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ABSTRACT

This paper presents an unsupervised neural network-based
framework for fusing hyperspectral (HS) and multispectral
(MS) images, addressing their inherent resolution trade-offs.
Unlike supervised HS-MS fusion methods that require large
training datasets, our approach is model-based and fully unsu-
pervised. It is based on Principal Component Analysis (PCA)
for spectral subspace identification and on an innovative Patch
Normalizing Flow (Patch-NF) for spatial regularization. Ex-
periments show that the proposed method offers a nice trade-
off in terms of performance and computation time, when com-
pared to alternative unsupervised baselines from the litera-
ture.

Index Terms— Hyperspectral and Multispectral image
fusion, Spatial Regularization, Generative models, Patch Nor-
malizing Flow

1. INTRODUCTION

Fusion of multisensor images is an important and active re-
search area in hyperspectral imaging. In this setting, the fu-
sion of hyperspectral (HS) and multispectral (MS) images ad-
dresses the inherent trade-offs between these imaging modali-
ties: HS images offer extensive spectral information yet suffer
from low spatial resolution, whereas MS images provide su-
perior spatial resolution but with reduced spectral details. In
many applications, such as in Earth observation, astronomy or
microscopy, both images of the same scene can be acquired
simultaneously, and the fusion process is required to achieve
accurate analyses at high spatial and spectral resolutions.

The core challenge in HS-MS fusion lies in effectively in-
verting the degradation processes inherent to image acquisi-
tion, a task that traditionally employs model-based inversion
techniques with regularization [1, 2]. Conventional methods
rely on simple assumptions such as spectral low-rankness and
spatial smoothness but often fall short in complex scenarios
due to their simplistic nature. The advent of deep learning
presents new opportunities, yet its efficacy is hampered by the
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extensive need for training data, a limitation in many practical
applications.

Addressing these challenges, this work introduces an in-
novative unsupervised approach leveraging neural networks
for spatial regularization without the prerequisite of training
datasets. We propose to learn a patch generative model from
the MS image, that will serve as a prior or regularization in
the fusion problem. Our methodology employs another com-
mon mechanisms: an identification of the spectral subspace
identification via Principal Component Analysis (PCA) on the
HS images. To demonstrate the efficacy of our approach, we
conduct comparative analyses against established fusion tech-
niques, including FUSE [3] and CNMF [4], and a more recent
unsupervised deep learning model [5], on two well-known
images from Pavia University and Indian Pines.

This paper is organised as follows. Section 2 presents
a sample of state-of-the-art methods for HS-MS fusion, to-
gether with an overview of the recent literature dedicated to
neutal-networks-based regularization. Section 3 describes the
proposed new method and its implementation. Experiments
are presented in Section 4, while Section 5 summarizes the
contribution and draws some perspectives.

2. RELATED WORKS

2.1. Image Fusion as an inverse problem

HS-MS image fusion methods are traditionally categorised
into four groups [1]: component substitution, multi-resolution
analysis (MRA), Bayesian approaches, and spectral unmixing
(SU). In this short paper we will focus on the Bayesian (or in-
verse problem) approaches, that assume the forward models
of the MS and HS images to be known [6]. The reconstruc-
tion of the full-resolution datacube can be cast as a maximum-
a-posteriori (MAP) estimation problem, that seeks the mini-
mum of a data-fidelity term involving the two images, and
additional regularizations reflecting the prior on the solution.

To spectrally regularize the problem, some works use
classical low-rank penalties such as nuclear norm minimiza-
tion. Indeed, HS images are known to have highly correlated
spectral bands, suggesting that spectral vectors lie in low-
dimensional manifolds or subspaces [7, 8]. But it is more



common and more efficient to identify a spectral subspace
beforehand from the HS image [6, 9]: this amounts to re-
ducing the dimension and thus the computation time, and it
avoids the bias caused by the nuclear norm, which is only a
proxy for the rank [10].

Concerning spatial regularization or prior, many works
use classical spatial image regularizations such as vector total
variation [9]. Several works proposed instead informed spa-
tial regularizations learnt from the MS image. They can be
based on dictionary learning and sparsity [6], Gaussian pri-
ors [3], or weighted Tikhonov [11]. Assuming that the spatial
structures of interest are visible in the MS image, such in-
formed approaches can outperform standard priors, and can
be viewed as the spatial counterparts of the spectral subspace
methods.

