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Purpose: Eye rubbing is considered to play a significant role in the progression of
keratoconus and of corneal ectasia following refractive surgery. To our knowledge, no
tool performs an objective quantitative evaluation of eye rubbing using a device that
is familiar to typical patients. We introduce here an innovative solution for objectively
quantifying and preventing eye rubbing. It consists of an application that uses a
deep-learning artificial intelligence (AI) algorithm deployed on a smartwatch.

Methods: A Samsung Galaxy Watch 4 smartwatch collected motion data from eye
rubbing and everyday activities, including readings from the gyroscope,
accelerometer, and linear acceleration sensors. The training of the model was
carried out using two deep-learning algorithms, long short-term memory (LSTM) and
gated recurrent unit (GRU), as well as four machine learning algorithms: random forest,
K-nearest neighbors (KNN), support vector machine (SVM), and XGBoost.

Results: The model achieved an accuracy of 94%. The developed application could
recognize, count, and display the number of eye rubbings carried out. The GRU model
and XGBoost algorithm also showed promising performance.

Conclusions:Automateddetectionof eye rubbingbydeep-learningAI hasbeenproven
to be feasible. This approach could radically improve the management of patients with
keratoconus and those undergoing refractive surgery. It could detect and quantify eye
rubbing and help to reduce it by sending alerts directly to the patient.

Translational Relevance: This proof of concept could confirm one of the most
prominent paradigms in keratoconus management, the role of abnormal eye rubbing,
while providing themeans to challenge or even negate it by offering the first automated
and objective tool for detecting eye rubbing.

Introduction

Keratoconus is a progressive degenerative eye
disease affecting the cornea, with an estimated preva-
lence of 1.38/1000.1 At the anatomical level, it
results in progressive thinning and deformation of
the cornea. The primary clinical manifestation is an
irreversible deterioration in visual acuity that does not
improve with optical systems or corrective measures.
The exact pathophysiology of the disease remains
poorly understood but probably involves genetic

predisposition,2,3 potentially combined with environ-
mental factors such as chronic corneal mechanical
trauma (e.g., eye rubbing, eye compression at night).4,5

Initially described by Ridley6 in 1961, the role of
eye rubbing in the development and progression of
keratoconus has since been established by numerous
studies.7–9 Some authors have described eye rubbing in
keratoconus patients as abnormal,10 not only because
of a higher frequency but also because of its intensity,
duration, and repetitiveness. In addition to the progres-
sion of keratoconus, this abnormal rubbing could also
lead to corneal ectasia following refractive surgery,
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which millions of patients undergo. This complication
can occur even with no preoperative risk factors.11 The
pathophysiological mechanism would be the same as
in keratoconus: repeated rubbing distorting a cornea
thinned and weakened by surgery.

Cessation of eye rubbing4 requires, first, the treat-
ment of any underlying predisposing circumstance
(e.g., allergic disease, dry eye syndrome) followed
by therapeutic education.12 The need for objective
quantification of eye rubbingmakes it difficult to evalu-
ate from a methodological point of view. If the disease
worsens despite eye rubbing management, corneal
cross-linking13 will be the only treatment that slows
down the change.

Eye rubbing is currently subjectively quantified
by questioning or using standardized questionnaires.
Given the above, we wanted to explore a new approach
to the care of these patients that would lead to more
efficient management of these diseases, as well as an
ability to quantify the impact of eye rubbing on the
development of these pathologies.

Several studies in the literature have employed artifi-
cial intelligence (AI) techniques to improve the diagno-
sis of keratoconus,14 but they mainly focus on classifi-
cation algorithms using various types of precollected
eye data. The most relevant study on eye rubbing
was presented by Nokas et al.15 However, that study
employed a specially designed, wired Raspberry Pi
device and collected data only from the gyroscope
and accelerometer sensors. This approach requires a
unique setting and cannot easily be used by patients.
To our knowledge, no published work exists on using
motion recognition on a smartwatch for eye-rubbing
detection. In addition to the objective detection of
eye rubbing using different movements, our method
provides the convenience of allowing typical patients
to use a familiar device which does not impair their
mobility.

