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Abstract

We study the electrons in a multi-component weakly-ionized plasma with an external electric field
under conditions that are far from thermodynamic equilibrium, representative of a gas discharge plasma.
Our starting point is the generalized Boltzmann equation with elastic, inelastic and reactive collisions.
We perform a dimensional analysis of the equation and an asymptotic analysis of the collision operators
for small electron-to-atom mass ratios and small ionization levels. The dimensional analysis leads to a
diffusive scaling for the electron transport. We perform a Hilbert expansion of the electron distribution
function that, in the asymptotic limit, results in a reduced model characterized by a spherically symmetric
distribution function in the velocity space with a small anisotropic perturbation. We show that the
spherical-harmonics expansion model, widely used in low-temperature plasmas, is a particular case of
our approach. We approximate the solution of our kinetic model with a truncated moment hierarchy.
Finally, we study the moment problem for a particular case: a Langevin collision (equivalent to Maxwell
molecules) for the electron-gas elastic collisions. The resulting Stieltjes moment problem leads to an
advection-diffusion-reaction system of equations that is approximated with two different closures: the
quadrature method of moments and a Hermitian moment closure. A special focus is given along the
derivations and approximations to the notion of entropy dissipation.

1 Introduction
Modeling the transport of electrons in plasmas is fundamental in order to understand the thermal, chemical,
electrical and radiation properties of the plasma. When the plasma is weakly ionized, the density of the
charged species is only a small fraction of the density of neutral species (atoms and molecules). In this case,
the charged species collide more often with the neutral particles than among themselves. Due to the small
number of electron-electron collisions and the presence of inelastic collisions involving electrons and neutral
species, the electron distribution functions are often far from the thermodynamic equilibrium in weakly-
ionized plasmas. These plasmas are widely used in industry (often referred to as gas discharge plasmas or
low-temperature plasmas), e.g., for material processing for electronics [1, 2] or electric propulsion thrusters
[3]. Under these non-equilibrium conditions, the electron transport processes can largely differ from the
framework of the traditional hydrodynamic description [4, 5].

1.1 Physical considerations
Multi-component plasma

When studying the transport of electrons in multi-component plasmas, the collision terms of the electron
kinetic equation can be largely simplified by taking into account the smallness of the square root of the
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electron-to-heavy (ions, atoms, and molecules) mass ratio. The simplest of these collision operators cor-
responds to the Lorentz gas model [6] where the elastic electron-heavy collisions are modeled as electrons
colliding with infinitely heavy and stationary species. Braginskii [7] first used the Lorentz gas model as a
starting point to simplify the Landau Fokker-Planck collision operator for electron-ion collisions. Close to the
thermodynamic equilibrium, following the Chapman-Enskog method [8], the expansion of the electron-heavy
collision operator in powers of the square root of the electron-to-heavy mass ratio was used by several authors
in order to compute the electron transport properties in multi-component plasmas. Chmieleski and Ferziger
[9, 10] computed the transport properties in partially-ionized plasmas with the approximation of considering
the heavy distribution functions as delta distributions. Due to the mass disparity, the hydrodynamic model
is a two-temperature model, i.e., where the temperature of heavy species and electrons are different. Devoto
[11] proposed a procedure to decouple the electron and heavy transport systems based on the smallness
of the electron-to-heavy mass ratio. Petit and Darrozes [12] showed that the consistent manner to utilize
the expansion of the electron-heavy collision operator into a perturbative method as the Chapman-Enskog
expansion was by assuming that the Knudsen number and the electron-to-heavy mass ratio were related
through a dimensional analysis of the kinetic equation. This idea was utilized in fully-ionized plasmas by
Degond and Lucquin-Desreux [13], in partially-ionized plasmas by Magin and Degrez [14] and in the presence
of a magnetic field later by Graille et al. [15].

Partially-ionized plasma

In the case of partially-ionized plasmas, the Boltzmann kinetic equation is generalized in order to include the
inelastic collisions with atoms and molecules and the chemical reactions. The kinetic equation for polyatomic
mixtures was proposed by Wang-Chang and Uhlenbeck [16], following a semi-classical approach, where the
collision cross-sections are averaged by degeneracies. Alternatively, the chemical reactions were modeled
in the kinetic equation by Ludwig and Heil [17], Alexeev et al. [18], and Ern and Giovangigli[19]. This
generalized Boltzmann equation was studied by Orlac’h et al. [20] in order to extend the work of Graille et
al. [15] for partially-ionized reacting plasmas as well as Zhdanov and Stepanenko [21, 22], both references
studying conditions close to thermodynamic equilibrium in weakly non-thermal plasmas, i.e. the difference
between heavy and electron temperatures is of the order of the heavy temperature.

Non-equilibrium conditions

Far from thermodynamic equilibrium, collisional weakly-ionized plasmas are often described by the spherical-
harmonics expansion (SHE) kinetic model. In this framework, the electron distribution function is expanded
into spherical harmonics, usually considering the first two terms of this expansion. With this ansatz, an
angular moment hierarchy is solved, where the first equation corresponds to the isotropic distribution function
in the velocity space. This model with slight variations is also used in electron swarms [23, 24] and electrons
in semiconductors [25, 26]. In gas discharges, the early works by Davydov [27] and Allis [28] are based on the
Lorentz gas approximation for the kinetic equation without a rigorous link to the full Boltzmann operator
nor the generalization of the Boltzmann equation for reactive mixtures (that was proposed posterior to these
publications). The derivation of this SHE model was comprehensively explained later by Shkarofsky et al.
[29] and more recently by Robson et al. [30] and Colonna et al. [31] as well as its spatially-homogeneous
numerical implementation by Hagelaar and Pitchford [32] is widely used to compute the electron transport
coefficients in hydrodynamic drift-diffusion models. However, the relation between the SHE model for gas
discharges and the generalized Boltzmann equation with a dimensional and asymptotic analysis was studied
in a less systematic way than in Chapman-Enskog models for plasmas. Choquet et al. [33] have developed a
dimensional analysis of the electron kinetic equation that leads to a diffusive scaling that is compatible with
the SHE kinetic model without including the excitation of the atoms.
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1.2 Present contribution
In this paper, we follow an approach similar to Choquet et al. [33]: One first important result is the
dimensional and asymptotic analysis of the generalized Boltzmann equation for electrons in a weakly-ionized
plasma, including the inelastic and chemical (ionization) reactions. This dimensional analysis leads to a
diffusive scaling for the electron transport. Then, we perform an expansion of Hilbert type in orders of
the square root of the electron-gas mass ratio. The asymptotic limit yields that the zero-th order electron
distribution function is isotropic in velocity space, and the first-order perturbation follows a Fredholm integral
equation. The SHE model is a particular case of our asymptotic model when the spherical harmonics ansatz
is introduced and angular moments are taken. Eventually, we propose a velocity-moment hierarchy to
approximate the solution of the resulting kinetic model.

The advantage of velocity-moment closures is the reduction of the dimensionality of the problem as
compared to the kinetic equation (6 dimensions) or the SHE-kinetic equation (4 dimensions). This explains
the popularity of the drift-diffusion models based on the local-field approximation (LFA [34]) or the local
mean-energy approximation (LMEA [35]) in the low-temperature plasma modeling. However, these models
often oversimplify the electron transport processes due to the truncation of the moment hierarchy at the
density equation (LFA) or the energy conservation equation (LMEA). For this reason, a higher-order moment
hierarchy is a sound alternative that can increase the precision of the macroscopic approximation. In the
literature, various velocity-moment approaches have been proposed (see e.g. the reviews in [36, 37] and
references therein). Due to the complexity of the model, we focus on some of the simplest ones: the
quadrature-based methods and Grad’s methods. The quadrature method of moments (QMOM [38], see also
the review [39] and its application to collisionless plasmas [40]) exploits the theory of orthogonal polynomials
(see e.g. [41, 42]) and benefits from well-established algorithms [43, 44] for the moment inversion problem,
i.e., expressing the parameters of the approximation from the moments. Grad’s method [45] consists in
a classical Hermite polynomial expansion of the distribution function. It was exhaustively studied more
recently by numerous authors, see e.g. [46, 47, 48, 36, 49] for rarefied gases [50, 51] for fully-ionized plasmas
and [52, 53] for partially-ionized plasmas. Various alternative approaches were proposed to overcome either
mathematical drawbacks or to improve the approximation globally or in specific physical regimes. Among
those, the entropy minimization closure has been popularized for rarefied gases [54], and recently applied for
magnetized plasmas [55]. However, its application is more complicated in our context than the other two due
to the presence of inelastic and ionization collisions (which requires the integration of the maximum-entropy
distribution function in order to compute the collision rates for the calculation of transport properties). In
this paper, we consider a simplified collision kernel that corresponds to a Langevin collision type for the
electron-neutral elastic collisions. Nevertheless, we stress that the asymptotic analysis and the resulting
kinetic model are general to any collision cross-section.

The paper is organized as follows: First, we describe the generalized Boltzmann equation for electrons
in a partially-ionized plasma, the dimensional analysis, and the expansion of the electron-heavy collision
operators. We present an expansion of the elastic collisions that slightly differs from Graille et al. [15] in
the second order term, but that is consistent with Davydov’s expression of the collision operator [27] in the
SHE theory. However, unlike Davydov, this term is obtained through a rigorous expansion of the scaled
full Boltzmann operator. Second, we present a Hilbert expansion method that retrieves a coupled system of
zero-th and first-order kinetic equations as well as a macroscopic moment hierarchy composed by the non-
linear transport equations for the even moments and a transport system for the odd moments. Third, we
present the moment hierarchy closure for a particular type of electron-neutral collisions (Langevin collisions),
while keeping arbitrary cross-sections for the other collision types. Then, we define the moment system that
corresponds to a Stieltjes type. For this moment problem, we present two different example closure models,
respectively based on QMOM and on a Hermitian expansion. Finally, we finish with a discussion of the
results and conclusions.
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2 Electron kinetic equation in a weakly-ionized reacting atomic gas
plasma

2.1 Assumptions
In this work, we consider a physical regime that is representative of weakly-ionized gas discharge plasmas in
noble gases (similar to the regime considered in [28, 29, 32]). These read as follows:

1. The electron kinetic equation is based on classical mechanics, i.e., the mean distance between particles
is larger than the thermal de Broglie wavelength, and the square of the ratio of the electron thermal
velocity to the speed of light is small.

2. We consider the kinetic equation of electrons in a weakly-ionized plasma composed of gas atoms, ions,
and electrons. The dominant collisional processes of such a plasma satisfy the following assumptions:

(a) The electron scales are largely separated from those of the heavy species, and we only consider
the evolution of the state of electrons. The other species, i.e., the gas atoms and the ions, are
considered as a background at rest with temperatures different and smaller than the one of the
electrons. As shown by Choquet et al. [33], the separation of scales between electrons and the
heavy species allows to study the transport properties of electrons decoupled from these of the
heavy species, at least in the first two orders of accuracy.

(b) The elastic collisions are modeled by a Boltzmann operator as binary encounters: the gas is dilute
(the mean distance between particles is larger than the particle interaction distance) and the
plasma parameter is large (the Coulomb interactions can be modelled by means of a Coulomb
potential screened at the Debye length).

(c) The inelastic collisions are modeled with a Wang Chang-Uhlenbeck operator [16]. We assume
that the density of the excited atom species is much smaller than the density of the atoms at the
ground state (as often at low and intermediate pressure in gas discharges). The excited states
of the atoms are not tracked, considering that all the excitations occur from a non-degenerate
ground state. Similarly, ionic excited states are not considered in this work.

(d) The ionization is created by an electron impact with a gas atom in the ground state. The
ionization reactive collision operator is modeled with an Alexeev-Giovangigli collision operator
[18, 19]. Under the considered conditions, the ionization collisions are a slow collisional process
and far from chemical equilibrium.

3. We assume that the electrons are impacted by an electrostatic field, and we neglect the induced
magnetic field (the magnetic energy is much smaller than the plasma thermal energy). We also neglect
the displacement current (the kinetic time is slower than the characteristic time of propagation of
electromagnetic waves).

4. We are interested in the following physical regime, which is representative of the bulk of a gas discharge
(see e.g. [28, 32, 29]):

(a) The plasma is weakly-ionized, i.e., the density of the charged species is a small fraction of the
density of the atoms. For this reason, the dominant collision mechanism is the electron-gas atom
elastic collisions.

(b) The characteristic macroscopic time is chosen to be the transit time of a gas acoustic wave, which
is much larger than the electron kinetic time.

(c) The characteristic macroscopic length is much larger than the electron-gas atom elastic collision
mean free path.

(d) The characteristic electric energy is of the order of the electron mean energy (e.g., the electrostatic
field is an ambipolar field created by the plasma).
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5. We represent the bulk of the plasma, and hence we neglect the effect of the sheath that can form close
to the boundaries.

2.2 Generalized Boltzmann equation
Using the assumptions presented above, the electron kinetic equation reads as follows:

∂fe
∂t

+ v · ∇fe −
eE

me
· ∇vfe = C (fe) . (1)

Here, fe(x,v, t) is the electron distribution function, E is the electric field, me is the electron mass, and
e is the elementary charge. The electric field is the sum of the external electric field and the electrostatic
field created by the plasma charged species, solution of Gauss’ law. In the following, all the bold quantities
such as v refer to vectors, while their regular font one v = ∥v∥ refers to their Euclidean norm. In (1), the
right-hand-side term corresponds to the rate at which the distribution function changes due to collisional
processes. We consider elastic collisions with electrons, ions, and atoms, inelastic collisions with the atoms,
and ionization collisions. This reads

C (fe) =
∑

α=e,i,g

Cel
e,α(fe, fα) + Cinel

e,g (fe, fg) + Ciz
e,g(fe, fg, fi), (2)

where the subscripts e, i and g refer to electrons, ions and gas atoms, respectively.

2.2.1 Elastic collisions

The elastic collisions of an electron and a species α ∈ {e, g, i} conserve the momentum and energy,

meve +mαvα = mev
′
e +mαv

′
α and

1

2
mev

2
e +

1

2
mαv

2
α =

1

2
mev

′2
e +

1

2
mαv

′2
α , (3)

where we use the prime to denote the post-collisional velocities. The Boltzmann operator reads

Cel
e,α(fe, fα) =

∫ ∫
R3×S2

(f ′ef
′
α − fefα) geασeα(geα,ω · e)dωdvα, (4)

where f ′α = fα(x,v
′
α, t). The unit vectors in the direction of the pre-collisional and post-collisional relative

velocities are denoted e = (ve − vα)/∥ve − vα∥ and ω = (v′e − v′α)/∥v′e − v′α∥ and the norm of the relative
velocity between the colliding particles is geα = ∥ve − vα∥. Finally, the differential cross-section of the
collision between an electron and a species α is denoted σeα(geα,ω · e) and depends only on geα and the
scattering angle, arccos (ω · e).