Some unmixing-based approaches can also be cast as in-
verse problem formulations. The most famous method in this
area is CNMF [12, 4], that seeks a hyperspectral image com-
patible with the forward model and a linear mixing model,
with an algorithm inspired by the multiplicative updates of
non-negative matrix factorization [13]. From an inverse prob-
lem perspective, this approach is similar to low-rank regular-
ization, with no spatial regularization.

More recently, numerous techniques have leveraged the
power of deep neural networks for HS-MS image fusion [2].
Most of them are supervised approaches [14, 15, 16], trained
on large datasets with known ground-truth. While they can
achieve impressive performance, the can not be used in some
contexts where ground-truth data is not available, or for out-
of-distribution samples. But neural networks can also be used
differently, in an semi- or un-supervised way, as described in
the next section.

2.2. Regularization with neural networks

Inspired by the plug-and-play paradigm [17], which uses im-
age denoisers as regularizations in splitting optimization algo-
rithms, many works considered deep neural denoisers learnt
beforehand, which can lead to impressive results [18]. Such
approaches have been successfully applied in hyperspectral
imaging [19, 20]. Another line of works consider genera-
tive models instead of denoisers, that can be plugged into
the restoration process in a Bayesian way [21, 22]. Yet, both
frameworks still require a dataset of clean HS images to train
the denoiser or the generative model.

Adapting these ideas to our context requires to consider
patch-based models, that can be fully trained from the MS
images. Similar ideas have been used in the past with sparse
representation in dictionaries [6], and more recent works con-
sider more general patch-based representations, based on op-
timal transport [23] or generative models [24]. This last ap-
proach learns the density probability of patches with a nor-
malizing flow (Patch-NF) from few data, and use it as a spa-
tial prior similarly to [21]. Although it has never been applied

to HS-MS image fusion, it seems particularly suited to this
context because the patch-NF can be learned only from the
MS image, resulting in a fully unsupervised fusion technique.

3. PROPOSED METHOD

3.1. Problem formulation

Let the unknown target image be denoted by X, a N × B
matrix, with N pixels and B spectral bands. Let denote the
MS image by matrix YM (of size N × b, with b < B) and the
image HS by YH (of size n × B, with n < N ). The forward
(observation) model writes:

YM = XR + NM, (1)
YH = LX + NH. (2)

The left and right multiplying matrices R and L act as spectral
and spatial degradation operators, while NM and NH denote
the MS and HS noise terms, respectively. We assume here
white Gaussian noise of respective variances σ2

M and σH, al-
though more complicated models can be chosen such as mul-
tivariate Gaussians with diagonal covariance matrices [6].

To address the ill-posed or ill-conditioned nature of the
fusion problem, a common strategy is to add a regulariza-
tion ϕ(X) that favors some desired properties of the solu-
tion. From a statistical point of view, it amounts to introduc-
ing a prior distribution for the unknown parameter X and de-
rive Bayesian estimators. Both approaches are equivalent for
the well-known Maximum A Posteriori (MAP) when chosing
p(X) ∝ exp(−λϕ(X)), which leads to:

min
X

1

2σ2
M

∥YM − XR∥2F +
1

2σ2
H

∥YH − LX∥2F + λϕ(X)

⇔ min
X

− log p (YM|X)− log p (YH|X)− log p(X) (3)

Similar to [6, 7], we propose to compute a PCA before-
hand to identify the spectral subspace from the HS image.
This writes YH = Z̄U + 1NµT , with U the K × B ma-
trix that defines the K principal components. The problem
is then solved in the subspace, with the change of variable
X ≃ ZU + 1Nµ. Defining ȲH = YHUT − L

(
1NµT

)
UT

and ȲM = YM −
(
1NµT

)
R, equation (3) can be simplified

into

ẐMAP ∈ argmin
Z

1

2 · σ2
M

∥∥(ȲM − ZUR
)∥∥2

F
(4)

+
K

2 ·B · σ2
H

∥∥(ȲH − LZ
)∥∥2

F
+ λϕ(Z) (5)

3.2. Patch-NF regularization

In this subsection, we describe the major contribution of this
paper: the Patch-NF regularization for image fusion, which



has some similarities with [24]. We assume that YM con-
tains all relevant spatial information, so that we can learn a
normalizing flow Eθ from the patches of YM, and use it in a
second step as a prior in the fusion process.

