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Abstract—Weighted least squares are often used to approx-
imate log-likelihoods when solving inverse problems involving
non-Gaussian noise as they are more appealing from an opti-
mization perspective. Although a theoretical expression of the
weights can be derived for specific noises, this may become
intractable for more general noises. Moreover, such theoretical
weights can be detrimental to the efficiency of optimization
algorithms. To remedy these issues, we propose in this work to
learn the weights from data so as to adapt to any general noise
while maintaining the efficiency of optimization. The proposed
pipeline combines a weight estimation module with an unrolled
optimization algorithm. The weight estimation module and a
few parameters of the unrolled algorithm are trained together
in an end-to-end manner. We demonstrate the effectiveness
of the proposed methodology in the context of Poisson image
deconvolution.

Index Terms—restoration, unrolled networks, hyperparameter
learning, adaptive discrepancy, sparsity.

I. INTRODUCTION

Let us consider the generic image formation model
y = N(Ax), 6]

where x € RY is the unknown observed object, A € RM*N
is a matrix that represents a linear operator, A/ is a noise model
(e.g., multiplicative, additive, or mixed), and y € RM is the
vector of measurements.

Recovering the unknown observed object x from the noisy
real-world observation y is an inverse problem which is
addressed by solving an optimization problem formulated as

%€ {arg min F(x) := Dy (Ax) + XR(X)} , 2
x€ERN

where Dy (Ax) is a data fidelity term which measures the
discrepancy between the observed image and its model, R(x)
is the regularization term which encodes the prior knowledge
that we may have about the final solution, and A € (0,00) is
a hyperparameter which determines the trade-off between the
data fidelity and regularization.

From a Bayesian point of view, the data fidelity term is
related to the statistic of the noise. It corresponds to the
negative log-likelihood function of the observation, given the
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model. For instance, when A represents an additive inde-
pendent and identically distributed (i.i.d.) Gaussian noise, we
have Dy (Ax) = 1 |Ax — yHg, the well-known least squares
measure of fit. If, instead, N corresponds to a Poisson noise
degradation, the negative log-likelihood is known to be the
Kullback-Leibler (KL) divergence (see Section II for more
details) [1], [2].

In practice, the noise affecting the data can be more
sophisticated than simply Gaussian or Poisson, leading to
more complex log-likelihood functions that are either very
challenging to manipulate numerically (for example, mixed
Poisson-Gaussian noise [3], [4]) or unknown explicitly. It is
worth mentioning that even in the case of pure Poisson noise,
the KL divergence already brings a few challenges in terms
of optimization (e.g., lack of/bad Lipschitzity) [2].

Because of these difficulties, the use of complex log-
likelihood functions remains scarce in practice. The least
squares function is preferred for its good properties, even
in cases where it is not compliant with the nature of the
data. To strike a balance between modelling noise adequately
while ensuring computational efficiency, there are alternatives
that aim to approximate these complex log-likelihoods with
simpler functions. These include the use of non-linear data
transformations such as Bartlett [5] or Anscombe [6] trans-
forms, as well as the consideration of weighted least squares
data terms obtained through a second order Taylor expansion
of the negative log-likelihood [7], [8].

With the recent advent of learning-based methods, some
authors have proposed to directly learn the data fidelity term
from data. The authors of [9] approximate the image prior
with a deep neural network, while also training a separate
deep neural network to learn the entire data fidelity term, as
it is non-trivial to analytically model the prior distribution of
the blurring kernel when doing blind image deconvolution.
They unroll the Douglas-Rachford iterations and learn the
proximal operators involved in it. In [10], the authors utilize a
plug and play approach [11] to learn discriminative shrinkage
functions for the data and regularization terms using deep
convolutional neural networks (CNNs) with Maxout layers,
for a non-blind image deconvolution task. Both these methods
are computationally expensive as they require millions of
parameters to be learnt.