2.2.2 Inelastic collisions

For the inelastic collisions, we use in this work the Wang Chang-Uhlenbeck operator [16]. We consider the
following collision mechanism, where the atom quantum state changes from k to l energy shell after the
collision with the electron. The conservation of momentum and energy reads

meve +mgvg = mev
′
e +mgv

′
g,

1

2
mev

2
e +

1

2
mgv

2
g + eϕ∗k =

1

2
mev

′2
e +

1

2
mgv

′2
g + eϕ∗l , (5)

where ϕ∗k and ϕ∗l are the pre- and post-collisional internal energies of the atom, in eV. The collision operator
reads

Cinel
e,g (fe, fg) =

∑
k∈Qg

Ck,inel
e,g (fe, fg) (6)

=
∑

k,l∈Qg

k ̸=l

∫ ∫
R3×S2

(
ak
al
f ′ef

′
g,l − fefg,k

)
gegσ

k→l
eg (geg,ω · e)dωdvg.
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Here, we denote by Qg the indexing set of quantum internal energy states of the gas atom, al and ak are
the degeneracy of the l-th and k-th quantum states, and fg,l(x,vg, t), resp. with a prime, designates the
distribution function of atoms with an index l corresponding to the quantum energy shell. With this notation,
we denote fg =

∑
l∈Qg

fg,l. Finally, σk→l
eg (geg,ω ·e) is the differential cross-section of the inelastic collision that

excites the atom from the state k to the state l. It depends again on the relative velocity norm geg = ∥ve−vg∥
and on the scattering angle arccos (ω · e) with e = (ve−vα)/∥ve−vα∥ and ω = (v′e−v′α)/∥v′e−v′α∥. Using the
energy and momentum conservation properties (5), one verifies that the norm of the pre- and post-collisional
relative velocity are related through (see also, e.g., [56])

(geg)
2 − (g′eg)

2

2
=
e(ϕ∗k − ϕ∗l )

µeg
,

where µeg = memg/(me +mg).

2.2.3 Ionization

The electron-impact ionization reaction e+ g ⇌ e1 + e2 + i has the following conservation laws,

meve +mgvg = mev
′
e1 +mev

′
e2 +miv

′
i, (7)

1

2
mev

2
e +

1

2
mgv

2
g =

1

2
mev

′2
e1 +

1

2
mev

′2
e2 +

1

2
miv

′2
i + eϕ∗iz.

The reactive collision operator, as explained in [57, 58, 18], reads,

Ciz
e,g(fe, fg, fi) =

∫
(R3)4

(
f ′if

′
e1f

′
e2

β2
eβi
βgβe

− fgfe

)
W iee

ge dvgdv
′
idv

′
e1dv

′
e2 (8)

+2

∫
(R3)4

(
f ′gf

′
e1

βgβe
β2
eβi

− fifefe2

)
W ge

ieedv
′
gdv

′
e1dvidve2 ,

where βα = (hP/mα)
3 is the statistical weight of the particle α ∈ {e, g, i} where hP is Planck’s constant

and W iee
ge and W ge

iee are respectively the ionization and recombination transition probabilities.
Remark that fe, fe1 and fe2 refer to the same distribution function of electrons, but evaluated at different

values of velocity variable, e.g., f ′e1 = fe(x,v
′
e1 , t) and the two electrons involved after collisions in case of

ionization or before in case of recombination are distinguished by adding a number to their index.

2.2.4 Kinetic entropy production

Define the Boltzmann kinetic entropy

S kin
e =

∫
R3

η(fe)dve with η(fe) = −kBfe (log(βefe)− 1) , (9)

with the Boltzmann constant kB. The production of entropy due to collisions is

Ecoll
α =

∫
R3

η′(fα)C
coll
α dvα, (10)

where the subscript refers to the considered particle equation and the superscript refers to the type of collision
(and the particles involved when necessary).

The electron-electron elastic collisions is known to dissipate Boltzmann kinetic entropy, in the sense that
the following production term is non-negative,

Ee,e,el
e =

∫
R3

η′(fe)C
el
e,e(fe, fe)dve ≥ 0. (11)
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For all the interspecies collisions, the cross-sections are assumed to satisfy the micro-reversibility principle
[59] (sometimes referred to as detailed balance) which yields respectively

geασeα(ge,α,ω · e)dωdv̄αdv̄e = g′eασαe(g
′
e,α,ω

′ · e′)dω′dv̄′αdv̄
′
e, (12a)

akgegσ
k→l
eg (geg,ω · e)dωdv̄gdv̄e = alg

′
egσ

l→k
ge (g′eg,ω

′ · e′)dω′dv̄′gdv̄
′
e, (12b)

βgβeW
ge
iee = β2

eβiW
iee
ge = βgβeW

eg
iee = β2

eβiW
eei
ge . (12c)

Under these conditions, the entropy production terms read respectively (we refer e.g. to [60, 56, 19, 58] for
details)

Ee,α,el
e + Eα,e,el

α =
kB

4

∫
Ω (f ′ef

′
α, fefα) geασ

el
eα(geα,ω · e)dωdvedvα ≥ 0, for α ∈ {i, g}, (13a)

Ee,g,inel
e + Eg,e,inel

g =
kB

4

∫ ∑
k,l∈Qg

Ω

(
f ′ef

′
g,l

al
,
fefg,k
ak

)
geg
ak
σk→l
eg (geg,ω · e)dωdvedvg ≥ 0, (13b)

Eiz
e + Eiz

g + Eiz
i =

kB

4

∫
Ω

(
f ′e1f

′
e2f

′
i

β2
eβi

,
fefg
βgβe

)
geg
βeβg

W iee
ge dvedvgdv

′
idv

′
e1dv

′
e2 ≥ 0, (13c)

using the notation Ω(x, y) = log(x/y)(x− y). Remark that, since only the electron equation is considered in
this work, all the term Ecoll

g and Ecoll
i account for the entropy production with the “background". A priori,

they cannot be neglected in the entropy balance. However, in the next section, we exploit the assumptions
of Section 2.1 in order to simplify those formulae in the considered limit.

2.3 Scaled equations and expansion of the collision operators
We now rescale the equations in order to isolate the leading effects under the considered regime. In this
part, we relate the non-dimensional parameter to each others and reduce them to two small parameters: the
electron-to-gas density ratio (also referred to as ionization level or ionization fraction) and the square root
of the electron-to-gas mass ratio, defined by

δ =
n0e
n0g
, ε =

√
me

mg
, (14)

where n0α are the reference density of α and mα are the mass of a particle α. Following the hypothesis (4
a), we assume in the following

δ ≪ ε≪ 1.

Remark 1. In practice, in the considered regime, the parameter δ has a numerical value close to ε2. In the
following, the term δ is only used to reduce the collision operators to their leading order in δ (the rest being
negligible anyway), while the parameter ε is used to perform an asymptotic expansion. The only difference
in the resulting model between neglecting all the terms O(δ) or considering that δ = ε2 is the presence or
not of the electron-electron collision operator, but the treatment of this term presents little difficulty in our
work.

2.3.1 Scaling of the kinetic equation

Following a similar procedure as this proposed by Graille et al. [15], we consider the following normalized
kinetic equation:

∂f̄e
∂t̄

+
1

St
v̄ · ∇̄f̄e −

El
St Knel

eg

Ē · ∇v̄ f̄e =
1

St Knel
eg

C̄
(
f̄e
)
. (15)

Here, St = L0/(V 0
the
t0) is the Strouhal number, Knel

eg = 1/(n0gσ
0
egL

0) is the electron-gas atom elastic collisions
Knudsen number, and El = eE0τ0eg/(meV

0
the

) is the electric field parameter with the characteristic time
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between electron-gas atom elastic collisions as τ0eg = (n0gV
0
the
σ0
eg)

−1. The electric field parameter represents
the ratio between the characteristic electric field force exerted to an electron and the characteristic electron-
gas collision drag force. Note that we have used the electron-gas atom elastic collisions to define the Knudsen
number and the electric field parameter since, for most low-temperature weakly-ionized plasmas, this is the
dominant collision mechanism in the electron kinetic equation (Assumption (4a)). The normalized variables
are

t̄ =
t

t0
, x̄ =

x

L0
, f̄e = fe

(V 0
the

)3

n0e
, C̄

(
f̄e
)
= C (fe)

(V 0
the

)2

n0gn
0
eσ

0
eg

,

Ē =
E

E0
and v̄ =

v

V 0
the

,

with V 0
the

= (eT 0
e /me)

1/2 and where the electron temperature is given in eV. The symbols with the superscript
0 correspond to the characteristic quantities of the problem.

We rewrite and specify the physical regime presented in the Assumptions (4 b-d) in mathematical terms
with

t0 =
L0

V 0
thg

, L0 =
l0eg
ε
, E0L0 = T 0

e , (16)

where the electron-gas characteristic collision mean free path is

l0eg = (n0gσ
0
eg)

−1.

Also, we stress that in an atomic gas, the mass of the atom and the ions is nearly the same. The studied
regime is similar to this of Graille et al. [15]. The main difference is that in our work we distinguish between
the Knudsen number of the different collisional processes, whereas in Ref. [15] the Knudsen of all the
interactions is assumed to be the same.

In the considered regime, the non-dimensional numbers read

St = κε, El = Knel
eg = ε.

Here, we denote by κ =
√
T 0
e /T

0
h the square root of the heavy species-to-electron temperature ratio, where

T 0
h is the characteristic temperature of the heavy species (ions and neutrals). Note that in low-temperature

plasmas the ion and gas temperatures are usually of the same order, hence T 0
h = T 0

g = T 0
i . In this paper,

we consider only leading order terms of the parameter κ, although this parameter can also be small in
low-temperature plasmas. Nevertheless, we consider that ε≪ κ.

As a result, we obtain the following scaled equation,

∂f̄e
∂t̄

+
1

ε
v̄ · ∇̄f̄e −

1

ε
Ē · ∇v̄ f̄e =

1

ε2
C̄
(
f̄e
)
. (17)

2.3.2 Scaling of the collisional processes

As mentioned above, in this work, we distinguish between the Knudsen number of the different collisional
processes. As a result, the normalized collision operator reads,

C̄
(
f̄e
)
=

∑
α∈{e,i,g}

(
Knel

eg

Knel
eα

)
C̄el

e,α(f̄e, f̄α) +

(
Knel

eg

Kninel
eg

)
C̄inel

e,g (f̄e, f̄g) +

(
Knel

eg

Kniz
eg

)
C̄iz

e,g(f̄e, f̄g, f̄i). (18)

Here, the different Knudsen numbers are defined as Kncoll
eα = (n0ασ

coll,0
eα L0)−1.

In noble gases, we can assume that the Knudsen number of the excitation and the ionization collisions
are of the same order. This choice is motivated by the fact that the inelastic and ionization collisions have an

8



energy threshold, unlike the elastic collisions. In gas discharge plasmas of noble gases, the energy threshold
of both the ionization and the first excitation potential is large enough compared to the electron mean energy
to produce inelastic and ionization collision rates that are much smaller than the electron-gas elastic collision
rate (c.f., Figure 3.16 from Lieberman and Lichtenberg [1] for the collision rates in an argon plasma). As a
result, we assume the following scaling:

σinel,0
eg

σiz,0
eg

= O(1) and
Knel

eg

Kninel
eg

=
σinel,0
eg

σel,0
eg

= O
(
ε2
)
.

Concerning the Coulomb collisions, the cross-section is usually much larger than the electron-neutral cross-
section, in particular at low electron energies. In the weakly-ionized regime, the effect of the Coulomb
collisions is very small compared to the electron-gas collisions due to the low ionization level (i.e., the low
electron-gas density ratio) and the high electron temperature. In particular, in this paper, we consider the
following regime:

Knel
eg

Knel
ee

= δ
σel,0
eg

σel,0
ee

= O
(
ε2
)
.

In summary, we study the regime where the considered collisional processes scale as follows:

Knel
eg

Kninel
eg

= O
(
ε2
)
,

Knel
eg

Knel
ee

= O
(
ε2
)
,

Knel
eg

Knel
ei

= O
(
ε2
)
,

Knel
eg

Kniz
eg

= O
(
ε2
)
. (19)

2.3.3 Expansion of the collision operators

In the collisions, different type of particles participate with disparate masses and species with different
densities. As first proposed by Lorentz [6], we can exploit the mass disparity between electrons and the
heavy species in order to expand the collision operators in different orders of the square root of the mass
ratio. The following expansion of the collision operators at the kinetic level will simplify the computations
in the next section.

Expansion of the electron-heavy species elastic collision operator In this work, we use the expan-
sion of the elastic collision operator in terms of the electron-to-heavy mass ration, as proposed by Fernández
de la Mora et al. [61] and Graille et al. [15]. As there are some differences between the two references, we
present an overall proof here and the computational details are left in A.