Denoting by P(·) the patch extraction operator, the pro-
posed spatial regularization is simply a squared ℓ2−norm in
the latent space of the normalizing flow, since the latent prior
is a Gaussian distribution:

ϕ(Z) =
K∑
i=1

λiϕ(Zi) with ϕ(Zi) =
1

2
∥Eθ (P(Zi))∥2F . (6)

The parameters λi control the regularization trade-off for
each principal component Zi of Z, and need to be care-
fully chosen as detailed below. Note that this regularization
leads to a MAP in the latent space (MAP-z) that maximizes
p(Z|YM,YH). We also consider the MAP-x alternative, that
maximizes p(X|YM,YH) with Z = Eθ(X), and leads to the
following regularization [25]

ϕ(Zi) =
1

2
∥Eθ (P(Zi))∥2F−log |det∇Zi

Eθ (P(Zi))| . (7)

We also investigates a third variant, which exploits the en-
coding of the MS image patches, and impose to the latent rep-
resentations of the sought image patches to be close to their
corresponding counterparts in the MS image:

ϕ(Zi) =
1

2
∥Eθ (P(Zi))∥2F − log |det∇ZiEθ (P(Zi))|

+
1

2

∥∥∥∥∥∥Eθ (P(Zi))−
1

b

b∑
j=1

Eθ

(
P(Yj

M )
)∥∥∥∥∥∥

2

F

.

(8)

3.3. Implementation details

We use the GLOW model [26], which achieves state-of-the-
art results among normalizing flow techniques. GLOW maps
the image patches to a latent space with a succession of layers
(or steps of flow), that are invertible with triangular Jacobian.
Each layer is composed of a normalisation with scaling and
bias, 1x1 convolutions, and Affine Coupling Layers [27]. We
use 5 steps of flow, a subnet of size 512 and 7x7 patches,
for a total of 3 008 980 trainable weights. We use the Adam
optimizer for 2000 steps with learning rate of 1e-4. each batch
is composed of 2000 random patches taken from the total 75
076 available.

Once the network is trained, we can use Eθ to regularize
the image fusion problem according to equations (4) and (6).
The Adam optimizer, set with a learning rate of 0.005, was
utilized for the experiments documented in this paper. For this
paper a fixed number of steps was used for each experiment
scenario.

Furthermore, to allow the regularization of the PCA com-
ponents as images, a specific scaling was applied. This scal-
ing adjusted the values of each component to range between
0 and 1, based on its minimum and maximum values.

The tuning of the parameters λi is not trivial, a dynamic
strategy adapted from the discrepancy principle was tested but
for this paper the value of these parameters were chosen em-
pirically.

4. EXPERIMENTS

This section evaluates the performance of our proposed
PatchNF regularization, and compares the results with several
state-of-the-art baselines. We will first describe the experi-
mental setting, then give the main results and conclude with
an ablation study. More details and experiments will be
available at [28].

4.1. Experimental setting

We use two classical hyperspectral images: Pavia Univer-
sity [29] acquired by the ROSIS-3 sensor, and Indian Pines
Dataset [30] acquired by AVIRIS. Both have 93 spectral
bands ranging from visible to short-wave infrared and exclud-
ing the water vapour absorption bands. Pavia has 256x256
pixels, while Indian Pines is of size 145×145. For both refer-
ence images, we simulated a pair of HS and MS images by
using the spectral responses of IKONOS as in [6], and spatial
Gaussian filtering followed by a subsampling of factor 4. We
added white Gaussian noise with SNR 20 and 30 dB.

Working with simulated images with known grund-truth
allows us to use standard quality metrics. We will consider the
usual PSNR, SSIM and SAM, whose definitions can be found
in [1]. We will compare our method with several classical
baselines adapted to our context, i.e., a knowledge of the for-
ward model but no supervision from an external dataset. We
consider CNMF [4], FUSE [3] and Deep-SURE-Fusion [5].
Note that all methods have been modified to explicitly exploit
the forward models, to allow for fair comparison.

