MCC algorithm of V&S

typically employed in combination with PIC and the NTC algorithm typically employed in DSMC,
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which became evident during the preparation of this work. A collisional process i for a particle that

traverses a background gas at a constant velocity can be considered a Poisson point process. Col-

lisions are events that can occur at any time, but with a definite frequency, that can be determined

considering a long enough time interval:

νi = lim
t→∞

Ncoll(t)

t
, (B1)

where Ncoll(t) is the number of collisional events in the time interval [0, t). Considering a finite

time interval [0,T ), the probability that a certain number n of collision events has occurred is47:

P{Ncoll(T ) = n}=
(νiT )n

n!
exp(−νiT ). (B2)

If the same time interval is divided into M time steps of duration ∆t = T/M, the probability of

exactly n collision events occurring in the NTC and V&S algorithms are:

PNTC{Ncoll(T ) = n}= (νi∆t)n(1−νi∆t)M−n
(

M

n

)

, (B3)

PV&S{Ncoll(T ) = n}= [1− exp(−νi∆t)]n[exp(−νi∆t)]M−n
(

M

n

)

. (B4)

These show that the two algorithms have two different but important properties: the algorithm

of V&S always reproduces the correct probability of a particle not incurring into a collision,

P{Ncoll(T ) = 0}, while the NTC algorithm always reproduces the expected value of the num-

ber of collisions of the true distribution, E[Ncoll] (and therefore the physical collision frequency),

of course as long as this is smaller than the number of time steps M. The difference between the

two algorithms may not be negligible, especially when νi∆t ≪ 1 is not verified.
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