Contributions and outline. In this paper, we propose to
learn a weighted data fidelity term which can adapt to any type
of noise present in images. To do so, we perform end-to-end
supervised training of a deep neural network made of a weight
estimation module cascaded with an unrolled algorithm. More
precisely, learned quantities include parameters defining the
estimation module as well as some parameters of the unrolled
optimization algorithm. As such, we ensure the interpretability
of the proposed overall network with, in addition, the luxury
of learning very few parameters if we are working under
resource constraints or in a scenario with data scarcity. While
this method can adapt to any type of noise, we focus in our
experiments on the Poisson image deconvolution problem.
This allows us to compare the learned weights with the
theoretical weights obtained from the Bayesian interpretation.

II. PRELIMINARIES

Assume that Dy, is twice differentiable, separable such that
Dy(z) = XM . d, (2m), and admits a minimizer ¢ € RM.
Then, the second-order Taylor approximation of D, around c
can be written as

Dy(z) = Dy(c) + (z—¢,VDy(c))

+ (z—c,diag(w)(z—c)), (3)
where diag (w) € RM*M with w = (d}] (cm))n=; € RM,
denotes the Hessian matrix of Dy, at c. The fact that the Hes-
sian is diagonal comes from the separability of D,,. Ignoring
the constant term and given that, by definition of c, we have

VDy(c) =0, we get,

M
Dy(Ax) ~ [[Ax —clfy, = > wy ([Ax]m — ). (D)

m=1

In other words, the data fidelity functional can be approxi-
mated by a weighted least squares where the weights are given
by the diagonal entries of the Hessian of D, [7]. Then, we
can consider the following problem in place of (2)

Xe {arg min ||Ax — c||3v + AR(X)} ) &)

x€RN

which is more appealing from an optimization point of view.

The case of Poisson noise. As mentioned in the introduc-
tion, although the proposed methodology is more general, in
our experiments we test it in the case where N models a Pois-
son noise. In this case, y € ]Rf and D, corresponds to the KL
divergence defined as: Vz € RY, Dy (z) = Z,A,/le dy,. (Zm),
with

dym (zm) =Zm — Ym IOg(Zm)v (6)

where constant terms are ignored. The gradient and diagonal
Hessian of Dy, are fully defined by the one-dimensional first
and second order derivatives

_ Ym

Ym

From the strict convexity of Dy, we deduce from these
expressions that D, admits a unique minimizer at y (indeed,
VD, (y) = 0) and that the diagonal entries of the Hessian
at this minimizer are given by w,, = 1/y,,. Injecting these
expressions in (4), we obtain the following weighted least
squares approximation

M
1
Dy(Ax) ~ Z yf ([AX]m, — ym)2 . (®)
m=1 7"

III. PROPOSED METHOD

While analytic derivations may provide closed-form approx-
imations for specific types of noise as shown above, they can
be intractable (theoretically or numerically) for more complex
noises. Moreover, when deploying, for instance, proximal
gradient methods to solve (5), the step size should be of the
order of 1/||w||» to ensure convergence, which can be very
small (e.g., for Poisson noise) and lead to slow convergence.
To overcome these two limitations, we propose in this work
to learn the weights w € RM along with some of the
optimization parameters (e.g., step size) from data. This way,
the weighted least squares approximation (4) can adapt to any
general noise while ensuring the efficiency of optimization,
provided one has access to a training set with pairs of clean
and corrupted images.

To that end, we propose to cascade a weight estimation
module (Section III-A) together with an unrolled algorithm
to reconstruct the image (Section III-B). Parameters defining
the weight estimation module as well as some optimization
parameters of the unrolled algorithm are trained in an end-to-
end manner using the whole pipeline (Section III-C).

A. Weight Estimation Module

We have seen in Section II that, theoretically, the weights
w are nothing but the diagonal entries of the Hessian matrix
of Dy. As a result, they are very likely to depend on the data
y, as it is the case for Poisson noise in (8). This motivates the
definition of a mapping ge : RM — RM, parameterized by
the learnable vector © € RY, such that

w = go(y), )

provides an estimation of the weights from the data image y.