Regarding the parameters, we opted to retain 9 compo-
nents in the PCA. We used patches of size 7x7, with a stride
of 2 between patches. To help convergence of Patch-NF, we
initialized it with the solution of FUSE.

4.2. Results

Table 1 shows the obtained metrics for the different methods
on the two images. Overall, Patch-NF achieves intermediary
results between FUSE and Deep SURE, both in performance
and in computation time. Our approach obtains slightly worse
results than Deep-SURE, but it is way faster. This seems
mostly due to convergence issues and to our rough tuning of
the 9 parameters λi, and we believe it is not because of the
Patch-NF regularization, which seems accurate. To investi-
gate this, we also try to initialize Patch-NF with the output of
Deep-SURE. The results, shown in Table 2, confirm this in-
tuition: with this enhanced initialization, Patch-NF is able to
improve all metrics in all scenarios.



Table 1. Performance Comparison on Pavia and Indian Pines
Datasets

SNR Method PSNR SSIM SAD Time

Pa
vi

a

20

CNMF 32.58 0.989 5.86 14s
FUSE 34.5 0.993 4.38 0.41s
SURE 36.6 0.996 3.05 40min

Patch-NF 35.1 0.994 4.18 146s

30

CNMF 31.4 0.986 4.27 14s
FUSE 40.7 0.998 2.28 0.40s
SURE 41.6 0.999 1.94 40min

Patch-NF 41.1 0.999 2.21 105s

In
di

an
Pi

ne
s 20

CNMF 26.9 0.952 6.07 3.1s
FUSE 30.0 0.976 3.81 0.16s
SURE 31.3 0.982 3.65 14min

Patch-NF 30.4 0.979 3.77 114s

30

CNMF 33.2 0.988 3.25 4.9s
FUSE 34.5 0.991 2.74 0.35s
SURE 35.0 0.992 2.59 14min

Patch-NF 34.7 0.992 2.74 111s

Table 2. Performance Comparison on PaviaU and Indian
Pines Datasets (Deep SURE and Patch-NF Methods)

SNR Method PSNR SSIM SAD Time

Pa
vi

a 20 SURE 36.6 0.996 3.05 40min
Patch-NF 36.8 0.996 2.88 40min+52s

30 SURE 41.6 0.999 1.94 40min
Patch-NF 42.2 0.999 1.87 40min+78s

In
di

an
Pi

ne
s

20 SURE 31.3 0.982 3.65 14min
Patch-NF 32.3 0.986 3.29 14min+94s

30 SURE 35.0 0.992 2.59 14min
Patch-NF 35.2 0.993 2.55 14min+67s

4.3. Ablation study

We here compare the three proposed variants of Patch-NF de-
tailed in equations (7), (6) and (8). We consider the scenario
of Pavia University with SNR=20, and display the results in
Table 3. In Table 3, a comparison is made between the three
studied loss functions, made with a stride of 3 in the patch
operator, on Pavia University, and with SNR=20. While the
three methods perform correctly, it seems that the regulariza-
tion with Encoding of MS, of equation (8) outperforms its
counterparts. Despite its superior performance, we chose for
this paper the solution from equation (7) due to its time ef-
ficiency. However, since the encoded solution used a rough
average of all the bands, there is room for further improve-
ment, which should be explored in future works.

5. CONCLUSION

We proposed in this short paper to use patch-normalizing flow
as a spatial prior in HS-MS fusion, which leads to a simple,

Table 3. Different Patch-NR regularizations on Pavia for
SNR=20 and SNR=30.

SNR Method PSNR SSIM SAD time(s)

20
MAP Z (6) 35.1 0.993 4.19 139
MAP X (7) 35.1 0.994 4.18 146
Encoded (8) 36.0 0.995 3.51 626

30
MAP Z (6) 41.1 0.999 2.21 104s
MAP X (7) 41.1 0.999 2.21 105s
Encoded (8) 41.6 0.999 2.04 765s

fully-unsupervised method. The experiments show that it of-
fers an interesting trade-off between performance and compu-
tation time compared to state-of-the-art unsupervised meth-
ods. Future works are needed to further improve the perfor-
mance of the method, for instance by better tuning the regular-
ization parameters and developing more optimal stopping cri-
teria. Deeper experimental results will also been conducted,
by considering larger datasets and by evaluating the robust-
ness to a potential error in the forward models.
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