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Abstract Mainstream serverless platforms follow opinion-
ated, hardcoded scheduling policies to allocate functions
on the available workers. Such policies may decrease the
performance of the application due to locality issues (e.g.,
functions executed on workers far from the data they use).
APP is a platform-agnostic declarative language that mitigates
these problems by allowing serverless platforms to support
multiple, per-function, scheduling logics. However, defining
the “right” scheduling policy in APP is far from trivial, often
requiring rounds of refinement involving knowledge of the
underlying infrastructure, guesswork, and empirical testing.

We propose a framework that lightens the burden on the
shoulders of users by deriving cost information from the
functions, via static analysis, into a cost-aware variant of APP
that we call cAPP. We present a prototype of such framework,
where we extract cost equations from functions’ code, syn-
thesise cost expressions through off-the-shelf solvers, and
implement cAPP to support the specification and execution
of cost-aware allocation policies.
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1 Introduction

Serverless, specifically Function-as-a-Service (FaaS), is a
cloud-based service that lets users build applications as com-
positions of stateless functions, delegating all system ad-
ministration tasks to the platform. Serverless has two main
advantages for users: it saves them time by handling resource
allocation, maintenance, and scaling, and it reduces costs
by charging only for the resources used to perform work,
i.e., users do not pay for running idle servers [22]. Sev-
eral managed serverless offerings are available from popular
cloud providers like Amazon AWS Lambda, Google Cloud
Functions, and Microsoft Azure Functions, as well as open-
source alternatives such as OpenWhisk, OpenFaaS, Open-
Lambda, and Fission. In all cases, the platform manages the
allocation of function executions across the available comput-
ing resources, usually called workers, following opinionated
platform-wide policies. However, a function can endure per-
formance degradation depending on the worker that hosts it,
e.g., due to effects like the latency to access data relative to
the worker’s location, called data locality [20].

We visualise the issue by commenting on the minimal
scenario drawn in Figure 1. There, we have two workers,
W1 and W2, located in distinct geographical Zones A and B,
respectively. Both workers can run functions that interact
with a database (db) located in Zone A. When the function
scheduler — the Controller — receives a request to execute
a function, it must determine which worker to use. To min-
imise the function run time (and, thus, the response time),
the scheduler should take into account the different compu-
tational capabilities of the workers, as well as their current
workloads. Moreover, when functions interact with external
services, it might take into account also their latency to access
them, choosing the ones that minimise it. In our example, the
scheduler should find a worker that minimises the time to
access the database. From Figure 1, that worker is W1, thanks
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to its closeness to db (same geographic zone) which allows
it to undergo lower latencies than the farther worker W2.

The APP Language. APP [13, 16] is a declarative language
recently introduced to support the configuration of custom
function-execution scheduling policies. The APP snippet in
Figure 1 codifies the (data) locality principle of the example.
In the platform, we associate the functions that access db
with a tag, called db query. Then, we include the schedul-
ing rule in the snippet to specify that every function tagged
db query can run on either W1 or W2, and the strategy to
follow when choosing between them is best first, i.e., se-
lect the first worker in top-down order of appearance (hence
giving priority to worker W1 if available and not overloaded).

By featuring customised function scheduling policies,
APP allows one to disentangle functions from platform-specific
allocation rules. However, this freedom manifests the prob-
lem of specifying the appropriate scheduling for the functions
(e.g., minimise latency). Currently, APP users determine the
best policy for their functions by selecting one of the strate-
gies (e.g., the mentioned best first) manually when they
write the companion APP script to their functions, based on
their intuitions and insights on the latter’s behaviour (e.g.,
data access). For instance, a user can write the APP script
in Figure 1 if they had knowledge about the reduced la-
tency of worker W1 in accessing db. In other words, the user
must know about the workers’ topology and their latencies
w.r.t. the external services used by their functions. However,
users might not have such knowledge when writing their APP
scripts. Moreover, the worker-service latency is a property
that can dynamically change depending, e.g., on the state of
the network connections, including traffic and congestion.

Our contribution. We propose to overcome the above limita-
tions by letting users express latency-aware selection strate-
gies. For instance, in the scenario in Figure 1, we expect the
user to be able to express policies like the following one:

- db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first

Fig. 1: A multi-zone serverless topology and APP script.

- db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: min latency

where the strategy min latency instructs the platform to give
priority to the worker expected to endure the lowest latency
w.r.t. its latency in the usage of external services (e.g., the
database db in Figure 1).

While such high-level policies greatly alleviate the bur-
den on users, they open a relevant question: given a function
f to be scheduled and a list of possible workers, how can
one automatically guide the scheduling of f on a worker with
low-latency access to f’s external services?

We answer to the above question by proposing a solution
consisting of three components:

1. the quantification of (an upper bound of) of the invoca-
tions done by a function to its external services, obtained
through a static analysis of the function’s code;

2. the periodical run-time monitoring of the latencies work-
ers endure in contacting said external services;

3. the computation, at function scheduling time, of an upper-
bound of the function-worker overall latency by combin-
ing the quantified invocations to the function’s external
services with the workers’ expected latencies.

In other terms, we propose to use a combination of static
analysis (applied on a function’s code) and run-time mon-
itoring (of the workers latencies in accessing the external
services) to estimate a cost for executing a function on a
worker, considering what and how it uses external services.

Thanks to such a quantification, we can support other
meaningful scheduling policies like the following one:

- db_query:
- workers:

- wrk: W1
- wrk: W2

invalidate: max latency: 300

In this case, we do not specify a selection strategy (using the
platform’s default one) to choose between the two workers,
but we consider invalid any worker whose estimated latency
of running the function exceeds the threshold of 300ms.

We discuss the applicability of our approach on a minimal
language, called miniSL (standing for mini Serverless Lan-
guage), for programming functions in serverless applications.
We focus on a minimal language for two main reasons. First,
it allows us to show the feasibility of our approach by concen-
trating on basic language constructs, abstracting away from
the specific (and, in some case, idiosyncratic) constructs of
the different programming languages used in serverless com-
puting. Second, miniSL represents an abstract language for
describing the behaviour of programs written in mainstream
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programming languages, so that the theory developed in this
article becomes directly applicable to any programming lan-
guage.1 Concretely, we define a static analysis technique that,
given miniSL code, extracts a set of equations that define
meaningful costs, in particular, the number and kind of exter-
nal service invocations. Then, we feed the equations to off-
the-shelf cost analysers (e.g., PUBS [3] and CoFloCo [18]) to
compute cost expressions that quantify over-approximations
of said costs.

The question we ask above focusses on a theoretical
problem, i.e., how we can give an abstract estimation of the
expected latencies of external service invocations done by a
function scheduled on a given worker. In this article, we also
address how one can concretely use our theoretical proposal,
by defining a serverless platform architecture that supports
the framework and a grounding principle of the abstract
estimations w.r.t. the performance of the workers—so we
can use it to select the best workers for each function under
scheduling.

The serverless platform we implement supports:

1. the deployment of functions written in the miniSL lan-
guage, whereupon we compute their cost equations using
the technique described above;

2. the specification of scheduling policies via a dedicated
scheduling policy language called cAPP, obtained by ex-
tending APP with cost-aware policies, like the min latency
and max latency discussed above;

3. the periodical monitoring of each worker’s latencies in
accessing the external services possibly invoked by the
deployed functions;

4. the usage of a cost equation solver when functions are
scheduled to quantify the expected number of invocations
to external services, so that worker selection follows the
specified cost-aware policy.

We achieve such implementation by extending FunLess [15],
a recent serverless platform developed for private edge cloud
systems. FunLess deployments encompass heterogeneous
and geographically distributed nodes, where the latencies for
accessing external services could differ among workers that
provide different computing and networking resources. For
this reason, we expect that cost-aware scheduling policies
could have a major impact on such serverless systems.