Proposition 1 ( [61]). The operator for the electron elastic collisions with a heavy (atom or ion) species
expands as follows:

C̄el
e,α = C̄0,el

e,α + εC̄1,el
e,α + ε2C̄2,el

e,α +O
(
ε3
)

for α ∈ {i, g}. (20)

These first three orders of C̄el
e,α depend on f̄α only through its first three moments, i.e. heavy species density,

mean velocity and energy tensors: for α ∈ {i, g}

n̄α =

∫
R3

f̄αdv̄α, ūα =
1

nα

∫
R3

v̄αf̄αdv̄α, ūα ⊗ ūα + T̄α =
1

nα

∫
R3

v̄α ⊗ v̄αf̄αdv̄α. (21)

Denoting for simplicity f̃e ≡ f̄e(x, ṽe, t) the electron distribution function at the zero-th order post-collisional
velocity with the zero-th order electron post-collision velocity as ṽe = v̄eω with a variable ω ∈ S2, the collision
operator at different orders read:

C̄0,el
e,α (f̄e, f̄α) =

∫
S2

(
f̃e − f̄e

)
ν̄eαdω (22a)

C̄1,el
e,α (f̄e, f̄α) = ūα ·

(∫
S2

(
∇ṽ f̃e −∇v̄ f̄e

)
ν̄eαdω −∇v̄

∫
S2

(
f̃e − f̄e

)
ν̄eαdω

)
(22b)

C̄2,el
e,α (f̄e, f̄α) = C̄2,el

nα
(f̄e) + (ūα ⊗ ūα + T̄α) : C̄

2,el
Tα

(f̄e) (22c)

9



and with the operators

C̄2,el
nα

(f̄e) = ∇v̄ ·
∫
S2

(ve − veω) f̃eν̄eαdω (23a)

C̄2,el
Tα

(f̄e) = ∇v̄ ⊗
(∫

S2

(
∇v̄ f̄e −∇ṽ f̃e

)
ν̄eαdω +

1

2
∇v̄

∫
S2

(
f̃e − f̄e

)
ν̄eαdω

)
− 1

2

∫
S2

(
∇ṽ ⊗∇ṽ f̃e −∇v̄ ⊗∇v̄ f̄e

)
ν̄eαdω. (23b)

The dependence on f̄α appears also through the collision frequency which is defined as

ν̄eα = n̄αv̄eσ̄eα(v̄e,ω · v̂e)

with the unit vector in the direction of the electron pre-collision velocity as v̂e = v̄e/v̄e.

Proof. We start the proof by normalizing the collision operator of (4), as follows,

C̄el
e,α(f̄e, f̄α) =

∫ ∫
R3×S2

(
f̄e

′
f̄α

′ − f̄ef̄α

)
ḡeασ̄eα(ḡeα,ω · e)dωdv̄α, (24)

where ḡeα = geα/V
0
the

and the normalized distribution function f̄α = (V 0
thα

)3fα/n
0
α.

Similarly, we normalize the momentum and energy conservation relations of the elastic collisions (3)
by defining the heavy-species normalized velocity as v̄α = vα/V

0
thα

, with V 0
thα

= (eT 0
α/mα)

1/2 where the
temperature is measured in eV. Note that the characteristic velocity of the heavy particle is much smaller
than this of the electron because of the disparity of masses, i.e., V 0

thα
= εV 0

the
. As the elastic collision

conserves the kinetic energy, the norm of the relative velocity between the particles is conserved. As a result,
the post-collisional relative velocity is a rotation of the pre-collisional relative velocity, as follows, ḡ′ = Ωḡ,
where Ω is the rotation matrix. The non-dimensional post-collisional velocities are obtained by using the
normalized relations in (3) and the rotation matrix introduced above, as follows,

v̄′e = Ωv̄e − ε (Ωv̄α − v̄α)− ε2 (Ωv̄e − v̄e) +O(ε3), (25a)

v̄′α = v̄α − ε (Ωv̄e − v̄e) + ε2 (Ωv̄α − v̄α) +O(ε3) for α ∈ {i, g}. (25b)

We introduce the notation ṽe = Ωv̄e and ṽα = Ωv̄α to refer to the rotated pre-collisional velocity vectors.
With the previous notation and with the expansion of the post-collisional velocities of (25), we can expand
the distribution function at the post-collisional velocity in series of ε, as follows,

f̄e(v̄
′
e) = f̄e(ṽe)− ε (ṽα − v̄α) · ∇ṽ f̄e(ṽe) (26a)

− ε2
[
(ṽe − v̄e) · ∇ṽ f̄e(ṽe)−

1

2
(ṽα − v̄α)⊗ (ṽα − v̄α) : ∇ṽ ⊗∇ṽ f̄e(ṽe)

]
,

f̄α(v̄
′
α) = f̄α(v̄α)− ε (ṽe − v̄e) · ∇v̄α

f̄α(v̄α) (26b)

+ ε2
[
(ṽα − v̄α) · ∇v̄α f̄α(v̄α) +

1

2
(ṽe − v̄e)⊗ (ṽe − v̄e) : ∇v̄α ⊗∇v̄α f̄α(v̄α)

]
,

We define the collision kernel as S(ḡ′) := ḡeασ̄eα(ḡeα,ω · e), which is a function of ḡ′ as it is a function of
the norm of the relative velocity (which is conserved) and the scattering angle of the relative velocity. We
can expand the collision kernel in powers of ε. To do so, we write the post-collisional relative vector as
ḡ′ = Ωḡ = ṽe − εṽα. As a result, the expansion of the collision kernel reads,

S(ḡ′) = S(ṽe)− εṽα · ∇ṽS(ṽe) +
1

2
ε2 (ṽα ⊗ ṽα) : ∇ṽ ⊗∇ṽS(ṽe) +O(ε3). (27)
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Remark that, using the fact that ΩΩT = I, then the differential operators rewrite

ṽα · ∇ṽS(ṽe) = v̄α · ∇v̄S(ṽe), (ṽα ⊗ ṽα) : ∇ṽ ⊗∇ṽS(ṽe) = (v̄α ⊗ v̄α) : ∇v̄ ⊗∇v̄S(ṽe).

Injecting the expansions (26-27) into the normalized operator of (24) eventually yields (20) with the operators
of (22-23). As there are some small differences in the results of [15] and [61], details on these calculations
are given, but in A for the sake of conciseness.

This elastic operator can be simplified under relevant hypothesis used in the next sections.

Corollary 1. Suppose that f̄e = f̄e
0 and f̄α = f̄0α are isotropic in velocity, then C̄0,el

e,α = 0 = C̄1,el
e,α and the

elastic collision operator simplifies into

C̄el
e,α = ε2C̄2,el

e,α +O
(
ε3
)
, C̄2,el

e,α

(
f̄e

0
, f̄α

0
)
=

1

v̄2e

∂

∂v̄e

[
n̄αQ̄

1
eαv̄

3
e

(
v̄ef̄e

0
+ T̄α

∂f̄e
0

∂v̄e

)]
, (28)

for α ∈ {i, g}. Here, the momentum transfer cross-section is defined as

Q̄1
eα(v̄e) =

∫
S2

(1− ω · v̂e)σ̄eα(v̄e,ω · v̂e)dω. (29)

Proof. First, note that for isotropic heavy distributions, from (21), we have

ūα = 0 and T̄α = T̄αI, (30)

where I is the identity matrix. Similarly, an isotropic electron distribution implies f̃e
0
= f̄e

0 and together
with (30), the collision operators of (22) and (23) at different orders simplify as follows

C̄0,el
e,α

(
f̄e

0
, f̄0α

)
= 0 = C̄1,el

e,α

(
f̄e

0
, f̄0α

)
(31a)

C̄2,el
e,α

(
f̄e

0
, f̄0α

)
= ∇v̄ ·

∫
S2

(ve − veω) ν̄eαf̄e
0
dω

+ T̄α∇v̄ ·
(∫

S2

ν̄eα

(
∇v̄ f̄e

0 −∇ṽ f̄e
0
)
dω

)
. (31b)

To obtain (31b), we have used I : ∇v̄ ⊗A(v̄e) = ∇v̄ ·A(v̄e) and
(
∇ṽ · ∇ṽ f̄e

0 −∇v̄ · ∇v̄ f̄e
0
)
= 0.

The first term of (31b) can be simplified for isotropic distribution functions. By using ν̄eα = n̄αv̄eσ̄eα,
we have,

∇v̄ ·
∫
S2

(ve − veω) n̄αv̄eσ̄eαf̄e
0
dω = ∇v̄ ·

∫
S2

n̄αv̄
2
e σ̄eαf̄e

0
vev̂e (1− v̂e · ω) dω

= ∇v̄ ·
(
n̄αQ̄

1
eαv̄

2
e f̄e

0
v̂e

)
=

∂

∂v̄e

(
n̄αQ̄

1
eαv̄

2
e f̄e

0
)
+ 2n̄αQ̄

1
eαv̄ef̄e

0

=
1

v̄2e

∂

∂v̄e

(
n̄αQ̄

1
eαv̄

4
e f̄e

0
)
.

In the last equation, we have used the definition of momentum transfer cross-section of (29) and the following
equality. Let us consider A(v̄e) a scalar function of the norm of the velocity, we have

∇v̄ · (A(v̄e)v̂e) =
∂A(v̄e)

∂v̄e
(v̂e · v̂e) +A(v̄e)∇v̄ ·

(
v̄e
v̄e

)
(32)

=
∂A(v̄e)

∂v̄e
+A(v̄e)

(
∇v̄ · v̄e
v̄e

− v̂e · v̂e
v̄e

)
=
∂A(v̄e)

∂v̄e
+ 2

A(v̄e)

v̄e

=
1

v̄2e

∂

∂v̄e

(
A(v̄e)v̄

2
e

)
.
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The second term of (31b), by using (32), simplifies as follows,

∇v̄ ·
(∫

S2

ν̄eα

(
∇v̄ f̄e

0 −∇ṽ f̄e
0
)
dω

)
= ∇v̄ ·

(
n̄αQ̄

1
eαv̄e

∂f̄e
0

∂v̄e
v̂e

)

=
1

v̄2e

∂

∂v̄e

(
n̄αQ̄

1
eαv̄

3
e

∂f̄e
0

∂v̄e

)
.

Remark 2. • The electron-heavy elastic collision operator for isotropic distribution functions of (28) is
the same as this proposed by Davydov [27] and used by Allis [28] in the SHE theory. We note that
here it has been obtained by a rigorous expansion of the Boltzmann collision operator in terms of the
mass ratio, whereas to the best of our knowledge, the previous work modifies a Lorentz operator by
introducing the second term heuristically in order to account for the finite temperature of the heavy
species. The previous corollary confirms that the operator proposed by Allis and used in the spherical
harmonics expansion theory [28, 29, 32] is consistent with a rigorous expansion of the Boltzmann
operator.

• The solution of C̄el
e,α

(
f̄e

0
, f̄α

0
)
= 0 is a Maxwellian at the heavy species temperature T̄α, as noted by

Allis [28].

• When considering electron-electron collisions, the masses of the two electrons are identical and no mass
ratio ε appear in the computation. This simply yields that this collision operator is its own zero-th
order

C̄el
e,e = C̄0,el

e,e .

Inelastic collisions between electrons and heavy species The inelastic collision operator can be
reduced by reformulating the hypotheses of the previous section. For our Hilbert expansion, only the zero-th
order terms of the inelastic collision operator is required. Following Assumption (2c), we suppose that the
following density ratio

n̄g,k
n̄g,0

=

∫
R3

f̄g,k(x,vg, t)dvg∫
R3

f̄g,0(x,vg, t)dvg

= O(δ) for all k ̸= 0, (33)

such that we can write f̄g = f̄g,0 + O(δ). In the following, we neglect the excited atoms and all the
contributions in O(δ), and the expansion is only performed with respect to ε.

For the non-dimensional analysis, the operator of (6) is normalized: we use the same reference quantities
for the gas as in the elastic collision operator and the atom internal energy (in eV) is normalized to the
electron reference temperature, i.e. ϕ̄∗l = ϕ∗l /T

0
e for l ∈ Qg. The normalized operator with the above-

mentioned assumptions yields:

C̄inel
e,g (f̄e, f̄g) =

∑
l∈Q∗

g

∫ ∫
R3×S2

σ̄0→l
eg (∥v̄e − εv̄g∥,ω · e) ∥v̄e − εv̄g∥

(
f̄e

′
f̄ ′g,0 − f̄ef̄g,0

)
dωdv̄g +O(δ). (34)

Note that the terms of non-zero order in ε correspond to the super-elastic collisions (de-excitation collisions)
and transitions between two excited levels different from the ground state. The zero-th order expansion of
this operator is given in the following proposition.
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Proposition 2. The collision operator of an inelastic collision between an electron and an atom at a non-
degenerate ground state can be expanded in terms of the electron-to-atom mass ratio as follows:

C̄inel
e,g (f̄e, f̄g) = C̄0,inel

e,g (f̄e, f̄g) +O(ε+ δ), (35)

where the zero-th order operator reads:

C̄0,inel
e,g (f̄e, f̄g) = n̄g

∑
l∈Q∗

g

∫
S2

σ̄0→l
eg (v̄e,ω · v̂e)v̄e

[
f̄e(ṽ

l,inel
e )− f̄e(v̄e)

]
dω, (36)

with the zero-th order post-collisional velocity ṽl,inele =
√(

v̄2e − 2ϕ̄∗l
)
ω.

Proof. From the conservation laws in an inelastic collision (5), we can derive the non-dimensional post-
collisional velocities, as follows:

v̄′e =
ε2

ε2 + 1
v̄e +

ε

ε2 + 1
v̄g +

∥v̄′e − εv̄′g∥
ε2 + 1

ω, (37a)

v̄′g =
ε

ε2 + 1
v̄e +

1

ε2 + 1
v̄g − ε

∥v̄′e − εv̄′g∥
ε2 + 1

ω, (37b)

As a result, the zero-th order post-collisional velocities read

v̄′e = v̄′eω +O(ε), v̄′g = v̄g +O(ε). (38)

with these relations, we can obtain the zero-th order energy conservation, as follows,

v̄2e = v̄′2e + 2ϕ̄∗l +O(ε) (39)

where in the above expression we have considered that the internal energy of the atom before the collision
is zero (i.e., at the ground state). As a result, the distribution functions of the restitution collision read

f̄e(v̄
′
e) = f̄e(ṽ

l,inel
e ) +O (ε) , f̄g(v̄

′
g) = f̄g(v̄g) +O (ε) . (40)

By introducing these zero-th order distribution functions into the normalized operator of (34) and neglecting
terms of O(ε) and higher, we obtain the operator of (36).