We developed a software application and employed
a deep learning (DL) AI algorithm deployed on
a smartwatch to detect, quantify, and display the
frequency of eye rubbing. We aimed to demonstrate
a novel solution for quantifying and preventing eye
rubbing in patients with keratoconus or with corneal
ectasia following refractive surgery.

Materials and Methods

Study Design

We conducted a proof-of-concept study of a new
software method to establish the feasibility and ratio-
nale for using a DL AI deployed on a smartwatch

to detect and quantify eye rubbing. One investiga-
tor (AL) and one other participant were included as
study participants. They consented to participate and
provided the data for the neural network training. The
study was performed in accordance with the tenets of
the Declaration of Helsinki.

General Concepts

Smartwatches have three sensors that are of inter-
est for rubbing detection: a gyroscope, an accelerom-
eter, and a linear acceleration sensor. The application
we developed is for watches with the Android operating
systemWear OS. We relied on the app development kit
provided by Google according to best practice recom-
mendations. A Galaxy Watch4 (Samsung, Suwon,
South Korea) was used to test our application. The
development of user interfacemockupswas carried out
in Android Studio.

Data Collection

An initial data collection application has been devel-
oped. The data of interest within the scope of our
objective include the date, axes of the accelerometer (x,
y, z), gravity (x, y, z), linear acceleration dataMa (Mag
accelero) and Mg (Mag gyro), and the gyroscope axes
Gx, Gy, and Gz. The accelerometer measures changes
in the speed and position of the watch along three
axes and, therefore, tracks translational movements.
The gyroscope detects rotational movements such as
pitching and rolling. The continuous data recorded
were segmented into 1-minute periods at a frequency
of 20 to 30 samples of information per second and
exported to a file in standardized comma-separated
values (.CSV) format.

For this proof of concept, we identified and
processed three categories of rubbing: first, with the
palms or heels of the hands, which we refer to as type
A; second, with the pulp of the index fingers, which
we refer to as type B; and, third, with the phalanges
of the index fingers, which we refer to as type C
(Fig. 1). Data were collected by mimicking these eye
rubs during various activities and positions: stand-
ing, sitting, walking, and climbing or descending stairs.
Those movements were made in front of but without
any contact with the eye so as to prevent adverse
effects on the cornea. A fourth category included all
other movements, except eye rubbing, so as to take
into account the movements of everyday life. The data
distribution is shown in Figure 2.

To access the motion data generated by the sensors,
the framework set up in Android uses a number of
different categories: Sensor (used to record monitor-

Downloaded from tvst.arvojournals.org on 01/15/2025



Eye Rubbing Detection by Artificial Intelligence for Keratoconus TVST | December 2024 | Vol. 13 | No. 12 | Article 16 | 3

Figure 1. Illustrated examples of the abnormal eye rubbing used
to train the algorithm: with the palms or heels of the hands (type A),
with the pulp of the index fingers (type B), and with the phalanges
of the index fingers (type C).
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35

Type A Type B Type C Other

Figure 2. Distribution of the different types of movements (in
percent): with the palms or heels of the hands (type A), with the pulp
of the index fingers (type B), and with the phalanges of the index
fingers (type C).

ing of the sensors), SensorManager (used to instanti-
ate the Sensor class), and SensorEvent (containing the
new values available from the sensors). All collected
motion-recognition data were used to create a Sensor
Motion Recognition Dataset (Figs. 3, 4), which was
then used to train a neural network that we developed
for this purpose. The collected data showed a sufficient
repetition of the types of movements to be classified,
despite the variations introduced by the diversity and
variety of recorded activities. This indicated that the
amount of raw data was large enough to capture the
necessary patterns for model training.

Data Cleaning and Preprocessing

To ensure the integrity and reliability of our data, we
implemented a comprehensive series of data-cleaning
techniques to address duplicate entries, signal varia-
tion normalization, noise, missing values, imputa-
tion, exclusion, and feature extraction and selec-
tion . To mitigate these issues, we applied Kalman
filtering, a widely used data filtering method known
for its effectiveness in removing noise. Duplicate
entries were removed to maintain the uniqueness
of each record, using the drop_duplicates() function
in Pandas to identify and eliminate exact dupli-
cates across all columns. Missing data were addressed
by employing imputation methods, where missing
values were filled using the mean of the corre-
sponding columns. For columns with a significant
number of missing entries, such as accelerometer (x,
y, z), interpolation techniques were used. Records
with more than 20% missing data were excluded to
avoid compromising the analysis. Relevant features
were then extracted by calculating various statis-
tical measures, providing deeper insights into the
data.