Structure of the article. We start, in Section 2, by introducing
background information on serverless. Then, in Section 3, we
define our minimal language, called miniSL, which includes
constructs for specifying computation flow (via if and for
constructs) and for service invocation (via a call construct).

1 Since serverless platforms support many disparate programming
languages, we see exploring the usage of miniSL as an abstract language
for describing serverless functions too broad and tangential to be tackled
in this article, and leave it as interesting future work.

Then, in Section 4, we describe how to exploit static analysis
techniques, inspired by behavioural type systems like those
by Garcia et al. and Laneve and Sacerdoti Coen [19, 28],
to automatically extract a set of equations from function
source codes written in miniSL that define meaningful func-
tion costs (in our case, the number of invocation to external
services). One can feed these equations to off-the-shelf cost
analyser (e.g., PUBS [3] or CoFloCo [18]) to compute cost ex-
pressions quantifying over-approximations of the considered
costs. In Section 5, we present cAPP, our extension of APP
for expressing cost-aware scheduling policies. Moving to im-
plementation, we introduce, in Section 6, a proof of concept
of the proposed framework, obtained by extending the capa-
bilities of the serverless platform FunLess [15]. We conclude
by positioning this work in Section 7 and by drawing final
takeaways and future work in Section 8.

This article revises and extends previous work [12]. The
most relevant novelties are the implementation of the FunLess-
based serverless framework supporting cost-aware schedul-
ing policies expressed in cAPP (Section 6), preliminaries on
serverless computing (Section 2), and positioning (Section 7).

2 Preliminaries: Serverless Computing

We briefly overview serverless computing and platforms.
Modern cloud applications have access to a plethora of

services that allow them to scale and be more resilient. How-
ever, also complexity and costs grow with scale, leading
to the need for efficient, automatic management. Serverless
computing responds to these needs by offering a service that
abstracts away the underlying infrastructure and allows de-
velopers to build applications as compositions of stateless,
event-driven functions that automatically scale according to
user requests.

The functions that make up a serverless application run
in short-lived environments, triggered by different kinds
of events. These events include HTTP requests, database
changes, file uploads, and scheduled timeouts. At triggering
time, the provider runs the function after having initialised
a dedicated execution environment; a secure and isolated
context that manages all the resources needed by the function
lifecycle. Depending on the implementation, these execution
environments encompass Virtual Machines (VMs), contain-
ers, and dedicated interpreters/runtimes [49].

Architecture-wise, the main components that make up a
typical serverless platform are the controllers and the workers,
as illustrated in Figure 2.

Requests to the platform are performed by events that
come from external sources, such as users or other systems. A
variety of events are usually supported, ranging from HTTP
requests for handling webhooks and web-based interactions,
cloud storage events (e.g., creation, deletion, and modifica-
tion of an object in the cloud storage system or database
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Fig. 2: Typical serverless platform architecture.

activities such as insertions, updates, or deletions of records),
events triggered at predefined intervals or specific times, by
messages arriving in a message queue or streams, and by
custom sources or external systems via APIs.

The controller receives the requests and handles scaling
decisions based on inbound traffic and system load, orches-
trating the allocation of workers for function execution and
managing the overall system coordination and monitoring.
In particular, a component of the controller — the scheduler
— determines which worker should execute a given function,
based on factors such as current load, function requirements,
and resource availability. Workers execute the functions as
per controller’s request, handling the execution environment
lifecycle, including provisioning, scaling, and teardown.

Serverless platforms use sophisticated scheduling strate-
gies to optimise function execution across different workers.
One of these strategies regards mitigating the phenomenon of
“cold start”, i.e., the downtime due to waiting for the initiali-
sation of the function’s runtime environment, e.g., avoided by
anticipating the initialisation of/keeping a “warm” dedicated
containers/VM to reduce the function run time. To prevent
bottlenecks, serverless platforms implement load balancing
strategies that can range from simple round-robin methods
to more complex algorithms that consider the current load,
historical data, and predicted demand [49].

Serverless platforms usually adopt a layer that supports
communication among controller and workers, handling mes-
sages and data transfer between components. In particu-
lar, message queues or event brokers (e.g., RabbitMQ [9],
Kafka [4]) implement asynchronous communication between
components, allowing decoupling and scalability. Internal
APIs facilitate synchronous communication for tasks such as
function deployment, status updates, and resource allocation.
Monitoring tools are also used to collect metrics on resource
usage, function execution times, and error rates. Metrics pro-

vide visibility into system performance, function execution,
and overall health and enable debugging, troubleshooting,
and performance optimisation.

Among the leading providers of serverless computing
platforms, Amazon Web Services (AWS) Lambda [35] stands
out as a pioneer in the field. AWS Lambda was the first
publicly available serverless platform, allowing developers to
pay only for the compute time consumed by their functions.
Other platforms followed suit, offering similar capabilities,
such as Microsoft Azure Cloud Functions [5] and Google
Cloud Platform (GCP) Cloud Functions [11]. A number of
open-source serverless platforms have also emerged, such
as OpenWhisk [33], Knative [1], and OpenFaaS [32]. These
platforms can be deployed on-premises or on the cloud, and
offer a more flexible and customizable solution compared to
the proprietary platforms. Among these, FunLess [15] has
been recently proposed for mixed edge-cloud environments,
using WebAssembly [47] (Wasm) to run functions with the
aim of reducing memory and CPU footprint (thanks to the
lightweight nature of Wasm) and mitigating cold-start issues
(thanks to Wasm’s fast startup times and efficient caching).

3 The mini Serverless Language

The mini Serverless Language, shortened into miniSL, is a
minimal calculus that we propose in this article to specify the
functions’ behaviour in serverless computing. miniSL focuses
only on core constructs to define operations to access services,
conditional behaviour with simple guards, and iterations.

Function executions are triggered by events. At triggering
time, a function receives a sequence of invocation parameters:
for this reason, we assume a countable set of parameter
names, ranged over by p, p′. We also consider a countable set
of counters, ranged over by i, j, used as indexes in iteration
statements. Integer numbers are represented by n; service



Leveraging Static Analysis for Cost-aware Serverless Scheduling Policies 5

names are represented by h, g, · · · . The syntax of miniSL
is as follows (we use over-lines to denote sequences, e.g.,
p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= ε | call h(E) S | if (G) { S } else { S } |

for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E ♯ E | !E
♯ ::= + | - | * | / | > | < |

>= | == | <= | && | ||

A function F associates to a sequence of parameters p a
statement S executed at every occurrence of the triggering
event. Statements include the empty statement ε (which is
always omitted when the statement is not empty); calls to
external services by means of the call keyword; the condi-
tional and iteration statements. The guard of a conditional
statement could be either a boolean expression or a call to an
external service which, in this case, is expected to return a
boolean value. The language supports standard expressions
in which it is possible to use integer numbers and counters.
Notice that, in our simple language, the iteration statement
considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the article, we assume all programs to be
well-formed so that all names are correctly used (e.g., coun-
ters are declared before they are used). For each expression
used in the range of an iteration construct, we assume that
its evaluation generates an integer, and for each service in-
vocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct
values to be passed to that service. Calls to services include
serverless invocations, which possibly execute on a different
worker of the caller.

We illustrate miniSL by means of three examples. As a
first example, consider the code in Listing 1 representing the
call of a function that selects a functionality based on the
characteristic of the invoker.

1 ( isPremiumUser , par ) => {
2 if( isPremiumUser ) {
3 call PremiumService( par )
4 } else {
5 call BasicService( par )
6 }
7 }

Listing 1: Function with a conditional statement guarded by
an expression.