In this work, we set gg as an autoencoder-like architecture
using convolutional layers. The motivation behind doing so
was that we want to use an initial w (which in the case of
Poisson noise corresponds to 1/y) as an input to ge, and
get back an adjusted output which has the same dimensions
as w. An autoencoder-like architecture allows us to do so,
while being parameter-efficient. The architecture chosen by
us has only 3211 learnable parameters P. The details of this
architecture are as follows.

The encoder part of gg consists of two convolution layers,
each of which is followed by ReLU activations and max-
pooling layers. The first convolution layer takes a 3-channel
input to match the coloured images we use for our experiments
and produces 16 feature maps as the output, while the second



convolution layer uses those 16 feature maps to produce 8
feature maps as the output. The kernel size is 3 x 3 with a stride
and padding of 1 for both the convolution layers. The max-
pooling layers which follow each of the convolution layers use
a kernel size of 2 x 2 with a stride of 2, to downsample the
spatial dimensions of the feature maps.

The decoder part of gg uses two layers of transposed
convolutions to upsample the feature maps back to the original
dimensions. The first transposed convolution layer uses the 8
feature maps of the encoder’s output to produce 16 feature
maps, while the second layer uses those to produce a 3-channel
final output. Both transposed convolution layers use a kernel
size of 3 x 3 with a stride of 2 and padding of 1. While the first
transposed convolution layer uses a ReLU activation, the final
layer uses a sigmoid activation. This fixes the upper bound of
the values in the output matrix to 1 (in our implementation, we
relax this upper bound to 2 by multiplying the outputs by 2).
This is necessary to ensure that the magnitude of the values in
the learned w are not very large, or else we will run into the
same challenges of being restricted to very slow convergence,
because as mentioned earlier, the step size needs to be of the
order of 1/||w||~ to ensure convergence.

B. Unrolled Forward Backward Splitting Algorithm

To solve (5), we propose to unroll the forward backward
splitting (FBS) algorithm whose iteration is given by [12]

P = T(\, 5y, w; x")

= proxw\R(xk — vATdiag (w) (AXk’ -y)), (10)

where prox. ,r is the proximal operator of YAR and y > 0 is
the step size. To ensure convergence, it should be set as v €
(0,1/L), where L is the Lipschitz constant of the weighted
least squares term. It is bounded by L < [|[W|oo0max(A)?
where oax(A) refers to the largest singular value of A.

Given an initial point x° € RY (we take x* = y in this
work), we define T(\, v, w;-) : R® — R¥ the unrolled FBS
(with K iterations) as

T()\,’Y,W7y) = I()‘a’va; o I()\,’Y,W,I()\,’Y,W,XO))) .

K recursions

Once trained (see Section III-C) and given y, we get an
estimate of the object x as

x =T\, w;y). (11)

C. Training

We learn the parameters © of the weight estimation module
as well as the hyperparameters A and step size v through the
resolution of

L Q

(0,A,4) = arg min > [ T(\,7, 9o (yh); yi) —x& 13, (12)
0,y e

where {x‘gr,ytqr}?:l is a set of input-target image pairs.
This problem can be solved using standard ADAM or SGD

optimizers. We implemented this within the framework of the
Deeplnverse library!.

Remark 1: Theoretically, we do not need to learn A because
we can see in (5) that we can absorb A within w by dividing
the entire equation with A\. However, for small values of A, the
magnitude of the values in w can become too large if we do
so, which will cause the same optimization problems of very
slow convergence as discussed earlier. Additionally, as a result
of our architectural choice of using the sigmoid activation in
the final layer of gg and multiplying it by 2, the upper bound
of the values in w is fixed to 2. Thus, we will implicitly place a
lower bound on A\ if we fix A and do not learn it. Further, for
certain choices of regularizers (for instance, the ¢; wavelet
coefficient prior), we may have multi-dimensional A, which
would again make it infeasible to absorb it within w.