We collected data covering the different types of
eye rubbing (types A, B, and C) and various daily life
movements to ensure a comprehensive representation
of the target behaviors. Before cleaning, the collected
data showed a sufficient repetition of the types of
movements to be classified, despite the variations intro-
duced by the diversity and variety of recorded activ-
ities. This indicated that the amount of raw data was
large enough to capture the necessary patterns for
model training. The cleaned dataset represented a total
of 12 MB, amounting to about 70 minutes of record-
ing.

Exploratory Data Analysis

Data collected on smartwatches produce a large,
complex set of information. To help visualize this infor-
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Figure 3. Graphic representation of some data obtained by simulating eye rubbing with the palm or heel of the hand.

Figure 4. Graphic representation of some data obtained for non–eye-rubbing movements.

mation, we used a t-distributed stochastic neighbor
embedding (t-SNE) algorithm (Fig. 5). t-SNE allows
dimensional reduction of the data while preserving the
relationships between samples. Changing the value for
the perplexity parameter allows for representing data
by focusing more on the details or on the overall struc-
ture.

Data Concatenation

We used Python OS and Panda libraries to
merge the .CSV data record files before transferring
them to a DataFrame data type (two-dimensional
storage format) suitable for our neural network
inputs.

Neural Network

A five-layer, sequential, long short-term memory
(LSTM) neural network was developed (Fig. 6). The

LSTM network is part of a recurrent neural network
that analyzes data sequences of different lengths. This
type of network has the advantage of having a high
capacity to receive, as input, a set of continuous values
in the form of a two-dimensional matrix. In contrast,
most other existing neural networks require discontin-
uous or discrete values. Because our eye-rubbing data
consisted of temporal sequences, LSTM appeared to
be the most relevant.

The model was implemented in Python using the
Keras and TensorFlow libraries. The different layers
are parameterized to avoid overfitting by batch normal-
ization and dropout techniques. Overfitting is a perfect
but biased adaptation of the results of the model to
the training and validation dataset, not transferable
to another dataset. Batch normalization16 consists of
formatting the input data of each neural network layer
to obtain a 0 mean and a standard deviation of 1,
making it possible to obtainmore stable data belonging
to the same scale.Dropout17 works by randomly deacti-
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Figure 5. t-SNE representations with different perplexity values (type A, purple squares; type B, red triangle; type C, green circle; other, blue
reversed triangle).

vating neurons during network training to exploit each
neuron individually.

For each type of sensor (e.g., gyroscope,
accelerometer), the model receives as input 112
types of data: accelerometer (x, y, z), gyroscope
(x, y, z), gravity (x, y, z), and linear acceleration.
These data types have undergone preprocessing to
extract meaningful features by calculating statis-
tical measures such as mean, standard deviation,

median absolute deviation, maximum, minimum,
energy, entropy, interquartile range, and correlation
for each feature. This process resulted in a total of
112 features.

The dataset was then divided into 80% for the train-
ing dataset and 20% for the testing dataset and then
divided for training into a series of 120 records using
the Python code class generate_sequence. The inter-
val and number of different characteristics or features
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Figure 6. Structure of the LSTM neural network.

(columns) were defined, passed to the class, and stored
in a variable. This provided an output table of four
values corresponding to the percentage prediction for
each class.

Training

The training was conducted over 20 minutes on a
GeForce GTX 1080 Ti graphics card (NVIDIA, Santa
Clara, CA). It was configured to run on 300 epochs
(i.e., iterations, in machine learning language) with an
early stoppingmethod and a batch size of 16.We chose
300 epochs as a high value to overcome and detect late
convergence cases, if any. We decided on a batch size
of 32 for memory reasons. Additionally, a small batch
size allows better stability during training with faster
convergence and better generalization. The adaptive
momentum estimation (ADAM) optimizer18 was used,
with a decreasing learning rate. The ADAM optimizer
uses the principles of momentum, a gradient descent
algorithm in which a learning step depends on the
derivative of the current step and the steps that immedi-
ately preceded it to prevent the learning from getting
stuck at a local minimum. Thus, as long as the descent
gradient is in the same direction as the previous ones,
the gradient descent velocity will be accelerated.