This code may invoke either a PremiumService or a Basic-
Service depending on whether it has been triggered by a
premium user or not. The parameter isPremiumUser is a
value indicating whether the user is a premium member
(when the value is true) or not (when the value is false).
The other invocation parameter par must be forwarded to the
invoked service. For the purposes of this article, this example

is relevant because if we want to reduce the latency of this
function, the best node to schedule it could be the one that
reduces the latency of the invocation of either the service
PremiumService or the service BasicService, depending
on whether isPremiumUser is true or false, respectively.

Consider now the following function, where differently
from the previous version, it is necessary to call an external
service to decide whether we are serving a premium or a
basic user.

1 ( username , par ) => {
2 if( call IsPremiumUser(username) ) {
3 call PremiumService( par )
4 } else {
5 call BasicService( par )
6 }
7 }

Listing 2: Function with a conditional statement guarded by
an invocation to external service.

In this case, the first parameter carries an attribute of the
user (its name) but it does not indicate (with a boolean
value) whether it is a premium user or not. Instead, the
necessary boolean value is returned by the external service
IsPremiumUser that checks the username and returns true
only if that username corresponds to that of a premium user.
Within this setting is difficult to predict the best worker
to execute such a function, because the branch that will
be selected is not known at function scheduling time. If
the user triggering the event is a premium member, the
expected execution time of the function is the sum of the
latencies of the service invocations of IsPremiumUser and
PremiumService while, if the user is not a premium member,
the expected execution time is the sum of the latencies of the
services IsPremiumUser and BasicService. As an (over-
)approximation of the expected delay, we could consider
the worst execution time, i.e., the sum of the latency of the
service IsPremiumUser plus the maximum between the la-
tencies of the services PremiumService and BasicService.
At scheduling time, we could select the best worker as the
one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-
reduce jobs.

1 ( jobs , m, r ) => {
2 for(i in range(0, m)) {
3 call Map(jobs , i)
4 for(j in range(0, r)) {
5 call Reduce(jobs , i, j)
6 }
7 }
8 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce
jobs. The number of jobs is indicated by the parameter m. The
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“map” phase, which generates m “reduce” subtasks, is imple-
mented by an external service Map that receives the jobs and
the specific index i of the job to be mapped. The “reduce”
subtasks are implemented by an external service Reduce that
receives the jobs, the specific index i of the job under ex-
ecution, and the specific index j of the “reduce” subtask to
be executed — for every i, there are r such subtasks. In this
case, the expected latency of the entire function is given by
the sum of m times the latency of the service Map and of m ×
r times the latency of the service Reduce. Given that such
latency could be high, a user could be interested to run the
function on a worker, only if the expected overall latency is
below a given threshold.

4 The Inference of Cost Expressions

In this section, we formalise the inference of a cost program
from miniSL code. Once inferred, we can feed this program
to off-the-shelf tools, such as [3, 18], to calculate the cost
expression of the related miniSL code. Notice that, since
these tools are designed to handle only Presburger arithmetic,
we restrict our extraction only to a subset of miniSL, where
the expressions conform to Presburger arithmetic constraints.
Cost programs are lists of equations which are terms

f (x) = e+ ∑
i∈0..n

fi(ei) [ ϕ ]

where variables occurring in the right-hand side and in ϕ are
a subset of x and f and fi are (cost) function symbols. Every
function definition has a right-hand side consisting of

– a Presburger arithmetic expression e whose syntax is

e ::= x | q | e+e | e−e | q∗e
| max(e1, · · · ,ek)

where x is a variable and q is a positive rational number,
– a number of cost function invocations fi(ei) where ei are

Presburger arithmetic expressions,
– the Presburger guard ϕ is a linear conjunctive constraint,

i.e., a conjunction of constraints of the form e1 ≥ e2 or
e1 = e2, where both e1 and e2 are Presburger arithmetic
expressions.

The intended meaning of an equation

f (x) = e+ ∑
i∈0..n

fi(ei) [ ϕ ]

is that the cost of f is given by e and the costs of fi(ei), when
the guard ϕ is true. Intuitively, e quantifies the specific cost of
one execution of f without taking into account invocations of
either auxiliary functions or recursive calls. Such additional
cost is quantified by ∑i∈0..n fi(ei). The solution of a cost
program is an expression, quantifying the cost of the function

symbol in the first equation in the list, which is parametric in
the formal parameters of the function symbol.

For example, the following cost program

f (N,M) = M+ f (N −1,M) [N ≥ 1]
f (N,M) = 0 [N = 0]

defines a function f that is invoked N + 1 times and each
invocation, excluding the last having cost 0, costs M. The
solution of this cost program is the cost expression N ×M.

Our technique associates cost programs to miniSL func-
tions following a syntax-directed approach: we define a set
of (inference) rules that, following the parse tree bottom-up,
gather fragments of cost programs that are then combined in a
syntax-directed manner. As usual with syntax-directed rules,
we use environments Γ , Γ ′, which are maps. In particular,

– Γ takes a service h or a parameter name p and returns
a Presburger arithmetics expression, which is usually a
variable. For example, if Γ (h) = X , then X will appear in
the cost expressions of miniSL functions using h and will
represent the cost for accessing the service. As regards
parameter names p, Γ (p) represents values which are
known at function scheduling time,

– Γ takes counters i and returns the type Int.

When we write Γ + i : Int, we assume that i does not belong
to the domain of Γ . Let C be a sum of (cost) function invo-
cations and let Q be a list of equations. Judgments have the
shape

– Γ ⊢ E : e, meaning that the value of the integer expres-
sion E in Γ is represented by (the Presburger arithmetic
expression) e,

– Γ ⊢ E : ϕ , meaning that the value of the boolean expres-
sion E in Γ is represented by (the Presburger guard) ϕ ,

– Γ ⊢ S : e ; C ; Q, meaning that the cost of S in the
environment Γ is e+C given a list Q of equations,

– Γ ⊢ F : Q, meaning that the cost of a miniSL function
F in the environment Γ is given by the cost program Q
(remember that a cost program is a list of equations).

We use the notation var(e) to address the set of variables
occurring in e, which is extended to tuples var(e1, · · · ,en)

with the standard meaning. Similarly var(∑i∈0..n fi(ei)) is the
union of the sets of variables var(e0), · · · ,var(en). We use
var(ϕ) for Presburger guards.

The inference rules for miniSL are reported in Figure 3.
They compute the cost of a program with respect to the calls
to external services (whose cost is recorded in the environ-
ment Γ ). Therefore, if a miniSL expression (or statement)
has no service invocation, its cost is 0. Notice that in the
rule [IF-EXP] we use the guard [ ¬ϕ ], to model the negation
of a linear conjunctive constraint ϕ , even if negation is not
permitted in Presburger arithmetic. Actually, such notation is
syntactic sugar defined as follows:
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[EPS] Γ ⊢ ε : 0 ; /0 ; /0 [CALL]
Γ (h) = e Γ ⊢ S : e′ ; C ; Q

Γ ⊢ call h(E) S : e+e′ ; C ; Q

[IF-EXP]

Γ ⊢ E : ϕ Γ ⊢ S : e′ ; C ; Q Γ ⊢ S′ : e′′ ; C′ ; Q′ if ℓ fresh

w = var(ϕ,e′,e′′)∪ var(C,C′) Q′′ =
[

if ℓ(w) = e′+C [ ϕ ]
if ℓ(w) = e′′+C′ [¬ϕ]

]

Γ ⊢ if (E) { S } else { S′ } : 0 ; if ℓ(w) ; Q, Q′,Q′′

[IF-CALL]
Γ (h) = e Γ ⊢ S : e′ ; C ; Q Γ ⊢ S′ : e′′ ; C′ ; Q′

Γ ⊢ if (call h(E)) { S } else { S′ } : e+max(e′,e′′) ; C+C′ ; Q, Q′

[FOR]