Ionization collisions As in the case of inelastic collisions, under the studied weakly-ionized conditions,
we only need the ionization operator at the zero-th order. The normalized collision operator reads:

C̄iz
e,g(f̄e, f̄g, f̄i) =

∫
(R3)4

(
f̄ ′i f̄

′
e1 f̄

′
e2

n0e
n0g

n0e
Q0

e

− f̄gf̄e

)
W̄ iee

ge dv̄gdv̄
′
idv̄

′
e1dv̄

′
e2

− 2

∫
(R3)4

(
f̄if̄ef̄e2

n0e
n0g

n0e
Q0

e

− f̄ ′gf̄
′
e1

)
W̄ ′iee

ge dv̄′gdv̄
′
e1dv̄idv̄e2 , (41)

where Q0
e = (meeT

0
e /h

2
P)

3/2 is a quantity proportional to the electron translational partition function.
Note that we have considered that the characteristic density of ions and electrons are equal due to the

quasi-neutrality. As stated in Assumption (2 d), the studied conditions are far from chemical equilibrium.
As a result, we can deduce that the forward (ionization) reaction is much faster than the backward (recom-
bination), especially the terms proportional to

n0e
n0g

n0e
Q0

e

= O(δ) (42)

are negligible as Assumption (1) implies n0e/Q0
e ≪ 1 and n0e/n

0
g = δ. As a result, we obtain that the

normalized operator simplifies into

C̄iz
e,g(f̄e, f̄g, f̄i) =

∫
(R3)4

(
2f̄ ′gf̄

′
e1 − f̄gf̄e

)
W̄ iee

ge dv̄gdv̄
′
idv̄

′
e1dv̄

′
e2 +O(δ). (43)
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Remark 3. Formally, the ionization transition probability depends on the electron-neutral relative velocity,
and the electrons relative velocity and the electrons-ion relative velocity. However, in practice, the available
cross-section data do not contain this information. In most cases, the scattering of the electrons is considered
to be isotropic and the only information of the cross-section is the dependence on the electron pre-collisional
energy. For this reason, as proposed by Alexeev et al. [18], we parameterize the transition probability as
follows,

W̄ iee
ge dv̄

′
idv̄

′
e1dv̄

′
e2 = ḡegdσ̄

iz (44)

where σ̄iz(ḡeg) is a function of the electron-gas relative velocity.

As done with the previous operators, the latter operator can be expanded in terms of the electron-to-heavy
mass ratio. The expansion is given in the following proposition.

Proposition 3. The collision operator of an electron-impact ionization collision can be expanded in terms
of the electron-to-atom mass ratio as follows

C̄iz
e,g(f̄e, f̄g, f̄i) = C̄0,iz

e,g (f̄e) +O(ε+ δ), (45)

where the zero-th order operator reads:

C̄0,iz
e,g (f̄e) = n̄g

∫ (
2f̄ ′e1 − f̄e

)
v̄edσ̄

0,iz. (46)

where the zero-th order cross-section is σ̄0,iz = σ̄iz(v̄e) (see computations in C.2), and the electron velocity
of the restitution collision is computed as

v̄e1 = −ḡieeωiee +
1

2
ḡe1e2ωe1e2 with ḡ2e1e2 = 2v̄e − 4ϕ̄∗iz − 4ḡ2iee. (47)

Proof. We start the proof by writing the post-collisional and pre-collisional velocities in terms of Jacobi
variables and considering the zero-th order terms. As proposed by Alexeev et al. [18], we consider the
post-collisional electron-electron as a subsystem

v̄g = Ḡ− ε

ε2 + 1
ḡeg = Ḡ+O(ε), v̄e = εḠ+

1

ε2 + 1
ḡeg = ḡeg +O(ε),

v̄i = Ḡ+
2ε

ε2 + 1
ḡiee = Ḡ+O(ε),

v̄e1 = εḠ− 1− ε2

ε2 + 1
ḡiee +

1

2
ḡe1e2 = −ḡiee +

1

2
ḡe1e2 +O(ε)

v̄e2 = εḠ− 1− ε2

ε2 + 1
ḡiee −

1

2
ḡe1e2 = −ḡiee −

1

2
ḡe1e2 +O(ε),

where the Jacobi variables are the relative velocities between the particles are defined as geg = ve − vg,
gie1e2 = vi − (ve1 + ve2)/2, and ge1e2 = ve1 − ve2 , normalized as V 0

thg
Ḡ = (mgvg + meve)/(mg + me),

V 0
the
ḡiee = giee and V 0

the
ḡe1e2 = ge1e2 . As a result, the zero-th order normalized momentum and energy

conservation relations read

v̄g = v̄i +O(ε) and
1

2
v̄e = ḡ2iee +

1

4
ḡ2e1e2 + ϕ̄∗iz +O(ε). (48)

Consequently, we can see that the zero-th order distribution functions of the restitution collision read:

f̄e(v̄e1) = f̄e

(
−ḡiee +

1

2
ḡe1e2

)
+O (ε) , (49a)

f̄g(v̄
′
g) = f̄g(v̄g) +O (ε) . (49b)

Finally, we finish the proof by considering the zero-th order cross-section, σ̄iz = σ̄iz(v̄e) +O(ε).
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Remark 4. In practice, the available cross-sectional data do not contain the information about the angular
dependence of the scattered electrons and the relative velocity. Often, an additional model is required in
order to integrate the collisional operator. The two common choices [32] in the literature are the zero-
sharing model (where one of the electrons after the ionization takes all the energy) and the equal-sharing
model (the energy is equally distributed between the two electrons after the ionization), both cases with
isotropic scattering in the deflection angles.

3 The Hilbert expansion
In the following, only the electron equation and normalized quantities are looked at. For simplicity, we abuse
notation in the remaining sections and the dependencies with respect to fg and fi as well as all the indices
e and the normalization bar are dropped, except where ambiguity remains.

3.1 The overall expansion
The present method relies on the postulate that the normalized electron distribution function f̄ expands in
order of the small parameter ε, as follows,

f̄ = f0 + εf1 + ε2f2 +O
(
ε3
)
. (50)

Additional hypotheses on the different orders f i of the perturbation are performed below when appropriate
and one needs to verify a posteriori that such an expansion is valid. Then, injecting it in (17) reads

ε−1D−1 + ε0D0 +O(ε) = ε−2C−2 + ε−1C−1 + ε0C0 +O(ε),

with terms of different order in ε. Balancing the first orders of ε on both sides reads

Order ε−2: 0 = C−2, (51a)

Order ε−1: D−1 = C−1, (51b)

Order ε0: D0 = C0, (51c)

where the different orders of the streaming operators in (51) read

D−1(f0) = v · ∇f0 −E · ∇vf
0, (52a)

D0(f0, f1) =
∂f0

∂t
+ v · ∇f1 −E · ∇vf

1, (52b)

and the orders of the collision operators read

C−2(f0) = C0,el
e,g (f0) (53a)

C−1(f1) = C0,el
e,g (f1) + C1,el

e,g (f0) (53b)

C0(f0, f1, f2) = C0,el
e,g (f2) + C1,el

e,g (f1) + C2,el
e,g (f0)

+Cel
e,e(f

0) + C0,el
e,i (f0) + C0,inel

e,g (f0) + C0,iz
e,g (f0). (53c)

Following Remark 1, we have used the value δ = ε2 here to keep the terms Cel
e,e and C0,el

e,i in (53c). Considering
δ ≪ ε would simply consist in neglecting those terms here. As illustrated below, they actually have little
impact, and their treatment in our work is simple. In the following, we simplify those operators by considering
a zero bulk velocity ug = 0 (Assumption (2a)). Using (22b), this implies

C1,el
e,g (f̄) = 0.

Other simplifications will be shown and used in the next paragraphs.
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3.2 Order ε−2: electron isotropic distribution function
The lowest order term of (51), i.e. the terms in O(ε−2), provide

C0,el
e,g (f0) = 0, (54)

or equivalently f0 ∈ Ker(C0,el
e,g ). From (22a), one verifies that Ker(C0,el

e,g ) is composed of the isotropic
distribution (see also e.g. Corollary 3.4 of Graille et al. [15]), i.e. by abusing notations

Ker(C0,el
e,g ) =

{
f s.t. f(vω) =

1

4π

∫
S2

f(vω)dω = f(v)

}
, and f0(v) = f0(v), (55)

where v = ∥v∥. Especially, the anisotropic variations of f are an order of ε smaller than the isotropic one.
Note that this observation is the same that motivates the two-term Boltzmann [28, 29, 32].

Also, one verifies the zero-th order ion-electron collision operator vanishes for an isotropic electron dis-
tribution function (See Corollary 1)

C0,el
e,i (f0) = 0.

Remark 5. The equilibrium distribution function are not Maxwellian distributions at zero-th order, as
usually done in the Chapman-Enskog method. As noted above, this is the main difference of our physical
regime as this of Graille et al. [15], where all the Knudsen number of all elastic collision processes are the
same.

3.3 Order ε−1: Fredholm equation for the first-order distribution function
The first order of the Hilbert expansion corresponds to the following equation,

O(ε−1) : D−1(f0) = v · ∇f0 −E · ∇vf
0 = C0,el

e,g (f1). (56a)

The collision term is an integral operator of the form:

C0,el
e,g (f1) = ngv

(∫
S2

σeg(v,ω · v̂e)f1(vω)dω − f1(v)

∫
S2

σeg(v,ω · v̂e)dω
)
. (56b)

For a given f0, Eq. (56a) at all v ∈ R∗,+ yields a linear inhomogeneous Fredholm integral equation
over the function ω 7→ f1(x, vω, t) in L2(S2). Especially, if the kernel σeg(v, ·) is square-integrable for all
v ∈ R∗,+, then the operator (56b) satisfies Hilbert-Schmidt property. It is therefore continuous and compact,
and (56a) follows Fredholm alternatives. Eq. (56a) has a solution only if f0 follows an equation of the form

ΠRan(C0,el
e,g )⊥

[
v · ∇f0 −E · ∇vf

0
]
= 0, (57)

where ΠRan(C0,el
e,g )⊥ is the projector onto the orthogonal complement of the range of the linear operator C0,el

e,g .

One verifies that Ran(C0,el
e,g )⊥ = Ker(C0,el

e,g ) is the set of isotropic distributions, and the projector yields the
averaging operator

(ΠRan(C0,el
e,g )⊥f)(vω) =

1

4π

∫
S2

f(vω)dω, (58)

such that (56a) is trivial as long as f0 satisfies (54). We refer e.g. to [62, 63, 64] for further discussions on
Fredholm alternative and its applications.

Now, under this condition, the solution f1 to (56a) is unique up to an additional function in Ker(C0,el
e,g ).

In order to choose among those solutions, we add the following hypothesis:
Hypothesis: The zero-th order is the isotropic part of the solution f , i.e.

f0 = ΠRan(C0,el
e,g )⊥f. (59)
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This hypothesis especially implies that ΠRan(C0,el
e,g )⊥f

1 = 0 and provides uniqueness of such a solution,
as usually done with a Chapman-Enskog expansion. Remark though that this hypothesis is stronger than
necessary for this purpose, because it impacts the higher orders f i for i > 1. The reason for this choice
is explained in the next paragraph (for the higher order terms) and in the next section (for the moment
approximation). Remark though that the Hilbert expansion (50) is only formal and non-unique, and we can
perform additional assumptions as long as they ultimately provide a well-defined (unique and converging)
series (50).

3.4 Order ε0: Evolution equation for the zero-th order distribution function
Eq. (51) at order ε0 leads to the following equation,

O(ε0) :
∂f0

∂t
+ v · ∇f1 −E · ∇vf

1 = C0,el
e,g (f2) + C2,el

e,g (f0) (60)

+ Cel
e,e(f

0, f0) +
∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0).

Using again Fredholm alternative, this equation possesses a solution only if

ΠRan(C0,el
e,g )⊥

[
∂f0

∂t
+ v · ∇f1 −E · ∇vf

1 (61)

−C2,el
e,g (f0)− Cel

e,e(f
0, f0)−

∑
k∈Qg

C0,inel
e,gk

(f0)− C0,iz
e,g (f0)

 = 0.

The solution f2 is again unique up to an additional function in Ker(C0,el
e,g ), and it turns unique under the

hypothesis of the previous section, which implies here that

ΠRan(C0,el
e,g )⊥f

2 = 0. (62)

3.5 Relation to the spherical-harmonics expansion kinetic model
The asymptotic kinetic model obtained in (56) and (60) is closely related to the spherical-harmonics expansion
model used in gas discharges [27, 28, 29, 32]. The advantages of the present asymptotic theory compared to
those are twofold: (1) it highlights the range of applicability of the model through a rigorous derivation (as
discussed in the dimensional analysis of Section 2.3) and (2) it expands the collision operators consistently.

Indeed, the hypothesis shown in (59), implies that f0 is exactly the isotropic part of the distribution
function and f i for i ≥ 1 do not contribute to the isotropic part of the distribution function, as in the
spherical-harmonics expansion (SHE) ansatz. Note that other choices are possible, such as the model pro-
posed by Choquet et al. [33], where f1 contains an arbitrary isotropic function. Nevertheless, our choice,
done in analogy to Enskog’s method ([8]) for the solution of f1 to be unique, provides further advantages
for the derivation of a macroscopic model discussed in the next sections.

Note that without (59), the model (56) is more general than the two-term SHE expansion, as no assump-
tion on the form of f1 has been taken, apart from the one deduced of the asymptotic limit. In fact, the
two-term SHE model is only a particular case of the present kinetic model:

Proposition 4. Approximating the first-order distribution function f1 by the first spherical harmonics, i.e.
writing

f1(x,v, t) = v̂ · f1,SHE(x, v, t), with v̂ =
v

v
(63)
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and neglecting the electron-electron collisions yields the following two-term spherical harmonics expansion
equations (obtained from (60) and (56)):

∂f0

∂t
+∇ ·

(v
3
f1,SHE

)
− 1

v2
∂

∂v

(
v2
E

3
· f1,SHE

)
= C2,el

e,g (f0) +
∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0), (64a)

∇
(
vf0
)
− ∂

∂v
(E f0) = −νeg1f

1,SHE , (64b)

with the momentum transfer frequency reads νeg1
(v) = ngv

∫
S2

(1− v̂ · ω) σ̄egdω.

Proof. Eq. (64a) is obtained by integrating (60) over the unit sphere of the velocity space, i.e. taking the
zero-th order angular moment:∫

S2

D0(f0,f1,SHE) dv̂ =

∫
S2

C0,el
e,g (f2) + C2,el

e,g (f0) +
∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0) dv̂. (65)

On the right-hand side, the first term vanishes due to (62) and the others are isotropic, such that their
integration is trivial. Concerning the integration of the streaming operator with the ansatz (63), we refer
the reader to [28, 29], where the calculations are detailed.