The early stopping method was used to avoid
overfitting. In our case, we showed convergence of
the results between 100 and 120 epochs. The stochas-
tic gradient descent allowed us to find the minimum
of a convex function by gradually converging toward
it. Gradient descent was used to minimize the cost
function, which is a convex function. The cost function,
or least squares of errors, method was used to measure
the performance of the model by measuring the error
between the model and the dataset. We also used a

Figure 7. Loss function of the LSTM neural network.
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Table 1. Comparison of Fine-Tuned and Best Parameters for the Different Models

Model Fine-Tuned Parameters Best Parameters

SVM C: [0.125, 0.5, 1, 2, 8, 16] C = 2
Degree: [1, 2, 3, 4, 5] Degree = 3

KNN N neighbors: [5, 7, 9, 11, 13, 17] N neighbors = 11
Weights: [‘uniform’, ‘distance’] Weights = ‘distance’
Algorithm: [‘kd tree’, ‘brute’, ‘ball tree’] Algorithm = ‘kd tree’

XGBoost N estimators: [100, 150, 200] N estimators = 150
Max depth: [3, 5, 7, 9] Max depth = 5
Learning rate: [0.1, 0.2, 0.3] Learning rate = 0.1

Random forest N estimators: [100, 150, 200] N estimators = 200
Max depth: [none, 5, 10] Max depth = 10
Min samples split: [2, 5, 10] Min samples split = 2

decreasing learning rate (hyperparameter affecting the
speed of gradient descent) to refine the training as it
progressed, to save training time, and to avoid undesir-
able divergent behaviors of the loss function. Finally,
the loss function evaluated the extent towhich a specific
algorithm modeled the data (Fig. 7).

ComparisonWith Other Machine Learning
Approaches

To compare our LSTM model with another neural
network, we developed and trained a gated recur-
rent unit (GRU) neural network. To compare our
results with the existing literature,15 we also devel-
oped support vector machine (SVM), K-nearest neigh-
bor (KNN), random forest classifier, and XGBoost
algorithms using the same dataset.

Hyperparameter Tuning

For each of the machine learning models (random
forest, XGBoost, KNN, and SVM), we conducted
a thorough hyperparameter tuning process using a
fivefold cross-validation technique. Specifically, we
utilized GridSearchCV to systematically explore a
predefined range of hyperparameters for each model,
identifying the combination that yielded the highest
performance (Table 1). For the DL algorithms, includ-
ing the LSTM and GRU models, we adopted a robust
approach that involved fine-tuning key hyperparam-
eters, applying dropout, and utilizing early stopping.
The combination of these strategies ensured that the
model could learn complex temporal patterns in the
data while maintaining the ability to generalize well to
unseen data. To ensure that the LSTM model, along
with other DL algorithms, converged effectively during
the training phase, we chose a sufficiently high number

of epochs to allow themodel architecture ample oppor-
tunity to learn.

Results

Model Accuracy and Other Evaluation
Metrics

We used k-fold cross-validation to evaluate the
machine learning models (SVM, KNN, XGBoost,
random forest) where we created k = 5 folds for each
training set. To ensure a comprehensive assessment
of the ability of the model to generalize, the training
and test sets included recordings from distinct subjects.
The datasets were partitioned 274 times into an 80%
train and 20% test split, with each partition initialized
through a distinct random shuffle. In our classification
task, we chose categorical cross-entropy loss function
and evaluated the performance of the model using the
categorical accuracy metric, which gives a clear view of
performance and is highly appropriate for multiclass
classification. Beyond categorical accuracy, we used a
range of metrics designed for multiclass classification
to gain a more comprehensive insight into the perfor-
mance of ourmodel, including precision, recall, and F1
score.

Accuracy = TP + TN
TP + TN + FP + FN

Precision = TP
TP + FP

Recall = TP
TP + FN

F1Score = 2TP
2TP + FP + FN
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Figure 8. Model accuracy of the LSTM neural network.