Γ ⊢ E : e Γ + i : Int ⊢ S : e′ ; C ; Q w = (var(e,e′)∪ var(C))\ i

forℓ fresh Q′ =
[

forℓ(i,w) = e′+C+ forℓ(i+1,w) [ e ≥ i ]
forℓ(i, w) = 0 [ i ≥ e+1 ]

]

Γ ⊢ for (i in range(0,E)){ S } : 0 ; forℓ(0, w) ; Q, Q′

[PRG]

Γ ⊢ S : e ; C ; Q w = var(p,e)∪ var(C)
main fresh Q′ = main(w) = e+C [ ]

Γ ⊢ (p) => { S } : Q′, Q

Fig. 3: The rules for deriving cost expressions

– let ¬ϕ (the negation of a Presburger guard ϕ) be the list
of Presburger guards

¬(e ≥ e′) = e′ ≥ e+1
¬(e = e′) = e ≥ e′+1 ; e′ ≥ e+1
¬(e∧e′) = ¬e ; ¬e′

where ; is the list concatenation operator (the list repre-
sents a disjunction of Presburger guards),

– let ¬ϕ = ϕ1 ; · · · ; ϕm , where ϕi are Presburger guards,
then
(

f (x) = e+∑i∈0..n fi(ei)
)
[¬ϕ ]

def
=
{

f (x) = e+∑i∈0..n fi(ei) [ϕ j ] | j ∈ 1..m
}
.

We now comment on the inference rules reported in Fig-
ure 3.2

Rule [CALL] manages invocation of services: the cost of
call h(E) S is the cost of S plus the cost for accessing the
service h.

Rule [IF-EXP] defines the cost of conditionals when the
guard is a Presburger arithmetic expression that can be eval-
uated at function scheduling time. We use a corresponding

2 We omit rules for expressions E since they are straightforward: they
simply return E if E is in Presburger arithmetics. We notice that no rule
is defined if E is not in Presburger arithmetics. In fact, in these cases, it
is not possible to derive cost equations.

cost function, if ℓ, whose name is fresh,3 to indicate that the
cost of the entire conditional statement is either the cost of
the then-branch or the else-branch, depending on whether
the guard is true or false. As discussed above, the use of the
guard ¬ϕ generates a list of equations.

Rule [IF-CALL] defines an upper bound of the cost of
conditionals when the guard is an invocation to a service. At
scheduling time it is not possible to determine whether the
guard is true or false – c.f. the second example in Section 3.
Therefore the cost of a conditional is the maximum between
the cost e′ +C of the then-branch and the one e′′ +C′ of
the else-branch, plus the cost e to access to the service in
the guard. However, considering that the expression max(e+
C,e′ +C′) is not a valid right-hand side for the equations
in our cost programs, we take as over-approximation the
expression max(e,e′)+C+C′.

As regards iterations, according to [FOR], its cost is the
invocation of the corresponding function, forℓ, whose name is
fresh (we assume that iterations have pairwise different line-
codes). The rule adds the counter i to Γ (please recall that
Γ + i : Int entails that i /∈ dom(Γ )). In particular, the counter
i is the first formal parameter of forℓ; the other parameters
are all the variables in e, in notation var(e) plus those in

3 We assume that conditionals have pairwise different line-codes and
ℓ represents the line-code of the if in the source code.



8 G. De Palma, S. Giallorenzo, C. Laneve, J. Mauro, M. Trentin, G. Zavattaro

the invocations C (minus the i). There are two equations for
every iteration: one is the case when i is out-of-range, hence
the cost is 0, the other is when it is in range and the cost is
the one of the body plus the cost of the recursive invocation
of forℓ with i increased by 1.

The cost of a miniSL program is defined by [PRG]. This
rule defines an equation for the function main and puts this
equation as the first one in the list of equations 4. Once
inferred, we can feed this program to off-the-shelf tools, such
as [3,18], which will compute the cost of the the first function
of the list, i.e. the main function.

As an example, we apply the rules of Figure 3 to the
codes in Listings 1, 2, and 3. Let Γ (isPremiumUser) = u,
Γ (par) = v, Γ (PremiumService) = P and
Γ (BasicService) = B. For Listing 1, we obtain the cost
program

main(u,v,P,B) = if 2(u,P,B) [ ]

if 2(u,P,B) = P [ u = 1 ]

if 2(u,P,B) = B [ u = 0 ]

Notice that the parameters of the main function include, ini-
tially, the values corresponding to the parameters of the cor-
responding miniSL function and then those corresponding to
the other variables occurring in the cost equations.
For Listing 2, let Γ (username) = u, Γ (par) = v,
Γ (IsPremiumUser) = K, Γ (PremiumService) = P and
Γ (BasicService) = B. Then the rules of Figure 3 return
the single equation

main(u,v,K,P,B) = K +max(P,B) [ ]

For 3, when Γ (jobs) = J. Γ (m) = m, Γ (r) = r, Γ (Map) =

M and Γ (Reduce) = R, the cost program is

main(J,m,r,M,R) = for2(0,m,r,M,R) [ ]

for2(i,m,r,M,R) = M+ for4(0,r,R)+
for2(i+1,m,r,M,R) [ m ≥ i ]

for2(i,m,r,M,R) = 0 [ i ≥ m+1 ]

for4( j,r,R) = R+ for4( j+1,r,R) [ r ≥ j ]
for4( j,r,R) = 0 [ j ≥ r+1 ]

The foregoing cost programs can be fed to automatic solvers
such as PUBS [3] and CoFloCo [18]. The evaluation of the
cost program for Listing 1 returns max(P,B) because u is
unknown. On the contrary, if u is known, it is possible to
obtain a more precise evaluation from the solver: if u = 1
it is possible to ask the solver to consider main(1,v,P,B)
and the solution will be P, while if u = 0 it is possible to
ask the solver to consider main(0,v,P,B) and the solution
will be B. The evaluation of main(u,v,K,P,B) for Listing 2
gives the expression K +max(P,B), which is exactly what is
written in the equation. This is reasonable because, statically,

4 Given that miniSL functions are anonymous, we use the default
name main for the corresponding cost function.

we are not aware of the value returned by the invocation of
IsPremiumService. Last, the evaluation of the cost program
for Listing 3 returns the expression m× (M+ r×R).

Since we combine miniSL and our inference system for
estimating costs of functions interacting with external ser-
vices, one might wonder how relevant the approach is, i.e.,
how common are serverless functions that call external ser-
vices, and what is their structure? While a systematic study
is out of the scope of this article, we started this process by
analysing a comprehensive repository of illustrative server-
less functions5 for different platforms (AWS, Azure, Open-
Whisk, etc.). Our analysis reveals that 50% (65/130) of these
functions follow patterns that one can represent using miniSL
by abstracting away structured data and internal computation
and estimate their cost w.r.t. the flow of external calls, such
as HTTP invocations to external services.

5 From APP to cAPP

We now present the new language cAPP for expressing cost-
aware function scheduling policies, by extending the already
available language APP. We start by briefly introducing the
APP syntax and constructs, reported in Figure 4, as found
in its first incarnation by De Palma et al. [16] and then dis-
cussing the new constructs we introduce to handle cost-aware
scheduling policies.

5.1 The APP Language

APP scripts are collections of tagged scheduling policies. The
main, mandatory component of any policy (identified by a
policy tag) are the workers therein, i.e., a collection of labels
that identify on which workers the scheduler can allocate the
functions. The assumption is that the environment running
the APP script establishes a 1-to-1 association so that each
worker has a unique, identifying label. A policy associates to
every function a list of one or more blocks, each including

– the worker clause stating on which workers the function
can be scheduled;

– the strategy, an optional parameter that defines the
scheduling followed to select one of the workers of the
block;

– the invalidate condition, optional as well, which deter-
mines when a worker cannot host a function.