Eq. (64b) is obtained by taking the first-order angular moment of (56a):∫
S2

v̂D−1(f0) dv̂ =

∫
S2

v̂C0,el
e,g (f1,SHE)dv̂ (66)

As before, the integration of the streaming operator (63) can be found in [28, 29]. The integration of the
collision operator reads, using the reciprocity relation,∫ ∫

S2×S2

v̂νeg(v, v̂ · ω)
[
f1(vω)− f1(v)

]
dωdv̂ =

∫ ∫
S2×S2

(ω − v̂) νeg(v, v̂ · ω)f1(v)dωdv̂. (67)

Remarking that the integral∫
S2

(ω − v̂) νeg(v, v̂ · ω)dω = −v̂
∫
S2

(1− v̂ · ω) νeg(v, v̂ · ω)dω,

and injecting the ansatz (63) into (67), one obtains,

−νeg1(v)

∫
S2

(v̂ ⊗ v̂)f1,SHE(v)dv̂ = −4π

3
νeg1

f1,SHE , (68)

which leads to the term in the right-hand-side of (64b). Note that the factor 4π/3 simplifies with the
left-hand-side terms.

3.6 Electron kinetic entropy balance equation
In order to identify formally the leading terms in the entropy balance equation, we normalize:

f = δ
(
f +O(δ)

)
with f = f0 + εf1 + ε2f2 +O(ε3),

fg =Mg +O(δ),

fi = δ (Mi +O(δ)) ,

where Mα denotes a Maxwellian. The scaling by δ simply results from the weakly-ionized hypothesis, and
the Maxwellian leading terms from the hypothesis that the heavy particles are at thermodynamic equilibrium
in the present reference. Remembering that δ ≪ ε, we focus on the leading terms in δ and consider the
expansion in ε.
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Proposition 5. The electron system standalone (without considering the evolution of ions and neutral
species) admits a kinetic entropy balance equation:

∂

∂t

(∫
R3

η(f0)dv

)
+∇ ·

(∫
R3

vη′(f0)f1dv

)
= Ee,g,el

e,0 + Ee,g,el
e,2 + Ee,g,inel

e,0 + Eiz
e,0 +O(δ + ε), (69a)

where the functional η(f) = −f (log f − 1) is the Boltzmann entropy and the production terms yield

Ee,g,el
e,0 =

∫
R3

η′′(f0)f1C0,el
e,g (f1)dv, Ee,g,el

e,2 =

∫
R3

η′(f0)C2,el
e,g (f0)dv, (69b)

Ee,g,inel
e,0 =

∫
R3

η′(f0)C0,inel
e,g (f0)dv, Eiz

e,0 =

∫
R3

η′(f0)C0,iz
e,g (f0)dv, (69c)

and Ee,g,el
e,0 ≥ 0 with equality only if f1 = 0.

Assuming instead that δ = ε2 would provide the additional term in (69a) Ee,e,el
e ≥ 0 computed in (11)

that is already signed.

Proof. Formally, the normalized Boltzmann entropy, as defined in (9), can also be expanded in orders of ε:

η′(f) = η′

( ∞∑
i=0

εif i

)
= η′(f0) + εη′′(f0)f1 + ε2

(
η′′(f0)f2 + η(3)(f0)

(f1)2

2

)
+O(ε3 + δ).

Then, multiplying the scaled kinetic equation (17) by δ−1η′(f) and integrating yields the scaled kinetic
entropy equation

ε−1D−1,E +D0,E +O(ε) = ε−2C−2,E + C−1,E + C0,E +O(ε) (70)

with

D−1,E = ∇ ·
∫
R3

vη(f0)dv,

D0,E =
∂

∂t

(∫
R3

η(f0)dv

)
+∇ ·

(∫
R3

vη′(f0)f1dv

)
,

C−2,E =

∫
R3

η′(f0)C−2(f0)dv,

C−1,E =

∫
R3

η′(f0)C−1(f0, f1) + η′′(f0)f1C−2(f0)dv,

C0,E =

∫
R3

η′(f0)C0(f0, f1, f2) + η′′(f0)f1C−1(f0, f1) +

(
η′′(f0)f2 + η(3)(f0)

(f1)2

2

)
C−2(f0)dv.

At the different orders, this reduces into:

• At the order ε−2, this rewrites:

Order ε−2: 0 =

∫
R3

η′(f0)C−2(f0)dv =

∫
R3

η′(f0)C0,el
e,g (f0)dv, (71)

which is therefore a non-negative entropy source at the first non-zero order. Remark that C−2 = 0
according to (51), and this equation is trivial.

• At the order ε−1, this rewrites

Order ε−1: D−1,H =

∫
R3

η′(f0)C0,el
e,g (f1) + η′′(f0)f1C0,el

e,g (f0)dv = 0 (72)

By reproducing the computation in (76) and using that η(f0) is isotropic, one retrieves that the first
term is zero and by using that C0,el

e,g (f0) the second term is also zero. As a result, at this order, the
entropy production term is therefore also non-negative.
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• At order ε0, using (51), (53b-22b) and (62), leads to the simplification:

Order ε0: D0,H =

∫
R3

η′′(f0)f1C0,el
e,g (f1)

+ η′(f0)
(
C2,el

e,g (f0) + Cel
e,e(f

0) + C0,inel
e,g (f0) + C0,iz

e,g (f0)
)
dv.

For the first term, assuming the positivity of f0 (therefore η′′(f0) is negative) and that νe,g is square-
integrable, then a Cauchy-Schwartz inequality provides its non-negative:∫

R3

η′′(f0)f1C0,el
e,g (f1)dv =

∫
R3

∫
S2

η′′(f0(v))f1(v)νeg(v · ω)
(
f1(vω)− f1(v)

)
dωdv

≥
∫
R3

∫
S2

η′′(f0(v))νeg(v · ω)
f1(v)2

2
dωdv ≥ 0.

The quadratic term δ−1Cel
e,e(f, f) = O(δ) is one order higher in δ than the linear terms and is therefore

neglected. Remark though that the entropy production term arising from these collisions is always
signed. Similarly, the electron-ions elastic collisions are one order higher in δ.

When we consider the part of the collisions that dissipate the electron energy at order O(ε0), no H-theorem
for the electrons standalone can be derived at this order, neither the entropy dissipation nor equilibrium
representation. In the case of the inelastic (excitation and ionization) collisions, the breakdown of the H-
theorem is caused by the violation of detailed balance in dissipative collisions (as the backward collision, i.e.,
the super-elastic and recombination collisions are not considered at this order). In the electron-gas elastic
collisions, this is because the second-order term is a correction to the Lorentz gas collision operator that
accounts for the recoil of the neutral particle during the electron-gas collision, i.e., a part of the electron
energy is given to the gas particle. The breakdown of the Boltzmann H-theorem is known in the case of
systems with dissipative collisions, e.g., granular gases [65]. Note that in weakly-ionized plasmas such as
discharges, there is usually an external source of energy that is given to the electron and that do not affect
much the rest of species (e.g., radio-frequency electromagnetic fields) that counterbalances the loss of energy
of the inelastic processes, which allows maintaining the system out of thermodynamic equilibrium. If the
electron energy decreases to values close to the thermodynamic and chemical equilibrium, an H-theorem can
be found again, but these conditions are not considered by our model.

Proposition 6. The sum of the entropy production terms in Proposition 5 with their counterparts is signed:

Ee,g,el
e,2 +

∫
R3

η′(Mg)C
2,el
g,e (f0)dv +O(δ + ε) ≥ 0,

Ee,g,inel
e,0 +

∫
R3

η′(Mg)C
0,inel
e,g (f0)dv +O(δ + ε) ≥ 0,

Eiz
e,0 +

∫
R3

η′(Mg)C
iz
g (f0)dv +O(δ + ε) ≥ 0.

Proof. The inequality follows from (13). The expansion of the terms Ecoll
e were performed in Proposition 5.

Computing

Eg,e,el
g =

∫
R3

η′(Mg)
(
C0,el

g,e (f0) + ε
(
C0,el

g,e (f1) + C1,el
g,e (f0)

)
+ε2

(
C0,el

g,e (f2) + C1,el
g,e (f1) + C2,el

g,e (f0)
))
dv +O(δ + ε3).

Under the hypothesis that Mg is centered around a zero velocity (then isotropic), one verifies that C0,el
g,e (f0) =

0 = C1,el
g,e (f i) for i = 0, 1 and the integrals

∫
η′(Mg)C

0,el
g,e (f i) = 0 for i = 1, 2. This provides the first

inequality.
Similarly, computing the leading term for the inelastic collisions and for the ionization one (and neglecting

the higher order terms in δ and ε) provides the second and third inequalities.
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4 Moment hierarchy
In order to approximate the solution of this system of equations, we perform a truncated moment approx-
imation for every order in ε of the previous kinetic equation. This moment approximation is understood
as a Galerkin approximation using polynomial sets of test functions, rather than a proper hydrodynamic
regime. In this section, we describe the equations resulting from the projection onto these test functions,
while choices of approximations of the solution are described in the next one.

4.1 Order ε−2: electron isotropic distribution function
The zero-th order distribution function is isotropic. In the moment framework, it is represented by the
infinite set of even-order scalar velocity moments defined by the following formula.

Definition 4.1. • The space I of scalar monomials of the norm of the velocity

I = Span(ψ2l), where ψ2l = v2l for l ≥ 0 (73)

• The scalar product is denoted

⟨⟨ξ, χ⟩⟩ =
∫
R3

ξχdv. (74)

• The macroscopic scalar quantities are a set of moments of the distribution function with respect to the
scalars ψ2l: for all l ∈ N, we define

p(2l)(f̄) = ⟨⟨ψ2l, f̄⟩⟩. (75)

As always, the zero-th and second order moments are connected to the density p(0) = n and the
pressure or temperature p(2) = 3p = 3nT .

Property 1. • The collision operator C0,el
e,g (f̄) is orthogonal to the space I, i.e. for all l ∈ N

p(2l)(C0,el
e,g (f̄)) = 0. (76)

• Following hypothesis (59), the macroscopic scalar quantities are the moments of the equilibrium distri-
bution, i.e. for all l ∈ N

p(2l)(f̄) = p(2l)(f0). (77)

Proof. • The projection of the zero-th order electron-neutral collision operator reads

p(2l)(C0,el
e,g (f̄)) = ⟨⟨ψ2l, C0,el

e,g (f̄)⟩⟩

=

∫ ∫
R3×S2

ψ2l(v)νeg(v, v̂e · ω)
[
f̄(x, vω, t)− f̄(x, v, t)

]
dωdv

=

∫ ∫
R3×S2

(
ψ2l(∥vω∥)− ψ2l(v)

)
νeg(v, v̂e · ω)f̄(v)dωdv = 0.

The operator vanishes as ψ2l(v) is a function of the norm of the velocity and ∥vω∥ = ∥v∥, hence,
ψ2l(v) = ψ2l(∥vω∥).

• The functions ψ2l are all isotropic, and therefore

p(2l)(f i) =

∫
R+

∫
S2

ψ2l(v)f i(vω)dωdv =

∫
R+

ψ2l(v)

∫
S2

f i(vω)dωdv = 0, (78)

or equivalently the different perturbation orders f i ∈ I⊥ for all i > 0 are in the orthogonal complement
of I.
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Note that the hypothesis (59) is performed for most Chapman-Enskog expansions ([8, 45, 66]). There is
a great advantage of this choice (as explained in the references above), as f0 can be fully determined by the
scalar moments, and therefore the equation of f1 as well, as will be shown in the next section. Note that it
would not be the case if f1 contains an isotropic component and contributes to the scalar moments.

4.2 Order ε−1: flux vector transport relations
With the first-order perturbation distribution function, we can define the macroscopic fluxes in a reference
frame at rest as well as the fluxes in the reference frame moving at the electron velocity, as described in the
following definition.

Definition 4.2. The macroscopic fluxes in the reference frame at rest can be computed as the vectorial odd
order moments of a distribution function, i.e. by projecting it onto the space of vectors ψ2l+1 defined as
follows: for all l ∈ N

ψ2l+1(v) = ψ2l(v)v, Γ(2l+1)(f̄) = ⟨⟨ψ2l+1, f̄⟩⟩. (79)

Remark again that the orders Γ(1)(f̄) ≡ nu and Γ(3)(f̄) correspond as always to the momentum and the
heat flux.

Extracting the scalar moments of (56a) provides no further information. Indeed, this yields

∇ · Γ(2l+1)(f0) +
2l + 3

3
E · Γ(2l−1)(f0) = p(2l)(C0,el

e,g (f1)),

and both side of this equation equals zero: The left-side is zero because the odd order moments Γ(2l+1)(f0)

of f0 are, see (55); the right-side is zero due to the orthogonality of C0,el
e,g (f) with I, see (76).

Though, Eq. (56a) can be used to derive the equations for the transport fluxes, i.e. relations between the
transport fluxes and the gradients of the zero-th macroscopic variables, as shown below.

Proposition 7. We can obtain relations for the transport fluxes by projecting Eq. (56a) into the space of
the vectors ψ2lv, for l ∈ N. The relations read for l ∈ N

1

3
∇p(2l+2)(f0) +

2l + 3

3
p(2l)(f0)E = Γ(2l+1)(C0,el

e,g (f1)). (80)

Proof. Eq. (56a) projected onto the vectorial functions ψ2l+1 ≡ ψ2l(v)v reads

⟨⟨ψ2l+1,D−1(f0)⟩⟩ = ⟨⟨ψ2l+1, C0,el
e,g (f1)⟩⟩, for l ∈ N. (81)

The projection of the streaming operator can be decomposed into two components, as follows:

⟨⟨ψ2l+1,D−1(f0)⟩⟩ = ⟨⟨ψ2l+1,v · ∇f0⟩⟩ − ⟨⟨ψ2l+1,E · ∇vf
0⟩⟩ for l ∈ N. (82)

The first term can be computed as follows:

⟨⟨ψ2l+1,v · ∇f0⟩⟩ = ∇ ·
∫
R3

ψ2l(v)v ⊗ vf0dv =
1

3
∇
∫
R3

ψ2l(v)v2f0dv, (83)

where we have used the parity of f0 and the fact that ⟨⟨v2i , f0⟩⟩ = ⟨⟨v2j , f0⟩⟩ for all i, j such that ⟨⟨ 13v
2I− v⊗

v, f0⟩⟩ = 0.
To reduce (83), we remark that:

ψ2l(v)v2 = ψ2(l+1). (84)

By injecting this into (83) and by using the definitions of the zero-th order moments (79), we obtain the
gradient terms of (80).
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For the electric field terms, we use the following identity,

⟨⟨ψ2l+1,E · ∇vf
0⟩⟩ = −⟨⟨f0,E · ∇vψ

2l+1⟩⟩. (85)

This is a consequence of f0 being zero at v → ∞. After some algebra, we can compute the following relations

∇vψ
2l+1 = 2lv2(l−1)v ⊗ v + v2lI. (86)

As a result, we obtain

⟨⟨f0,E · ∇vψ
2l+1⟩⟩ = 2l + 3

3
p(2l)(f0)E. (87)

by using again ⟨⟨ 13v
2I− v ⊗ v, f0⟩⟩ = 0. With this result, we inject into (81) and we obtain the electric field

terms in (80).