IV. EXPERIMENTS
A. Context

While the main idea proposed in Section III can be applied
to any optimization problem that can be represented as (2),
in this work we focus on wavelet-based deconvolution. This
corresponds to the situation where

A=HW"and R =|.||;, (13)

with H € RV*N being a convolution operator and W €
RY*N being an orthonormal wavelet operator. Thus, in our
case, x represents the wavelet coefficients of the target image
q = W*x. Moreover, the proximal operator in (10) is the well
known soft thresholding operator defined as prox. .|, (u) =
sign(u) max(|u| — A\v, 0).

We use the TAMPERE17 dataset [13] for our experiments,
which has colour images of size 512 x 512 x 3. We consider 10
unrolled iterations for the reconstruction part of our pipeline.
We use the ADAM optimizer with a learning rate of 0.001 for
10 epochs on images corrupted by Poisson noise (of gain 0.01)
in addition to a Gaussian blur (sigma=(1,1)). The training set
is composed of 240 images, while the test set comprises of
60 images which are also corrupted by Poisson noise along
with the same Gaussian blur as that used on the images in the
training set.

B. Results

We compare the performance of the proposed method
(denoted WLS) with the one obtained using a standard least
squares (denoted LS) term (i.e., w = 1), for which A and
step size  are also trained in the same way as we do
for the proposed method. Over the test dataset (60 images),
the average PSNR is 26.91 dB for LS and 27.71 dB for
WLS, which is a 0.8 dB improvement. However, it is worth
mentioning that the performance is also highly dependant
on the choice of the prior, which is a simple ¢; norm on
wavelet coefficients in these experiments. While we argue
that we could obtain overall improved results through the
consideration of more sophisticated (learned) priors, the point

Uhttps://github.com/deepinv/deepinv
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Fig. 2. Visualizing the learned w as greyscale images.

here is to show that learning a weighted least squares data
fidelity term allows us to improve the performance, relative to
the limitation imposed by the considered prior.

Beyond the PSNR metric, it is of interest to do a visual
inspection of the deconvolved images. Indeed, the effect of
adapting the data fidelity term to the nature of the noise can
be better appreciated visually than in terms of metrics. For
example, it is shown in [1] that for Poisson image denoising,
the consideration of a KL data fidelity term allows for a
better adjustment of the trade-off between reducing noise while
preserving edges. We can observe a similar effect on the
deconvolved images reported in Figure 1.

Further, in Figure 2 we also report the weights returned
by our trained estimation module (i.e., w = g;(y)). We can
observe larger weights in regions where the signal in y is
low. This is in line with the theoretical value of w = 1/y
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Comparison (with zooms) of visual performance of some images in the test set.

in the case of Poisson noise. At the same time, the proposed
strategy avoids the explosion of weights for low data values
and thus ensures that we get a relevant deconvolution with
only 10 unrolled iterations, which is not possible by setting
w=1]/y.

As expected, the performance also depends on the strength
of the Gaussian blur. When we use a stronger Gaussian blur
(sigma=(3,3)), the average PSNR scores are lower (24.47 dB
for LS and 24.56 dB for WLS). The improvement provided
by WLS is likely lower because the strong Gaussian blur in
this case makes it very difficult to recover edges and details
that have been smoothed out by it.

V. CONCLUSION

In this work, we investigated the idea of learning a weighted
least squares data fidelity term in order to adapt to many
types of noise when solving an inverse problem. To that
end, we train in an end-to-end manner the combination of
a weight estimation module and an unrolled FBS algorithm
where the step size and regularization hyperparameters are
learnt. We thus end up with a light and highly interpretable
architecture. We tested its performance on a classical Poisson
image deconvolution problem with a sparse wavelet based
prior. Numerical experiments show the benefits of learning
a weighted least squares data term.

Future work will consider the use of more complex and
general noises, in addition to more sophisticated (learnt) priors
as well as possibly non-diagonal and non-linear weighting
operations.
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