When a selected worker is invalid, the scheduler tries to apply
the selection strategy and allocate the function on the rest of
the available workers in the block. If none of the workers of
a block is available, the scheduling moves to the next block.
The last clause, followup, encompasses a whole policy and

5 “A collection of ready-to-deploy Serverless Framework services” at
https://github.com/serverless/examples.

https://github.com/serverless/examples
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policy tag ∈ Identifiers ∪ {default} worker label ∈ Identifiers
n ∈ N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers: [ * | - wrk: worker label ]
(strategy: [ random | platform | best first

| min latency ])?
(invalidate: [ capacity used : n%

| max concurrent invocations: n
| overload
| max latency: n
])?

followup ::= followup: [ default | fail ]

Fig. 4: The APP syntax and, in red, the cAPP extension.

defines what to do when no blocks of the policy managed
to allocate the function. When set to fail, the scheduling
of the function fails; when set to default, the scheduling
continues by following the (special) default policy.

The strategy parameter supports the following values:
platform that applies the default selection strategy of the
serverless platform; random that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; best-first that allocates functions on workers
based on their top-down order of appearance in the block.
The options for the invalidate parameter are: overload
that invalidates a worker based on the default invalidation
control of the platform; capacity used that invalidates a
worker if it uses more than a given percentage threshold of
memory; max concurrent invocations that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Figure 1 to illustrate APP, reported below.

db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first
invalidate: capacity used: 50%

followup: fail

Recalling the example, we consider some functions that
need to access a database. To reduce latency (as per data
locality principle), we want to run those functions on the
workers within the same zone of the database (W1). If that
option is not valid, then we run the functions on workers
located further away (W2).

In the code, at the first line, we define the policy tag,
which is db query. The functions accessing the database
have the same tag (not shown in the example) so we link

them to this policy. Then, the keyword workers indicates a
list of worker labels, which identify the worker in the prox-
imity of the database, W1, and the farther one, W2. Finally,
we define three parameters: the strategy used by the sched-
uler to choose among the listed worker labels, the policy
that invalidates the selection of a worker label, and the
followup policy in case all workers are invalidated. In
the example, given the best first strategy, we first pre-
fer W1 and then W2, and we invalidate the scheduling on
each of them if the worker corresponding to the chosen la-
bel has capacity used at more than 50%. Since there are no
subsequent blocks, in case all workers of the blocks are in-
validated, we proceed with the followup instruction, which
specifies to fail the request for function execution.

The interested reader can find more examples and tutori-
als on APP in publications by De Palma et al. [13, 14, 17].

5.2 Cost-aware policies with cAPP

To support the scheduling of functions based on costs we
propose two extensions to APP. The first one is a new selec-
tion strategy named min latency. Such a strategy selects,
among some available workers, the one which minimises a
given cost expression. The second one is a new invalidation
condition named max latency. This condition invalidates a
worker in case the corresponding cost expression is greater
than a given threshold.

We dub cAPP the cost-aware extension of APP and illus-
trate its main features by showing examples of cAPP scripts
that target the functions in Listings 1–3.

- premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min latency

Listing 4: cAPP script for Listings 1 and 2.

Listing 4 defines a cAPP tagged premUser that we will
associate to both the functions at Listing 1 and 2. In this
script, we specify to follow the logic min latency to select
among the two workers, W1 and W2 listed in the workers
clause, and prioritises the one for which the solution of the
cost expression is minimal.

To better illustrate the phases of the min latency strat-
egy, we depict in Figure 5 the flow, from the deployment
of the cAPP script to the scheduling of the functions in List-
ings 1 and 2. When the cAPP script is created, the associ-
ation between the functions code and their cAPP script is
specified by tagging the two functions with the comment
// tag:premUser. In this phase, assuming the scheduling
policy of the cAPP script requires the computation of the
functions cost (because the strategy is min latency), the
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// tag: premUser
( isPremiumUser , par ) => {

...
}

f1 from Listing 1
// tag: premUser
( username , par ) => {

...
}

f2 from Listing 2 - premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

cAPP script

main(u,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

main(K,P,B) = K +max(P,B)[ ]

Inference of Cost Programs
(cf. Section 3)

Request for f1

W in ( W1, W2 )
where W.latency( PremiumService )
is minimal

Request for f2

W in ( W1 , W2 )
where W.latency( IsPremiumUser )
+ max( W.latency( PremiumService ),

W.latency( BasicService ) )
is minimal

Cost Program Solver
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Figure 3: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
of the cAPP policy, which selects one of the two workers W1 or W2 at random and checks their validity
following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
and Reduce services from the selected worker, and possibly invalidate it if the computed value is greater
than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving
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than 300.
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We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving

4 Serverless Scheduling Policies based on Cost Analysis

1 // tag: premUser
2 ( username , par ) => {
3 if( call IsPremiumUser( username ) ) {
4 call PremiumService( par )
5 } else {
6 call BasicService( par )
7 }
8 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.

Request for A(1,v)

Request for B(u_name,v)

Request for lambda1(1,v)

Request for lambda2(u_name,v)

G. De Palma et al. 3

p, p0. We also consider a countable set of counters, ranged over by i, j, used as indexes in iteration
statements. Integer numbers are represented by n; service names are represented by h, g, · · · . The syntax
of miniSL is as follows (we use over-lines to denote sequences, e.g., p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= e | call h(E) S | if (G) { S } else { S } | for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E ] E
] ::= + | - | > | == | >= | && | * | /

A function F associates to a sequence of parameters p a statement S which is executed at every
occurrence of the triggering event. Statements include the empty statement e (which is always omitted
when the statement is not empty); calls to external services by means of the call keyword; the conditional
and iteration statements. The guard of a conditional statement could be either a boolean expression or
a call to an external service which, in this case, is expected to return a boolean value. The language
supports standard expressions in which it is possible to use integer numbers and counters. Notice that, in
our simple language, the iteration statement considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the paper, we assume all programs to be well-formed so that all names are correctly used,
i.e., counters are declared before they are used and when we use p, such p is an invocation parameter.
Similarly, for each expression used in the range of an iteration construct, we assume that its evaluation
generates an integer, and for each service invocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct values to be passed to that service. Calls to
services include serverless invocations, which possibly execute on a different worker of the caller.

We illustrate miniSL by means of three examples. As a first example, consider the code in Listing 1
representing the call of a function that selects a functionality based on the characteristic of the invoker.

1 // name: lambda1.miniSL
2 // tag: premUser
3 ( isPremiumUser , par ) => {
4 if( isPremiumUser ) {
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on whether it has been
triggered by a premium user or not. The parameter isPremiumUser is a value indicating whether the
user is a premium member (when the value is true) or not (when the value is false). The other invocation
parameter par must be forwarded to the invoked service. For the purposes of this paper, this example is
relevant because if we want to reduce the latency of this function, the best node to schedule it could be
the one that reduces the latency of the invocation of either the service PremiumService or the service
BasicService, depending on whether isPremiumUser is true or false, respectively.