4.3 Order ε0: Electron moment equations
Eventually, at order ε0, we obtain the following system of moment equations out of (60).

Proposition 8. With the definition 4.2 of the fluxes, the electron particle density, energy and l-th order
moment balance equations read

Even orders:

∂

∂t
p(2l)(f0) +∇ · Γ(2l+1)(f1) + 2lΓ(2l−1)(f1) ·E (88a)

= p(2l)

C2,el
e,g (f0) + Cel

e,e(f
0, f0) +

∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0)

 ,

Odd orders:

∇ ·M2l+2(f1) + 2lM2l(f1) ·E (88b)

= Γ(2l+1)

C0,el
e,g (f2) + C2,el

e,g (f0) + Cel
e,e(f

0, f0) +
∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0)

 ,

Here, the moment matrices M2l+2(f) = ⟨⟨ψ2lvvT , f⟩⟩ for l > 1 and, by abuse of notations, denoting
2lΓ(2l−1)(f) = 0 and 2lM2l(f) = 0 when l = 0.

Proof. Projecting (60) onto ψ2l and ψ2l+1. For the left-hand-side of the equations, we use the following
identity

⟨⟨ψ2l,D0(f0)⟩⟩ = ⟨⟨ψ2l,
∂f0

∂t
⟩⟩+ ⟨⟨ψ2l,∇ · (vf1)⟩⟩+ ⟨⟨f1, E · ∇vψ

2l⟩⟩, (89a)

⟨⟨ψ2l+1,D0(f0)⟩⟩ = ⟨⟨ψ2l+1,
∂f0

∂t
⟩⟩+ ⟨⟨ψ2l+1,∇ · (vf1)⟩⟩+ ⟨⟨f1, E · ∇vψ

2l+1⟩⟩. (89b)

Using that f0 is isotropic (55) (hence, ⟨⟨ψ2l+1, f0⟩⟩ = 0), the orthogonality of f1 with I (78) and after some
algebra, we obtain the left-hand-side of (88). For the right-hand-side, we have only used the orthogonality
of C0,el

e,g (f̄) with I.

Remark 6. • The second order perturbation f2 does not contribute to the even scalar moment equations
at the order O(ε0).

• The matrices M2l+2(f1) are traceless due to (79), but they can be non-zero.
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4.4 The unclosed moment system
Eventually, we obtain the following coupled system of equations on the moments of f0 and of the first order
perturbation f1: for l ∈ N

1

3
∇p(2l+2)(f0) +

2l + 3

3
p(2l)(f0)E = Γ(2l+1)(C0,el

e,g (f1)), (90a)

∂

∂t
p(2l)(f0) +∇ · Γ(2l+1)(f1) + 2lΓ(2l−1)(f1) ·E (90b)

= p(2l)

C2,el
e,g (f0) + Cel

e,e(f
0, f0) +

∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0)

 .

This system is not closed and in the next section, we study closure relations for this system to be solvable.
Remark that the first even moment equations reduce into the particle and electron energy conservation
equations (as solved by the LMEA approximation),

∂n

∂t
+∇ · (nu) = ⟨⟨1, C0,iz

e,g (f0)⟩⟩, (91a)

3

2

∂p

∂t
+

1

2
∇ ·
(
Γ(3)(f1)

)
+ nu ·E = ⟨⟨v

2

2
, C2,el

e,g (f0) +
∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0)⟩⟩, (91b)

by remarking that the inelastic collision conserves the number of particles, i.e. ⟨⟨1, C0,inel
e,gk

⟩⟩ = 0, and that
the electron-electron collision operator is orthogonal to ψ2l for l ∈ {1, 2}, i.e.

⟨⟨ψ2l, Cel
e,e(f̄ , f̄)⟩⟩ = 0 for l ∈ {1, 2}.

This can be proven as the particle number and the energy is conserved in the elastic collision. Note that this
is not the case for the fourth-order moment, i.e. l = 2.

The system (90) can potentially be supplemented with an equation on the second order perturbation f2

∇ ·M2l+2(f1) + 2lM2l(f1) ·E (92)

= Γ(2l+1)

C0,el
e,g (f2) + C2,el

e,g (f0) + Cel
e,e(f

0, f0) +
∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0)

 .

But studying this equation would require further assumptions or approximations on f2. The first odd
vectorial equation reduces to

∇ ·M2(f1) = ⟨⟨v, C0,el
e,g (f2) + C2,el

e,g (f0) + Cel
e,e(f

0, f0) +
∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0)⟩⟩.

Eventually, in order to approximate numerically the solution of the system (90). In this purpose, the
following strategy is followed in the next two sections:

• Under assumptions on the collision operators, the operator Γ(2l+1)(C0,el
e,g (f1)) in (90a) is inverted in

order to express f1 (or at least its moments) as a function of f0. This leads to a moment system over
f0 only.

• Moment closures are studied to approximate the solution of the resulting system. The moment problem
ultimately yields a Stieltjes moment problem [67, 68] in order to reconstruct the function f0 of the
scalar variable |v|2 ∈ R+ based on its moments and close all remaining terms using this reconstruction.

Remark that those two sections present approximations performed to arrive to a final system in closed
form, but those do not rely on a physical interpretation and the quality of such approximation can be
improved.
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5 Inversion of the collision operator
In this section, we aim at expressing the odd flux moments Γ(2n+1)(f1) as a function of f0. For simplicity,
we add the following assumption:
Hypothesis: The collision kernel depends only on the deflection angle, and the formula (22a) simplifies into

C0,el
e,g (f̄)(v) =

∫
S2

νeg (ω · v̂e)
(
f̄ (vω)− f̄(v)

)
dω. (93)

This corresponds to the case of a Langevin collision or Maxwell molecules.

Proposition 9. Under this assumption, the term Γ(2l+1)(C0,el
e,g (f1)) simplifies into

Γ(2l+1)(C0,el
e,g (f1)) = −νeg1Γ

(2l+1)(f1), (94)

where the momentum transfer frequency reads νeg1
= ngv

∫
S2

(1− v̂e · ω) σ̄egdω.

Proof. As in (76), one computes:

⟨⟨ψ2l+1, C0,el
e,g (f1)⟩⟩ =

∫ ∫
R3×S2

vψ2l(v)νeg(v̂e · ω)
[
f1(x, vω, t)− f1(x, v, t)

]
dωdv

=

∫ ∫
R3×S2

(vω − v)ψ2l(v)νeg(v̂e · ω)f1(v)dωdv.

Remarking that the integral∫
S2

(vω − v) νeg(v̂e · ω)dω = −v
∫
S2

(1− v̂e · ω) νeg(v̂e · ω)dω := −νeg1
v

yields the result.

⟨⟨ψ2l+1, C0,el
e,g (f1)⟩⟩ = −νeg1

∫
R3

ψ2l(v)vf1(v)dv = −νeg1Γ
(2l+1)(f1) (95)

In the following, by abuse of notation, we denote the constant momentum transfer collision frequency
(i.e., with Hypothesis (93)) as νeg. Then, with (90a), we obtain

Γ(2l+1)(f1) = − 1

3νeg

(
∇p(2l+2)(f0) + (2l + 3)p(2l)(f0)E

)
. (96)

Injecting this in the moment system (90) yields

∂

∂t
p(2l)(f0)− 1

3νeg

(
∆p(2l+2)(f0) + (4l + 3)∇p(2l)(f0) ·E

+(2l + 3)p(2l)(f0)∇ ·E + 2l(2l + 1)p(2l−2)(f0)∥E∥2
)

(97)

= p(2l)

C2,el
e,g (f0) + Cel

e,e(f
0, f0) +

∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0)

 .

which depends only on f0.
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Remark 7. Without imposing (93), one could express Γ(2l+1)(C0,el
e,g (f1)) as a function of Γ(2l+1)(f1) by

imposing that f1 has a particular form. This is performed in the next section to construct the closure relation
for f0. But this relation afterward needs to be inverted, which is not trivial in the general case.

There remains to close the system (97), i.e. to express the higher order moment p(2L+2)(f0) and the
collision operators as functions of the moments p(2l)(f0) for l = 0, . . . , N .

The system (97) with such a closure can be rewritten under the generic form

∂

∂t
U+∆D(U) +∇ · (AU) + LU = S(U)

where the unknown U =
(
p(0)(f0), p(2)(f0), . . . , p(2l)(f0)

)
is a vector of scalar moments, with linear diagonal

advection and bi-diagonal source terms Ai and L (due to the x- and v-derivatives at the kinetic level) defined
by

Ai,l,m =
−Ei(4l + 3)

3νeg
δl,m, Ll,m =

−1

3νeg

(
(2l + 3)∇ ·Eδl,m + 2l(2l + 1)∥E∥2δl+1,m

)
. (98)

The only non-linearity may appear in the collision term S(U) on the right-hand-side and in the last term of
the diffusion operator D(U)N depending on the chosen closure. They yield respectively

D(U)l =
−p(2l+2)(f0)

3νeg
, (99a)

S(U)l = p(2l)

C2,el
e,g (f0) + Cel

e,e(f
0, f0) +

∑
k∈Qg

C0,inel
e,gk

(f0) + C0,iz
e,g (f0)

 . (99b)

The diffusive term is often (formally) rewritten under the form

∆D(U) = ∇ · (B(U)∇U) ,

B(U) =
∂D

∂U
(U) =

−1

3νeg



0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . . . . . . .
. . . . . . . . . 0

0 · · · 0 0 1
BN0 BN1 · · · BNN−1 BNN


,

where the last row depends on the chosen closure.
Contrarily to common moment models, the non-linear closure appears in the diffusion operator while the

transport operator remains linear. Therefore, the diffusion matrix B = ∂D/∂U needs to be non-positive, but
the definiteness is a priori not required. And as always, the symmetrizability of the Jacobian B = ∂D/∂U is
equivalent to the existence of a strictly convex entropy following Kawashima theory (see [69, 70]). The two
examples of closure in the next section are not (at least globally) symmetrizable but present other notions
of stability, especially through the non-positivity of the diffusion matrix B. The study of such non-linear
parabolic equation with specific closures still needs to be addressed, but this is beyond the scope of the
present paper.

6 Stieltjes moment closures
We stress that the moment hierarchy of the previous section is general for electron-gas Langevin elastic
collisions. However, it requires a closure in order to compute the collision integrals as well as to compute
the flux of the last moment of a truncated hierarchy.
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In order to close the system, the common strategy consists in solving a moment problem that takes the
form:

For p ∈ R ⊂ RL+1, find fR s.t.
∫
R3

ψ2l(|v̄|)fR(v̄)dv̄ = pl, (100a)

which reduces to a Stieltjes moment problem:

For p ∈ R ⊂ RL+1, find fR s.t.
∫
R+

v2lfR(v)dv =
pl

4π
. (100b)

Then the remaining moment and the collision operators are rewritten by replacing f0 by fR in their ex-
pression. This yield a closed system of equations. Now there remains to choose a solution to the moment
problem (100).

6.1 Quadrature closure
The quadrature closure consists, for L + 1 = 2N even, in writing fR as a sum of N Dirac measures, or
equivalently to replace the integral in (100b) by a quadrature

fR(v) =

N∑
i=1

miδvi(v) such that pl =

N∑
i=1

miv
2l
i ,

with non-negative quadrature points and weights vi,mi ∈ R+. These weights and points can be obtained
as usually through the theory of orthogonal polynomials [42, 41] using Chebychev or Wheeler algorithm
[44, 43].

The advantage of this closure yields in the discretization of the collision operator once the quadrature
points and weights ei,mi are computed. They simply yield

p(2l)
(
C2,el

e,g (fR)
)
=
∑
i

miK
2,el,(2l)
eg,i (vi), (101a)

p(2l)
(
Cel

e,e(fR, fR)
)
=
∑
i,j

mimjK
0,el,(2l)
ee,i,j (vi, vj), (101b)

p(2l)
(
C0,inel

e,g (fR)
)
=
∑
i

miK
0,inel,(2l)
eg,i (vi), (101c)

p(2l)
(
C0,iz

e,g (fR)
)
=
∑
i

miK
0,iz,(2l)
eg,i (vi). (101d)

For the sake of readability, the computations are left in B together with the different values of K.
As the Jacobian of the flux in the common QMOM method, the diffusion matrix B(U) is similar to a

block diagonal matrix with 2 × 2 Jordan blocks associated to non-positive eigenvalues −v2i /(3νeg). This is
simply obtained by computing the Jacobians of U and D with respect to the parameters p = (m1, v1, . . . , vL)
and applying the chain rule, we refer e.g. to [71] for those computations. One remarks though that this
closure does not provide symmetrizability, but the resulting diffusion matrix B is non-positive.

6.1.1 Examples of truncated QMOM systems

We present two examples with analytical moment inversion. Note that, in general, QMOM requires a
numerical obtention of the quadrature points and weights.

Two-moment system (N = 1) The considered moments are:

U =
(
p(0), p(2)

)T
:= (n, 3nT )

T
,
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where we have introduced the electron particle density n, and electron temperature T . The moment problem
can be analytically inverted and the zero-th order distribution functions can be obtained, as follows,

f0,QMOM
(2M) (v) = m1δv1(v) with m1 =

n

4π
=
p(0)

4π
and v1 =

√
3T =

√
p(2)

p(0)
. (102)

The closure flux depends on the scalar fourth-order moment that can be computed from the first two
moments, as follows,

p(4),QMOM = m1v
4
1 = 9nT 2 = p(0)

(
p(2)

p(0)

)2

.