Table 2. Performance Metrics of Neural Networks and Machine Learning Algorithms

Confidence Interval (95%)

Algorithm Accuracy Average Precision Lower Bound Upper Bound

LSTM 0.943 0.892 0.880 0.905
GRU 0.921 0.871 0.860 0.882
SVM 0.888 0.882 0.868 0.895
KNN 0.903 0.900 0.888 0.913
XGBoost 0.931 0.931 0.925 0.937
Random forest 0.933 0.928 0.917 0.938

where TP corresponds to true positives, TN to true
negatives, FP to false positives, and FN to false
negatives.

The accuracy obtained for the LSTM was 0.94
(Fig. 8), with an average precision of 0.89.We obtained
an accuracy of 0.92 for the GRUwith an average preci-
sion of 0.87. For the machine learning algorithms, we
obtained an accuracy of 0.89 for the SVM, 0.90 for
KNN, 0.93 for XGBoost, and 0.93 for random forest.
Confidence intervals are shown in Table 2 andFigures 9
and 10. As each machine learning algorithm was
trained using fivefold cross-validation, involving multi-
ple rounds of training and testing, we present the best
classification precision, recall, and F1 scores for each
class in our results in Table 3.

Positive and Negative Predictive Values

The positive predictive values (PPVs) and negative
predictive values (NPVs) were calculated for the differ-

ent categories. The PPVs for types A, B, C, and
other were, respectively, 0.989, 0.904, 0.855, and 0.876.
The NPVs were, respectively, 0.992, 0.965, 0.959,
and 0.939.

Smartwatch Application

The application developed as part of this study
makes it possible to recognize, count, and display the
number of eye rubbings carried out. The resulting
algorithm is compatible with the Android platform
by saving the model graph in the chkp format and
then converting it to a file in pb format using the
Python function Freeze_graph. The access codes for
permission to use the necessary sensors (accelerometer
and gyroscope) were obtained through the Android-
Manifest file.xml. The TensorFlow framework was
used to develop the application with the help of
the Gradle build automation tool (build.gradle). The
TensorFlow_inference library is required to load the
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Figure 9. Precision comparison for neural networks.

Figure 10. Precision comparison for machine learning algorithms.

model so as to make model predictions in the Android
app.

Discussion

The results seem promising and could significantly
change the management of patients with keratoconus.
To our knowledge, this is the first publication of
an automated eye-rubbing detection solution using
a smartwatch. We obtained good results with an
accuracy of nearly 94%. The confusionmatrix (Fig. 11)

shows that most confusion in classifying movements is
between different types of eye rubbing, not with non–
eye-rubbing movements. This is undoubtedly due to
the similarities between those eye-rubbing movements.
This tool will allow ophthalmologists to evaluate eye
rubbing objectively and thus consider this information
in therapeutic decision making. It could also be used
as an educational tool for patients, giving them insight
into the reality and frequency of their eye-rubbing
behaviors.

As described in the introduction, eye rubbing is
thought to be the leading cause of keratoconus devel-
opment. However, this supposition is based on obser-
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Table 3. Detailed Performance Metrics of Neural
Networks and Machine Learning Algorithms for Each
Category of Movements

Model Category Precision Recall F1 Score

LSTM Other 0.89 0.90 0.89
Type A 0.99 0.98 0.98
Type B 0.87 0.87 0.87
Type C 0.85 0.84 0.84

GRU Other 0.83 0.90 0.86
Type A 0.98 0.97 0.97
Type B 0.86 0.80 0.83
Type C 0.80 0.73 0.77

SVM Other 0.87 0.91 0.89
Type A 0.99 0.99 0.99
Type B 0.93 0.79 0.86
Type C 0.79 0.84 0.81

KNN Other 0.88 0.94 0.91
Type A 1.00 0.99 1.00
Type B 0.90 0.85 0.87
Type C 0.85 0.79 0.82

XGBoost Other 0.92 0.95 0.94
Type A 1.00 0.97 0.99
Type B 0.93 0.91 0.92
Type C 0.89 0.86 0.87

Random forest Other 0.91 0.95 0.93
Type A 1.00 0.98 0.99
Type B 0.94 0.91 0.92
Type C 0.90 0.85 0.88

vations of patients’ behavior without sustainable proof.
This detection tool will provide objective data to
confirm or refute this significant hypothesis. This will
impact the quality of care given to patients with kerato-
conus and patients undergoing or considering refrac-
tive surgery.24 Additionally, it may be used in patients
under care for allergic conjunctivitis, so as to evaluate
therapeutic efficacy.