Consider now the following function where differently from the previous version, it is necessary to
call an external service to decide whether we are serving a premium or a basic user.
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1 // name: lambda2.miniSL
2 // tag: premUser
3 ( username , par ) => {
4 if( call IsPremiumUser(username)){
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.
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[EPS]

G ` e : 0 ; /0 ; /0

[CALL]

G (h) = e G ` S : e0 ; C ; Q

G ` call h(E) S : e+e0 ; C ; Q

[IF-EXP]

G ` E : j G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0 if ` fresh

w = var(j,e0,e00)[ var(C,C0) Q00 =


if `(w) = e0 +C [ j ]
if `(w) = e00 +C0 [¬j]

�

G ` if (E) { S } else { S0 } : 0 ; if `(w) ; Q, Q0,Q00

[IF-CALL]

G (h) = e G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0

G ` if (call h(E)) { S } else { S0 } : e+max(e0,e00) ; C+C0 ; Q, Q0

[FOR]

G ` E : e G + i : Int ` S : e0 ; C ; Q w = (var(e,e0)[ var(C))\ i

for` fresh Q0 =


for`(i,w) = e0 +C+ for`(i+1,w) [ e � i ]
for`(i, w) = 0 [ i � e+1 ]

�

G ` for (i in range(0,E)){ S } : 0 ; for`(0, w) ; Q, Q0

[PRG]

G ` S : e ; C ; Q w = var(p,e)[ var(C)
main fresh Q0 = main(w) = e+C [ ]

G ` (p) => { S } : Q0, Q

Fig. 3: The rules for deriving cost expressions

– let ¬j (the negation of a Presburger guard j) be the list
of Presburger guards

¬(e � e0) = e0 � e+1
¬(e = e0) = e � e0 +1 ; e0 � e+1
¬(e^e0) = ¬e ; ¬e0

where ; is the list concatenation operator (the list repre-
sents a disjunction of Presburger guards),

– let ¬j = j1 ; · · · ; jm , where ji are Presburger guards,
then
⇣

f (x) = e+Âi20..n fi(ei)
⌘

[¬j ]
def
=
n

f (x) = e+Âi20..n fi(ei) [j j ] | j 2 1..m
o

.

We now comment on the inference rules reported in Fig-
ure 3.2

Rule [CALL] manages invocation of services: the cost of
call h(E) S is the cost of S plus the cost for accessing the
service h.

Rule [IF-EXP] defines the cost of conditionals when the
guard is a Presburger arithmetic expression that can be eval-
uated at function scheduling time. We use a corresponding
cost function, if `, whose name is fresh,3 to indicate that the
cost of the entire conditional statement is either the cost of
the then-branch or the else-branch, depending on whether
the guard is true or false. As discussed above, the use of the
guard ¬j generates a list of equations.

Rule [IF-CALL] defines an upper bound of the cost of
conditionals when the guard is an invocation to a service. At
scheduling time it is not possible to determine whether the

2 We omit rules for expressions E since they are straightforward: they
simply return E if E is in Presburger arithmetics. We notice that no rule
is defined if E is not in Presburger arithmetics. In fact, in these cases, it
is not possible to defrive cost equations.

3 We assume that conditionals have pairwise different line-codes and
` represents the line-code of the if in the source code.

guard is true or false – c.f. the second example in Section 3.
Therefore the cost of a conditional is the maximum between
the cost e0 + C of the then-branch and the one e00 + C0 of
the else-branch, plus the cost e to access to the service in
the guard. However, considering that the expression max(e+

C,e0 + C0) is not a valid right-hand side for the equations
in our cost programs, we take as over-approximation the
expression max(e,e0)+C+C0.

As regards iterations, according to [FOR], its cost is the
invocation of the corresponding function, for`, whose name is
fresh (we assume that iterations have pairwise different line-
codes). The rule adds the counter i to G (please recall that
G + i : Int entails that i /2 dom(G )). In particular, the counter
i is the first formal parameter of for`; the other parameters
are all the variables in e, in notation var(e) plus those in
the invocations C (minus the i). There are two equations for
every iteration: one is the case when i is out-of-range, hence
the cost is 0, the other is when it is in range and the cost is
the one of the body plus the cost of the recursive invocation
of for` with i increased by 1.

The cost of a miniSL program is defined by [PRG]. This
rule defines an equation for the function main and puts this
equation as the first one in the list of equations 4. Once
inferred, we can feed this program to off-the-shelf tools, such
as [3,14], which will compute the cost of the the first function
of the list, i.e. the main function.

As an example, we apply the rules of Figure 3 to the
codes in Listings 1, 2 and 3. Let G (isPremiumUser) = u,
G (par) = v, G (PremiumService) = P and G (BasicService) =

B. For Listing 1 we obtain the cost program

main(u,v,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

4 Given that miniSL functions are anonymous, we use the default
name main for the corresponding cost function.
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For Listing 2, let G (username) = u, G (par) = v,
G (IsPremiumUser) = K, G (PremiumService) = P and
G (BasicService) = B. Then the rules of Figure 3 return
the single equation

main(u,v,K,P,B) = K +max(P,B) [ ]

For 3, when G (jobs) = J. G (m) = m, G (r) = r, G (Map) =
M and G (Reduce) = R, the cost program is

main(J,m,r,M,R) = for2(0,m,r,M,R) [ ]
for2(i,m,r,M,R) = M + for4(0,r,R)+

for2(i+1,m,r,M,R) [ m � i ]

for2(i,m,r,M,R) = 0 [ i � m+1 ]
for4( j,r,R) = R+ for4( j +1,r,R) [ r � j ]
for4( j,r,R) = 0 [ j � r +1 ]

The foregoing cost programs can be fed to automatic solvers
such as Pubs [3] and CoFloCo [14]. The evaluation of the
cost program for Listing 1 returns max(P,B) because u is
unknown. On the contrary, if u is known, it is possible to
obtain a more precise evaluation from the solver: if u = 1
it is possible to ask the solver to consider main(1,P,B) and
the solution will be P, while if u = 0 it is possible to ask
the solver to consider main(0,P,B) and the solution will be
B. The evaluation of main(K,P,B) for Listing 2 gives the
expression K + max(P,B), which is exactly what is written
in the equation. This is reasonable because, statically, we
are not aware of the value returned by the invocation of
IsPremiumService. Last, the evaluation of the cost program
for Listing 3 returns the expression m⇥ (M + r⇥R).

5 From APP to cAPP

As discussed in the Introduction, we propose the new lan-
guage cAPP, for expressing cost-aware function scheduling
policies, by extending the already available language APP.
We start by briefly introducing the APP syntax and constructs,
reported in Figure 4, as found in its first incarnation by De
Palma et al. [13] and then discussing the new constructs we
introduce to handle cost-aware scheduling policies.

5.1 The APP Language

APP scripts are collections of tagged scheduling policies. The
main, mandatory component of any policy (identified by a
policy tag) are the workers therein, i.e., a collection of labels
that identify on which workers the scheduler can allocate the
functions. The assumption is that the environment running
the APP script establishes a 1-to-1 association so that each
worker has a unique, identifying label. A policy associates to
every function a list of one or more blocks, each including

policy tag 2 Identifiers [ {default} worker label 2 Identifiers
n 2 N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers: [ * | - wrk: worker label ]
(strategy: [ random | platform | best first

| min latency ])?
(invalidate: [ capacity used : n%

| max concurrent invocations: n
| overload
| max latency: n
])?

followup ::= followup: [ default | fail ]

Fig. 4: The APP syntax and, in red, the cAPP extension.

– the worker clause stating on which workers the function
can be scheduled;

– the strategy, an optional parameter that defines the
scheduling followed to select one of the workers of the
block;

– the invalidate condition, optional as well, which deter-
mines when a worker cannot host a function.

When a selected worker is invalid, the scheduler tries to apply
the selection strategy and allocate the function on the rest of
the available workers in the block. If none of the workers of
a block is available, the scheduling moves to the next block.
The last clause, followup, encompasses a whole policy and
defines what to do when no blocks of the policy managed
to allocate the function. When set to fail, the scheduling
of the function fails; when set to default, the scheduling
continues by following the (special) default policy.

The strategy parameter supports the following values:
platform that applies the default selection strategy of the
serverless platform; random that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; best-first that allocates functions on workers
based on their top-down order of appearance in the block.
The options for the invalidate parameter are: overload
that invalidates a worker based on the default invalidation
control of the platform; capacity used that invalidates a
worker if it uses more than a given percentage threshold of
memory; max concurrent invocations that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Figure 1 to illustrate APP, reported below.

db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first
invalidate: capacity used: 50%

Fig. 5: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

code of the functions is used to infer the corresponding cost
program. When the functions are invoked, i.e., at schedul-
ing time, we can compute the solution of the cost program,
given the knowledge of the invocation parameters. The knowl-
edge of the invocation parameters allows for a more precise
analysis. For instance, for the function in Listings 1, called
lambda1, it is possible to invoke the cost analyser with either
main(1,v,P,B) or main(0,v,P,B) where P represent the cost
of PremiumService, B the cost of BasicService and the
first parameter is the value of the isPremiumUser parameter.