The 2M-model considers the balance equations for the density and energy. We write the equations in a form
similar to the LMEA, as shown in [32], as follows,

∂tp
(0) +∇ · Γ(1) = C(0), (103a)

∂tp
(2) +∇ · Γ(3) + 2Γ(1) ·E= C(2). (103b)

The sources for l = 0, 1 are of the form

C(2l) = m1

(
K

2,el,(2l)
eg (v1) +m1K

0,el,(2l)
ee (v1, v1) +K

0,inel,(2l)
eg (v1) +K

0,iz,(2l)
eg (v1)

)
, (104)

with (m1, v1) given in (102), and with given functions K2,el,(2l)
eg , K0,el,(2l)

ee , K0,inel,(2l)
eg and K0,iz,(2l)

eg . And the
fluxes of the form

Γ(1) = nu=−∇
(
Dp(0)

)
− µp(0)E, (105a)

Γ(3) =−∇
(
DQMOM

ϵ p(2)
)
− µϵp

(2)E, (105b)

where we introduce the diffusion coefficient D, the mobility µ, the energy diffusion coefficient Dϵ, and the
energy mobility µϵ, that in the case of 2M-QMOM, reads

D =
T

νeg
=

p(2)

3νegp(0)
= DQMOM

ε , µ =
1

νeg
, µϵ =

5

3νeg
.

We note that the density coefficients satisfy the Einstein relation D/µ = T . This relation holds only near
equilibrium for general cross sections, while it is always holds for Maxwell molecules [29], as retrieved by our
model.

Four-moment system (N = 3) The considered moments are:

U =
(
p(0), p(2), p(4), p(6)

)T
.

The moment problem can also be analytically inverted and the zero-th order distribution functions can be
obtained

f0,QMOM
(4M) (v) = m1δv1(v) +m2δv2(v),

where the weights and abscissas can be computed from the moments, as follows,

∆ =
p(0)p(6) − p(2)p(4)

(p(2))2 − p(0)p(4)
, ∆̃ =

(p(4))2 − p(2)p(6)

(p(2))2 − p(0)p(4)
, (106a)

v22 =
−∆+

√
∆2 − 4∆̃

2
, v21 =

−∆−
√

∆2 − 4∆̃

2
, (106b)

m2 =
p(2) − p(0)v21
4π (v22 − v21)

, m1 =
p(0)v22 − p(2)

4π (v22 − v21)
. (106c)
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With this distribution function, we compute the closure flux, as follows,

p
(8),QMOM
(4M) = m1v

8
1 +m2v

8
2 =

p(0)(p(6))2 − 2p(2)p(4)p(6) + (p(4))3

p(0)p(4) − (p(2))2
. (107)

The truncated moment system of equations reads

∂p(0)

∂t
+∇ · Γ(1) = C(0) (108a)

∂p(2)

∂t
+∇ · Γ(3) + 2Γ(1) ·E= C(2) (108b)

∂p(4)

∂t
+∇ · Γ(5) + 4Γ(3) ·E= C(4) (108c)

∂p(6)

∂t
+∇ · Γ(7) + 6Γ(5) ·E= C(6) (108d)

with the fluxes written as

Γ(1) = −∇
(
p(2)

3νeg

)
− p(0)

νeg
E, (109a)

Γ(3) = −∇
(
p(4)

3νeg

)
− 5

3

p(2)

νeg
E, (109b)

Γ(5) = −∇
(
p(6)

3νeg

)
− 7

3

p(4)

νeg
E, (109c)

Γ(7) = −∇

p(8),QMOM
(4M)

3νeg

− 3
p(6)

νeg
E. (109d)

The collisional terms C(2l) are computed with (101) and the weights and quadrature points with (106).

6.2 Hermitian moment closure
In the following, we propose one possible solution to the moment problem (100) based on an expansion of
the zero-th order distribution function into Hermite polynomials (as proposed by Grad [45]). As a result,
the zero-th order distribution is written as a truncated expansion of scalar Hermite polynomials, as follows,

f0(x,V, t) = nT−3/2ϕ0(V) [1 + χ(x,V, t)] , ϕ0(V) = e−
V2

2

(2π)3/2
, V = T−1/2v, (110)

where the function χ is computed as the following expansion (note that this expansion is substantially
identical to a Sonine polynomial expansion):

χ(x,V, t) =
N∑
l=2

h(2l)(x, t)H(2l)(V). (111)

Here, N is the order of the truncation, i.e., 2N is the order of the highest-moment, and h(2n) are the scalar
Hermite moments, computed as

nh(2l)(x, t) = ⟨⟨H(2l), f0⟩⟩ for l ∈ {2, · · · , N}. (112)

where H(2l)(V) are the scalar irreducible Hermite polynomials. We note that due to the orthogonality
properties, h(0) = h(2) = 0. The formalism for the Hermite polynomials used in this work is taken from
Balescu [50], and summarized in Appendix C.1.

29



With the ansatz used for the distribution function (110-111), we can compute the closure for the moment
system. In the case of Maxwell molecules (97), we need p(2N+2) as a function of the previous moments,
which reads,

p(2N+2) = nTN+1αN+1 +

N∑
m=2

m∑
l=2

αlmT
N+1−lp(2l), (113)

with the density n = p(0) and the temperature T = p(2)/(3p(0)) and the coefficients αN+1 and αlm are
fractions and the expressions are given in (136) in Appendix C.1.

Similarly, in the system of (97), we need the collisional terms expressed as a function of the moments.
With a Hermitian expansion of f0, we can compute analytically the collision terms as follows,

p(2l)
(
C2,el

e,g (f0)
)
= −2lνeg

{(
1− Tg

T

)
p(2l) +

Tg
T

(
p(2l) − (2l + 1)Tp(2l−2)

)}
for l ∈ {1, · · · , N}, (114a)

p(2l)
(
Cel

e,e(f
0, f0)

)
= −nT lν

(2l)
ee for l ∈ {2, · · · , N}, (114b)

p(2l)
(
C0,inel

e,g (f0)
)
= ngnT

l
∑

m∈Q∗
g

l−1∑
r=0

2ll!(−1)l−r

r!(l − r)!
K

(r)
inel,m

(
ϕ∗m
T

)l−r

for l ∈ {1, · · · , N}, (114c)

p(2l)
(
C0,iz

e,g (f0)
)
=


ngnK

(0)
iz for l = 0

ngnT
l

{
a
(l)
iz K

(l)
iz +

∑l−1
r=0 a

(r)
iz K

(r)
iz

(
ϕ∗
iz

T

)l−r
}

for l ∈ {1, · · · , N}

(114d)

We note that the Maxwell molecule model is only used for the electron-neutral elastic collisions and the rest
of collisions have a non-trivial collision kernel. As a result, the rates and collision frequencies depend on
the integration of the kernel and the zero-th distribution function, that are given in (139), (143), and (148).
As done in the case of QMOM, for the sake of readability, we detail the derivation of these expressions in
Appendix C.2.

Concerning the mathematical structure of the Hermitian moment closure, it suffers from the same prob-
lems as the original Grad’s model [45]. Although the matrix A, associated to the hyperbolic part of the
equation, is indeed hyperbolic (it is diagonal with real eigenvalues), the diffusion matrix B is not guaran-
teed, in general, to be non-positive in the Hermitian moment approximation. The matrix is non-positive
only in the linearized regime in the vicinity of the thermodynamic equilibrium. This regime of validity, which
depends on the number of moments, will be investigated in a future work.

6.2.1 Examples of truncated Hermitian moment systems

We present the same examples, as in the QMOM case. Note that the Hermitian closure allows for analytical
solutions for arbitrary order that are given in Appendix C.

Two-moment system (N = 1) The considered moments are:

U =
(
p(0), p(2)

)T
:= (n, 3nT )

T
.

In the 2M-Hermitian closure, the distribution function is simply a Maxwellian, as follows,

f0,Herm
(2M) (v) =

n

(2πT )3/2
e−

v2

2T .
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The closure flux depends on the scalar fourth-order moment that can be computed from the first two
moments:

p(4),Herm = 15nT 2 =
15p(0)

9

(
p(2)

p(0)

)2

.

The system is (103) with the following fluxes:

Γ(1) = nu=−∇
(
Dp(0)

)
− µp(0)E, (115a)

Γ(3) =−∇
(
DHerm

ϵ p(2)
)
− µϵp

(2)E, (115b)

with the transport coefficients

D =
T

νeg
=

p(2)

3νegp(0)
, µ =

1

νeg
, µϵ =

5

3νeg
, DHerm

ε =
5T

3νeg
=

5p(2)

9νegp(0)
.

The density and energy coefficients satisfy the Einstein relations D/µ = T = Dϵ/µϵ, as well as the relations
for constant collision frequency (see [32]), i.e. Dϵ/D = µϵ/µ = 5/3. This shows that the Hermitian model is
consistent with the previous thermodynamic theories at equilibrium with a constant collision frequency.

The collision terms are computed from (114), which reads in the 2M-case:

C(0) = ngnK
(0)
iz ,

C(2) = −2νeg {3n(T − Tg)} − 2ngnK
(0)
iz ϕ

∗
iz − 2ngn

∑
m∈Q∗

g

K
(0)
inel,mϕ

∗
m,

where the rates K(0)
iz and K(0)

inel,m are functions of the temperature. Note that the collisional terms are these
found in the literature with a Maxwellian distribution function with constant collision frequency (see e.g. [1]).
The factor 2 in the second equation results from our definition of the second-order moment that is twice the
mean energy.

Four-moment system (N = 3) The considered moments are:

U =
(
p(0), p(2), p(4), p(6)

)T
:=
(
n, 3nT, 15nT 2

(
1 + ∆(4)

)
, 105nT 3

(
1 + ∆(6)

))T
,

where the normalized variables are

∆(4) =
p(4) − 15nT 2

15nT 2
and ∆(6) =

p(6) − 105nT 3

105nT 3
, (116)

that represent the standarized deviation from the Maxwellian of the higher-order moments. The assumed
zero-th distribution function reads,

f0,Herm
(4M) (v) =

n

(2πT )3/2
e−

v2

2T

[
1 + χ

(
vT 1/2

)]
with

χ (V) = ∆(4)

8

(
V4 − 10V2 + 15

)
−
(
3∆(4) −∆(6)

)
48

(
V6 − 21V4 + 105V2 − 105

)
.

The closure flux with this distribution as a function of the considered moments reads

p
(8),Herm
(4M) = 945nT 4

(
1− 6∆(4) + 4∆(6)

)
. (117)

Finally, the truncated 4M-system of equations in the Hermitian closure reads (108), with the fluxes (109),
and the closure (117).

The collisional source terms C(2l) can be computed from the recurrence formulae (114).
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7 Discussions and conclusion
As a summary, we have derived a model for the standalone transport of electrons in a weakly-ionized plasma
dominated by elastic electron-neutral interactions. With a Hilbert expansion and a dimensional analysis of
the Boltzmann equation (including elastic, inelastic, and ionization collisions), we have obtained a reduced
kinetic model consisting of an evolution equation of the isotopic part (in velocity space) of the distribution
function and a Fredholm equation for the first-order distribution. The model is a generalization of the SHE
model that is traditionally used for electrons in gas discharges. We have studied the entropy dissipation
of the asymptotic model. Even though the full model does not necessarily lead to a non-negative entropy
production (it does only when the other species are included in the study), we exhibited a part of the
entropy production linked to the zero-th order electron-neutral elastic collision operator that is signed. We
have constructed a hierarchy of moment equations obtained by taking scalar and vectorial velocity moments
of the obtained kinetic model. With a particular collision kernel (Maxwell molecules), this model eventually
takes the form of a system of balance laws with a non-linear diffusion, a linear advection and a linear source
due to the electric field and a non-linear collision terms (due to the remaining quadratic electron-electron
collisions). It is simple enough to be solved numerically, and numerical experiments together with application
to physical problems are part of future work.

Several assumptions were made in order to simplify the model or its writing. Some of them can be lifted
to reach more complex physics:

• The plasma heavy species (neutral atoms and molecules and ions) were considered as a background in
this paper. Note that, as shown through the dimensional analysis by Choquet et al. in Section 9 of [33],
the heavy species thermalize at order O(ε−1), while their evolution is described by the Euler equations
at order O(ε0). Similar conclusions were obtained by other authors [15, 20]. As a consequence, the
results in this paper still hold when the electron model is coupled to a hydrodynamic description for the
heavy species, because the heavy species distribution functions that were considered as a background
in our work can eventually be determined with a hydrodynamic model. However, f2 would be needed
if the Navier-Stokes level is required for the heavy species, as presented in Graille et al. [15].

• Similarly, the electric field used in this model requires to be coupled to Gauss’s law. The self-consistent
resolution of the electric field that is created by the charged species within the plasma is fundamental in
order to reproduce the plasma dynamics. Nevertheless, the present results still hold when considering
Gauss’s law for the electrostatic field, as long as the orders of magnitude of the field are these discussed
in Assumption 4(d), i.e. E0L0 = T 0

e . This also applies for external fields. Note that very large electric
fields or fast evolving electric fields can produce large anisotropies in the electron distribution function
that would be beyond our proposed scaling.

• The neutrals were considered at thermodynamic equilibrium with a zero mean velocity. If the equi-
librium hypothesis is reasonable, one could expect the neutrals to have a non-zero velocity. Such a
hypothesis could easily be lifted in this work, leading to additional linear terms at order 1 in ε. Also,
one would expect the present equilibrium, or zero-th order, f0 not to be isotropic, but to depend only
on the norm ∥ug − v∥ instead of on the norm v.

• Maxwell molecules were used in order to invert the collision operator C0,el
eg easily. More physically

relevant kernels can also be used. This would only lead either to a more complex formula than the one
in (94), or one would need to solve the coupled system (90) instead of the reduced one (97).

Other hypotheses, common in the field of kinetic theory, would be more complex to reduce:

• The construction relies on the first orders of a Hilbert expansion (50). Such an expansion is a priori
only formal, non-unique, and one may only assume that the series converges (the demonstration being
out-of-reach). We have shown that the first orders of the present construction are stable. Remark
that this is not sufficient in general, as the higher orders of the Chapman-Enskog expansion, after
Navier-Stokes, lead to unstable Burnett and super-Burnett equations.
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• Only the electron transport was considered in the present work, and the transport of neutrals and ions
were discarded. Under weakly-ionized gas discharge conditions, the fast dynamics of the electrons is
usually largely separated from the one of the heavy species. First, the impact of the plasma dynamics on
the neutrals can be seen as a small perturbation. Even if they are responsible for the main collisional
processes in the plasma, these collisions have a negligible impact on the dynamics of the neutrals.
Furthermore, as suggested in the hypothesis, the heavy (atoms and ions) thermalize faster than the
electrons, such that the ions can be considered at thermodynamic equilibrium (as they collide with the
gas particles and, additionally, they are created by ionization at their temperature). For this reason,
their transport can be captured by simpler and more common models. However, even if we ultimately
obtain entropy dissipative moment models, no entropy dissipation at the kinetic level can be obtained
without considering the transport of ions and atoms and their coupling with the electrons.