Our work is a proof of concept, to be continued.
We need to develop a more proven and acceptable
application from a medical point of view. The main
limitation is the small number of participants used to
create the dataset, which limits the external validity of
the algorithm. The next step is to obtain a real-life
dataset from a more important number of keratoconus
patients and to validate the algorithm on an external
dataset.

Other potentially relevant neural networks are
transformers that can be combined with time-series
models. They can model long-distance dependencies
and capture complex structures in sequential data. The

plan is to employ these models in a further study with
more participants and data, although those models
have been designed for language analysis. Other objec-
tives will be, first, to adapt the algorithm to each patient
(detection of the type of eye rubbing performed);
second, to be able to send alerts to the patient to stop
the rubbing; and, finally, to be able to communicate the
results to the medical software used by the ophthalmol-
ogist in charge of the patient.

Regarding the adaptation of the algorithm to the
patient, the ideal would be to produce an applica-
tion to be configured at the beginning of use. The
first option would be to ask the patient to rub their
eyes and record movement, limiting the amount of
data shared between patients for training, which could
be a barrier to acceptability and deployment from an
ethical point of view. The second option would be to
request confirmation during an initial period for each
rubbing detected, so as to improve the performance of
the model by reinforcement learning (another type of
real-time machine learning model) or by using a trans-
former architecture.19

One limitation of this tool is the choice of watch
lateralization: On which wrist does the patient wear
their smartwatch? We have considered various ways
of dealing with this problem. For patients with unilat-
eral or asymmetric keratoconus, one can equip the
same side as the eye mainly affected. For patients with
symmetrical keratoconus, either we could equip one
wrist (the one on which the patient would usually
choose to wear their watch) or we could add a smart
bracelet on the other wrist, or even on both wrists, to
make it less bulky. But, that means buying a device just
for this use. Using the watch on the side of the most
severely affected eye may be sufficient.

In addition to detecting and counting those
movements, this tool could help stop eye rubbing.
Alerts should be sent to the patient promptly upon
proven detection of repeated rubbing; they could
be sent as a vibration or as a sound. We could also
consider a system of notifications specifying the
number of eye rubs each day, with a “serious game”20
system for younger patients, to encourage a reduction
in eye rubbing. Previous studies have assessed the
acceptability of such monitoring devices and reported
good acceptance from patients and caregivers21,22 and
good compliance,23 but they will have to be assessed
specifically for the keratoconus population, which is
younger than those usually targeted by this kind of
device.

The communication of results must be done
securely. Direct integration of data into business
software is possible due to the standardization of data
formats. Relevant data could thus be integrated into
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Figure 11. Confusionmatrix for the LSTM neural network: with the palms or heels of the hands (type A), with the pulp of the index fingers
(type B), and with the phalanges of the index fingers (type C).

the electronic patient record data of interest, such as
the number of eye rubs during the last period. Several
correlations could be made, such as with periods of
the week and day, the effectiveness of warning signals
in reducing the duration of eye rubbing, and so forth.
Finally, it will also be necessary to develop an applica-
tion compatible with iOS for users of the AppleWatch,
thus covering most of the smartwatch technologies.

From a technical point of view, the challenge would
be to develop an application connected to a Django
or Flask (Python frameworks) platform on a server
accessible via the internet so as to obtain a continu-
ously updated model. However, this would require that
the smartwatch be constantly connected to the inter-
net or delayed transmission if the watchmemory allows
storage over a period of time.

Conclusions

Eye rubbing is described by many authors as the
most important modifiable behavior in the manage-
ment of keratoconus, in addition to night-time
compression. Until now, eye rubbing has been evalu-
ated by questioning or filling in questionnaires, but
automated detection of eye rubbing by machine

and deep learning is technically feasible. Millions
of patients could benefit from this novel solution
for detecting eye rubbing and reducing harmful
movements. However, to be usable in practice, further
projects should be undertaken using more extensive
datasets to provide greater adaptability to the patient.
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