If the invocation is lambda1(1,v) (first horizontal line in
In Figure 5) then the cost program (represented by the inter-
section point on the left) and the corresponding cAPP policy
to implement the expected scheduling policy are retrieved. At
this point, a cost analyser is used to solve the cost programs
(depicted by the gear). In this case, since the cost expression
is P, which is PremiumService, the scheduling amounts to
(i) estimating the latencies to access to PremiumService
from the considered workers and (ii) choosing the worker
that minimises the foregoing latency. This computation is
highlighted in the rightmost grey window corresponding to
the request lambda1(1,v).

When the request is lambda2(u name,v), the correspond-
ing cost function is main(u name,v,K,P,B), where K is the
cost of the service IsPremiumUser. In this case, the cost
expression is K +max(P,B) Since lambda2.miniSL has the
same tag as lambda1.miniSL, the selected cAPP script is
the same. Therefore the scheduling amounts to minimize
the latencies from the workers W1 and W2 to the services
IsPremiumUser, PremiumService and BasicService ac-

cording to the expression K +max(P,B). This is highlighted
in the rightmost grey window corresponding to the request
lambda2(u name,v).

The controller needs also to be aware of the possibility
of invalidating a worker when the latency to access a service
exceeds a certain threshold. In particular, when max latency
is used in the invalidate clause, workers are not selected if
the computed latency is above the given value. To illustrate
this item, let us consider the cAPP code for the map-reduce
function in Listing 5.

- mapReduce :
- workers:

- wrk: W1
- wrk: W2

strategy: random
invalidate:

max latency: 300

Listing 5: cAPP script for Listing 3.

As visualised in Figure 6, starting from the (top-most)
deployment phase box where we tag the function (//tag:
mapReduce), the cost program is computed, obtaining the
associated cost expression. Then, when a request for the func-
tion is received, the execution of the cAPP policy is triggered,
which selects one of the two workers W1 or W2 at random
and checks their validity following the logic shown at the
bottom of Figure 6, i.e., the cost program is solved and the
parameters m and r are replaced with the latency to contact
the Map and Reduce services from the selected worker, and
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1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

10

⇓
main(J,m,r,M,R) = for2(0,m,r,M,R) [ ]
for2(i,m,r,M,R) = M+ for4(0,r,R)+ for2(i+1,m,r,M,R) [ m ≥ i ]
for2(i,m,r,M,R) = 0 [ i ≥ m+1 ]
for4( j,r,R) = R+ for4( j+1,r,R) [ r ≥ j ]
for4( j,r,R) = 0 [ j ≥ r+1 ]

⇓

Cost Expression: m*(M + r*R)

⇓
W in ( W1, W2 )
where m *( W.latency( Map )

+ r * W.latency( Reduce ) )
is < 300

Fig. 6: The map-reduce function, its cost analysis, and
scheduling invalidation logic.

possibly invalidate it if the computed value is greater than
300.

6 Implementation

We now describe the implementation of a prototype serverless
framework that allows to use cAPP to express cost-aware
function scheduling policies.

6.1 The FunLess Platform

To develop the prototype, we rely on FunLess [15], i.e., a
FaaS platform designed for mixed edge-cloud environments,
using WebAssembly [47] (Wasm) to run functions. This ap-
proach offers several advantages: enhanced security through
Wasm’s inherent isolation mechanisms, reduced memory
and CPU footprint by eliminating the need for container run-
times and orchestrators, and mitigated cold-start issues thanks
to Wasm’s fast startup times and efficient caching. More-
over, FunLess ensures a consistent function development and
deployment environment across diverse hardware and soft-
ware architectures, making it adaptable to various edge-cloud
scenarios and providing flexible deployment options, either
through existing containerization solutions or simpler setups,
leveraging Wasm’s portability and lightweight nature.

FunLess is composed of two kinds of services built with
Elixir and Rust (the Core and the Workers), on top of the
BEAM virtual machine, a Database (Postgres), and a moni-
toring system (Prometheus). The platform’s architecture is
shown in Figure 7, with the yellow highlighted components
being the ones we have added or modified to support cAPP.

Core. The central management component of FunLess is the
Core. It exposes an HTTP REST API for users to interact
with the platform and handle the lifecycle of functions — cre-
ation, storage, scheduling, and invocation. When a function is
uploaded to the platform, it is stored in the Postgres database
and broadcasted to the available Workers, which will cache
it locally to reduce cold-start times during invocation. The
Core is also responsible for scheduling function executions.
It uses real-time metrics collected by Prometheus to select the
Worker with the highest amount of available memory. This
results in a balanced workload distribution in case of work-
ers with similar resources. Communication between the two
components leverages the BEAM’s lightweight distributed
messaging system.

Workers. The workers are the components responsible for
executing functions as directed by the Core. Workers use
the Wasmtime [46] runtime, a WebAssembly engine that
supports the WebAssembly System Interface (WASI) [48].
Each Worker caches function binaries locally upon receiving
them from the Core. When a function is invoked, it first
checks its cache for the required binary: if the binary is
present, it is loaded and executed immediately; if not, the
Worker requests the binary from the Core, which sends it
back for execution. Each Worker’s maximum cache size is
configurable, and when the cache exceeds its limit, the least
recently used functions are evicted. Workers are designed to
abstract away the specifics of the Wasm runtime, allowing for
future flexibility in supporting different or multiple runtimes.
This design ensures that functions can be executed across
different hardware architectures, making FunLess versatile
for various deployment environments, from cloud servers to
low-power edge devices.

6.2 Extending FunLess to support cAPP

To correctly handle cAPP-based scheduling policies in Fun-
Less, several additions had to be made to the platform, both
in terms of deployment and implementation.

Firstly, we implemented a miniSL-to-Wasm compiler,
to produce binaries that would be compatible with Fun-
Less’ Workers. As discussed in the previous section, the
cost-analysis that we perform on miniSL functions consid-
ers the invocations that such functions perform on external
services. Moreover, we expect to monitor, at run time the
latencies of the worker-external service invocations. To this
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Fig. 7: Schema of the FunLess architecture, extended to support cAPP.

aim, we extended FunLess’ internal data structures to include
information for each function, e.g., the URL and HTTP verb
associated to the external services the function can invoke.
This metadata is then to be used by the Workers to actually
perform service calls to monitor, at run time, the invocation
latencies. By default, each Worker sends a HEAD request
to all services every 10 seconds and caches the response
time. The latencies for all services are exposed as metrics
by each Worker, allowing Prometheus to collect them along
with standard information (e.g., memory usage).

We then extended the FunLess scheduler to allow schedul-
ing decision based on cAPP.

For modularity purposes, we did not bind the implemen-
tation to rely on a specific cost analyser but we allow instead
the administrator to choose the one that best fits the plat-
form’s needs. For show the feasibility of our approach, we
used a containerised version of PUBS [3] and invoke it using
simple API requests. This allows the Core to contact this ser-
vice to calculate the correct upper bound for each function’s
cost equations and estimate the latencies for all the available
Workers.

The extension to FunLess was written in Elixir (as the
rest of the platform) and required around 1k lines of code.6

6.3 Implemented Case Studies

We have performed a qualitative evaluation of our cAPP-
based extension of FunLess by verifying that the expected
Workers (i.e., the ones we simulate having the lowest latency

6 https://github.com/funlessdev/funless/tree/miniSL

accessing the services used by the given function) are being
targeted during scheduling.7

We deployed our platform on a local Kubernetes config-
uration — we use kind8, which is a tool for running local
Kubernetes clusters — using two Worker nodes and one Core
node. We have tested the scenario depicted in Figure 5 by
implementing PremiumService, BasicService and IsPremiu-
mUser. These services are configured to simulate different
latency towards different Workers by delaying their response
depending the host performing the HTTP requests. We per-
formed 100 function invocations for each use case and noted
the amount of times the “correct” Worker (i.e. the one with
the lowest predicted latency, using the min latency strategy)
was targeted. We then did the same using FunLess’ default
scheduling policy, and compared the results.

Additionally, we tested the behaviour of the max latency
invalidate option using the map-reduce use case from Fig-
ure 6. Also in this case, we performed 100 invocations and
noted the amount of times the “incorrect” worker (i.e., the one
with the excessive latency) was selected, and then compared
them with the default scheduling policy. We also extended
this test case by changing the latencies after 50 invocations,
so that the lowest-latency worker would not stay the same
during the entire test.

Summing up, this gave us four separate test cases to
compare the behaviour of cAPP-based scheduling with that
of FunLess’ default scheduler:

7 A quantitative performance evaluation is left as a future work and
outside the scope of this work since it would also require the adoption
of a fully-fledged programming language to use FaaS benchmarks.

8 https://kind.sigs.k8s.io/

https://github.com/funlessdev/funless/tree/miniSL
https://kind.sigs.k8s.io/
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Fig. 8: Experimental results for each test case. Number of invocations is shown on the y-axis.

1. PremiumService/BasicService, where isPremiumUser is
a boolean parameter.

2. PremiumService/BasicService, where IsPremiumUser is
a service to be called.

3. Map/Reduce, where latencies are unchanged during all
invocations.

4. Map/Reduce, where latencies are flipped after 50 invoca-
tions and having a break of 30 seconds between the two
phases to allow Prometheus to receive updated latency
information from the Workers.
In each of these test cases, worker1 had a latency of

300ms towards all services, while worker2 had a latency of
700ms. This was flipped in the last 50 invocations of Test 4.

The cAPP script used in Test 1 and Test 2 are the ones
in Figure 5 and 3 with the only change that the maximum
latency was set to 2000ms (otherwise 300ms would have
invalidated both workers).

The results are shown in Figure 8. It can be seen, in all
experiments, how cAPP-based scheduling always chooses the
“correct” worker, while the default scheduling policy tends to
balance the workload between the two available. Specifically,
in Test 4 (bottom right plot), cAPP switches from worker1
to worker2 during the second phase of the test, when the
latencies are flipped between the two. This shows that, even
with dynamic latency changes, the scheduler can still adapt
and choose the optimal worker without any changes to the
cAPP script or the function definitions.

A limiting factor here is of course that the Core needs
to get updated information from Prometheus, and therefore
it strongly depends on the latency monitoring interval to
perform optimal decisions in a timely manner. Too long an
interval would result in a long period of suboptimal decisions,
where the Core bases its policy on old latencies.

7 Related Work

To the best of our knowledge, this is the first work that uses
cost equations of functions to govern serverless scheduling.

In general, there is a growing literature focused on tech-
niques that mix one or more locality principles to increase the
performance of function execution, assuming some locality-
bound traits of functions [2, 6, 7, 10, 21, 23–26, 29, 30, 34, 36–
43]. Some of these works focus on applying static analysis
techniques for optimising serverless and cloud computing.
For instance, Wang et al. [45] use static control and data flow
analysis to enhance performance modelling of serverless
functions, achieving accurate predictions. Obetz et al. [31]
use service call graphs for static analysis of serverless ap-
plications, enabling various program analysis applications.
Looking at the infrastructure underlying serverless, Garcia et
al. [19] present a static analysis technique for computing up-
per bounds of virtual machine usage in cloud environments,
using a technique similar to the one presented in Section 4.
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The inference of cost equations and their computation with
cost analyzers has been also used for estimating the com-
putational time of programs in an actor model [27] and for
analyzing updates of smart contracts balances due to transfers
of digital assets [28].

Static-time techniques are also proposed in the field of
Implicit Computational Complexity where type inference
is used to derive (computational) costs of programs in a
direct way, without resorting to cost analyzers. Similar to our
approach, the techniques are applied to restricted languages
where the cost analysis is decidable (e.g., loop programs
as in [8]). It is worth to notice that, when such techniques
are applied to cAPP, the resulting costs are less precise than
those computed with cost analysers. One simple example is
Listing 1, when computed according to [8], whose cost is
max(P,B) because, in loop programs, conditionals are always
nondeterministic.

Besides static analysis, other works used dynamic run-
time analyses to visualise measure resource costs [44]. These
tools operate by injecting instructions into a program or mod-
ifying its runtime to instrument real-time monitoring for
collecting information about the behaviour of the program.
Contrary to static analyses, dynamic ones requires modifying
the runtime of the platform to collect the data needed by the
analysis. Moreover, it requires the execution of the program-
s/functions over an exhaustive set of inputs, which makes
the application of the technique more impractical (and could
provide a partial “view” of the cases).

8 Conclusion

We introduce a framework that lightens the burden on the
shoulders of users by deriving cost information from the
functions, via static analysis, into a cost-aware variant of APP
that we call cAPP. To show the feasibility of the approach, we
present a prototype of such framework where we extract cost
equations from functions’ code, synthesise cost expressions
through off-the-shelf solvers, and implement cAPP to support
the specification of cost-aware allocation policies.

Specifically, we demonstrate that one can over-approximate,
at scheduling time, the overall latency endured by the invoca-
tion of a function f when running on a given worker and use
this information to govern its scheduling.

To achieve this result, we present a proposal for an ex-
tension of the APP language, called cAPP, to make func-
tion scheduling cost-aware. The extension adds new syn-
tactic fragments to APP so that programmers can govern the
scheduling of functions towards those execution nodes that
minimise their calculated latency (e.g., increasing serverless
function performance) and avoids running functions on nodes
whose execution time would exceed a maximal response time
defined by the user (e.g., enforcing quality-of-service con-
straints). The main technical insights behind the extension

include the usage of inference rules to extract cost equations
from the source code of the deployed functions and exploiting
dedicated solvers to compute the cost of executing a function,
given its code and input parameters. We have demonstrated
the feasibility of our proposal by implementing a serverless
platform that schedules functions following cAPP scripts. The
implementation was obtained by extending the open-source
FunLess [15] serverless platform and exploiting the PUBS [3]
cost equations solver.

In future work, we will address several key questions that
remain open. Specifically, we aim to investigate the scalabil-
ity and performance of our approach by examining how it
would work with more complex examples and evaluating its
execution times under varied computational conditions.

Since determining the exact cost of a function is, in prin-
ciple, undecidable, as future work, we will focus on explor-
ing models and techniques that can make this problem more
tractable in practical scenarios. This may include the develop-
ment of heuristics and over-approximation methods that work
effectively for the majority of cases, while ensuring that these
approaches remain computationally efficient. Additionally,
we are considering architectural solutions to complement
these techniques, such as the inclusion of caching systems to
store and reuse previously computed costs for repeated func-
tion invocations. These systems could significantly reduce
overhead by calculating the actual cost of a function only
once, avoiding redundant computations.

To further enhance system reliability, we propose integrat-
ing timeouts for particularly challenging cost calculations,
paired with sensible default strategies to maintain responsive-
ness. This would ensure the system remains functional even
in scenarios where exact costs cannot be computed within a
reasonable time frame.

Moreover, we intend to explore the incorporation of user-
provided inputs or hints, which could guide our models to
more accurate estimations in specific contexts. Finally, we
plan to evaluate the effectiveness of our approach by testing
it against standard benchmarks, measuring how closely our
over-approximations align with actual costs and identifying
areas for further refinement.
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