Concerning the potential application of these models, it is similar to the models based on the two-
term Boltzmann approximation, which are widely used in low-temperature plasma discharges for plasma
processing, both at the kinetic level and in the fluid (drift-diffusion models) level. Some examples of potential
applications are given below. One example are atmospheric plasmas with applications to polymer etching,
treatment and decontamination of food, water, and biological tissues [72], as well as plasma assisted ignition
and combustion [73]. These plasmas can be described by the local-field approximation (see e.g. [74] for
a review on the modeling). However, the local-field approximation is limited when the plasma interacts
with the surfaces and hence the self-consistent inclusion of higher-order moments can potentially solve
some of these limitations associated. Alternatively, at lower pressures, low-temperature plasmas are widely
used for semi-conductor fabrication in the microelectronics industry. At lower pressures (from few tens of
Torr to few milliTorrs), the local-field approximation becomes less reliable as compared to experiment and
numerical simulations [75]. These pressures are investigated with the so-called non-local model of the two-
term Boltzmann approximation [76, 77]. Nevertheless, as shown in Section 3.5, the two-term Boltzmann
approximation is a particular case of our kinetic model and, therefore, the moment model can also tackle
the abovementioned problems. Finally, the last application where these model can be applied is plasmas in
electric propulsion such as gridded-ion thrusters [78] or Hall thrusters, although the inclusion a magnetic field
should be introduced in the model, which would increase the complexity of the transport model [79, 80, 81].
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A Expansion of electron-heavy species collision operator
In this section, we detail the calculations of the proof to Proposition 1, in order to obtain the expansion of the
collision operator in powers of ε. We inject the expansion of the distribution functions at the post-collisional
velocity of (26) and the collision kernel (27) into the normalized collision operator (24). We note that the
integration over the heavy species velocity space can be performed analytically, as follows,∫

R3

(
f̄e

′
f̄α

′ − f̄ef̄α

)
S(ḡ′)dv̄α = I0 + εI1 + ε2I2 +O(ε3). (118)

The zero-th order integral reads

I0 =

∫
R3

f̄α(v̄α)
[
f̄e(ṽe)− f̄e(v̄e)

]
S(ṽe)dv̄α = n̄αS(ṽe)

(
f̃e − f̄e

)
, (119)

with the distribution function at the rotated velocity that is denoted as f̃e ≡ f̄e(x̄, ṽe, t̄).
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The first-order integral reads
I1 = I01 + I11 + I21 , (120)

where

I01 = −
∫
R3

f̄α(v̄α) (ṽα − v̄α) · ∇ṽ f̄e(ṽe)S(ṽe)dv̄α = n̄αūα ·
(
∇ṽ f̃e −∇v̄ f̃e

)
S(ṽe), (121a)

I11 = −
∫
R3

f̄e(ṽe) (ṽe − v̄e) · ∇v̄α f̄α(v̄α)S(ṽe)dv̄α

=

∫
R3

f̄α(v̄α)∇v̄α
·
[
f̃e (ṽe − v̄e)S(ṽe)

]
dv̄α = 0, (121b)

I21 = −
∫
R3

f̄α(v̄α)
(
f̃e − f̄e

)
(v̄α · ∇v̄S(ṽe)) dv̄α = −n̄αūα · ∇v̄S(ṽe)

(
f̃e − f̄e

)
. (121c)

By grouping terms, we can re-write the first-order integral as

I1 = I01 + I21 = n̄αūα ·
{(

∇ṽ f̃e −∇v̄ f̄e

)
S(ṽe)−∇v̄

[
S(ṽe)

(
f̃e − f̄e

)]}
. (122)

The second-order integrals read

I2 = I02 + I12 + I22 + I32 + I42 + I52 + I62 + I72 , (123)

with

I02 = −
∫
R3

f̄α(v̄α) (ṽe − v̄e) · ∇ṽ f̄e(ṽe)S(ṽe)dv̄α = −n̄αS(ṽe) (ṽe − v̄e) · ∇ṽ f̄e(ṽe),

I12 =
1

2

∫
R3

f̄α(v̄α) (ṽα − v̄α)⊗ (ṽα − v̄α) : ∇ṽ ⊗∇ṽ f̄e(ṽe)S(ṽe)dv̄α

=
1

2
n̄α(ūα ⊗ ūα + T̄α) :

[
S(ṽe)

(
∇ṽ ⊗∇ṽ f̃e − 2∇v̄ ⊗∇ṽ f̃e +∇v̄ ⊗∇v̄ f̃e

)]
,

I22 =

∫
R3

f̄e(ṽe) (ṽα − v̄α) · ∇v̄α
f̄α(v̄α)S(ṽe)dv̄α = −n̄αS(ṽe) (tr(Ω)− 3) f̃e,

I32 =
1

2

∫
R3

f̄e(ṽe) (ṽe − v̄e)⊗ (ṽe − v̄e) : ∇v̄α ⊗∇v̄α f̄α(v̄α)S(ṽe)dv̄α = 0,

I42 =

∫
R3

[
(ṽα − v̄α) · ∇ṽ f̄e(ṽe)

] [
(ṽe − v̄e) · ∇v̄α

f̄α(v̄α)
]
S(ṽe)dv̄α

= 2n̄αS(ṽe) (ṽe − v̄e) · ∇ṽfe,

I52 =

∫
R3

f̄α(v̄α)
[
(ṽα − v̄α) · ∇ṽ f̄e(ṽe)

)
[v̄α · ∇v̄S(ṽe)] dv̄α

= n̄α(ūα ⊗ ūα + T̄α) :
[(

∇v̄ f̃e −∇ṽ f̃e

)
⊗∇v̄S(ṽe)

]
,

I62 =

∫
R3

f̄e(ṽe)
[
(ṽe − v̄e) · ∇v̄α f̄α(v̄α)

)
[v̄α · ∇v̄S(ṽe)] dv̄α

= −n̄α (ṽe − v̄e) · ∇v̄S(ṽe)f̃e,

I72 =
1

2

∫
R3

f̄α(v̄α)
(
f̄e(ṽe)− f̄e(v̄e)

)
[(v̄α ⊗ v̄α) : ∇v̄ ⊗∇v̄S(ṽe)] dv̄α

=
1

2

(
f̃e − f̄e

)
n̄α(ūα ⊗ ūα + T̄α) : ∇v̄ ⊗∇v̄S(ṽe).

We can regroup terms as follows,

I02 + I22 + I42 + I62 = ∇v̄ ·
[
(ṽe − v̄e) n̄αS(ṽe)f̃e

]
. (125)
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Similarly,

I12 + I52 + I72 = n̄α(ūα ⊗ ūα + T̄α) :
(
∇v̄ ⊗

{
S(ṽe)

[
f̃e − f̄e

]}
+

1

2
∇v̄

[
S(ṽe)

(
f̃e − f̄e

)]
− 1

2
S(ṽe)

(
∇ṽ ⊗∇ṽ f̃e −∇v̄ ⊗∇v̄ f̄e

])
. (126)

Finally, in order to obtain the operators of (22-23), we need to integrate over the unit sphere defined by the
vector ω. Note that in these operators we have defined the collision frequency, as follows,

ν̄eα := n̄αS(ṽe) = n̄αv̄eσ̄eα(v̄e,ω · v̂e). (127)

Here, we have used the fact that the norm of the velocity vector is conserved in the rotation, i.e., ||ṽe|| = v̄e
and we have defined the unit vectors v̂e = v̄e/v̄e and ω = ṽe/v̄e.

B Closing the collision integrals with QMOM

B.1 Elastic electron-heavy collisions
The coefficients read

K
2,el,(2l)
eg,i (vi) = 8(l − 1)πngv

2l−1
i

[(
2lTg − v2i

)
Q1,g(vi) + TgviQ

′
1,g(vi)

]
.

Indeed, starting from (28), one computes

p(2l)
(
C̄2,el

eg (fR)
)
=

∫
R3

v̄2l−2∂v̄
(
ngQ1,g(v̄)v̄

3 (v̄fR + Tg∂v̄fR)
)

= −8(l − 1)πng

∫
R+

v̄2lQ1,g(v̄) (v̄fR + Tg∂v̄fR)

= 8(l − 1)πng

∫
R+

v̄2l−1
((
2lTg − v̄2

)
Q1,g(v̄) + Tgv̄Q

′
1,g(v̄)

)
fR

= 8(l − 1)πng
∑
i

miv
2l−1
i

((
2lTg − v2i

)
Q1,g(vi) + TgviQ

′
1,g(vi)

)
.

B.2 Elastic electron-electron collisions
The coefficients read

K
2,el,(2l)
ee,i,j (vi, vj) =

∫
(S2)3

∣∣∣∣viω1 + vjω2

2
+
vi − vj

2
ω3

∣∣∣∣2l (128)

× σee

(
|viω1 − vjω2| , ω3 ·

viω1 − vjω2

|viω1 − vjω2|

)
|viω1 − vjω2| dω1dω2dω3

− v2li

∫
(S2)3

σee

(
|viω1 − vjω2| , ω3 ·

viω1 − vjω2

|viω1 − vjω2|

)
|viω1 − vjω2| dω1dω2dω3.

First, the conservation of momentum and energy yields velocities v′ = v+v∗
2 + |v−v∗|

2 ω. Denote v′ and
v′∗ their norm, then the considered integrals read

p(2l)
(
C̄el

ee(fR)
)
= ∫

R3

∫
R3

∫
S2

v̄2lσee

(
|v − v∗| , ω · v − v∗

|v − v∗|

)
|v − v∗| [fR(v′∗)fR(v′)− fR(v∗)fR(v)] .

Using the micro-reversibility and the chosen ansatz, this simplifies into (101b) with the coefficients (128).
Especially, the conservation of mass and energy yield K

(0)
i,j = 0 = K

(2)
i,j , while the higher-order moments

are a priori not preserved.
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B.3 Inelastic collisions
For the third, the coefficients read

K
0,inel,(2l)
eα,i = 16π2ng

∑
k∈Q∗

g

(
(v2i + 2ϕ∗k)

lσ̃0→k
eg

(√
v2i + 2ϕ∗l

)
− v2l+1

i σ̃0→k
eg (vi)

)
.

Indeed, starting from (36), one computes

p(2l)
(
C̄0,inel

eg (fR)
)
= ng

∫
R3

v2l
∑
k∈Q∗

g

∫
S2

σ̄0→k
eg (v, ω · v̂e)v

[
fR

(√
v2 − 2ϕ∗k

)
− fR(v)

]

= 16π2ng
∑
k∈Q∗

g

∫
R+

v2l+1σ̃0→k
eg (v)

[
fR

(√
v2 − 2ϕ∗k

)
− fR(v)

]

= 16π2ng
∑
k∈Q∗

g

[(∫
R+

(
w2 + 2ϕ∗k

)l
σ̃0→k
eg

(√
w2 + 2ϕ∗l

)
fR(w)

)

−
(∫

R+

v2l+1σ̃0→k
eg (v)fR(v)

)]

= 16π2ng
∑
i

mi

∑
k∈Q∗

g

(
(v2i + 2ϕ∗k)

lσ̃0→k
eg

(√
v2i + 2ϕ∗l

)
− v2l+1

i σ̃0→k
eg (vi)

)
.

B.4 Ionization
Below, we use the following parametrization for the ionization cross section, as proposed by Alexeev [18]

W iee
ge dv

′
idv

′
e1dv

′
e2 =

σiee
eg

16π2

3

(
µegg2

eg−eϕ∗
iz

µiee

)3/2 gegg2ieedgieedωieedωe1e2 (129)

where µiee = memi/(mg +me), the relative velocities between the particles are defined as geg = ve − vg,
gie1e2 = vi − (ve1 + ve2)/2, and ge1e2 = ve1 − ve2 . The unit vector in the direction of the relative velocities
are e = geg/geg, ωiee = giee/giee, and ωe1e2 = ge1e2/ge1e2 . Following Graille et al. [58, 82], the cross-section
σiee
eg is commonly assumed to depend only on the parameters the norm relative velocities and the deflection

angles, i.e. on (geg, gie1e2 , ωiee · e, ωe1e2 · e, ωiee · ωe1e2).
Finally, for the ionizing collisions, the

K
0,iz,(2l)
eg,i =

3n̄g
4π

∫ ∫
S2×S2

2

∫ √
v
−1
e1

(vi)

2 −ϕ̄∗
iz

0

v−1
e1 (vi)

2l+1σiee,0
eg (v−1

e1 (vi))(
1
2v

−1
e1 (vi)− ϕ̄∗iz

)3/2 ḡ2iee
dv−1

e1

dv
(vi)dḡiee

−
∫ √

vi
2 −ϕ̄∗

iz

0

v2l+1
i σiee,0

eg (vi)(
1
2vi − ϕ̄∗iz

)3/2 ḡ2ieedḡiee
)
dωieedωe1e2 .

where v−1
e1 (v) = 2

(
(v + ḡieeωiee)

2 + ϕ∗iz + ḡiee
)

such that dve1
dv (v) = 4 |v + ḡieeωiee|.

Indeed, starting from (46), one computes

p(2l)
(
C̄0,iz

e,g (f̄e)
)
=

3n̄g
4π

∫
R+

∫ ∫
S2×S2

∫ √
1
2 v−ϕ̄∗

iz

0

v2l+1σiee,0
eg(

1
2v − ϕ̄∗iz

)3/2 [2fR (ve1(v))− fR(v)]

× ḡ2ieedḡieedωieedωe1e2 ,
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where ve1(v) =
∣∣∣−gieeωiee +

√
v
2 − ϕ∗iz − g2ieeωe1e2

∣∣∣. The second term simply reads

∫
R+

∫ ∫
S2×S2

∫ √
1
2 v−ϕ̄∗

iz

0

v2l+1σiee,0
eg(

1
2v − ϕ̄∗iz

)3/2 fR(v)ḡ2ieedḡieedωieedωe1e2

=

∫ ∫
S2×S2

∫
R+

∫ +∞

2(ḡ2
iee+ϕ̄∗

iz)

v2l+1σiee,0
eg(

1
2v − ϕ̄∗iz

)3/2 fR(v)ḡ2ieedḡieedωieedωe1e2

=
∑
i

mi

∫ ∫
S2×S2

∫
R+

1R+

(
vi − 2(ḡ2iee + ϕ̄∗iz)

) v2l+1
i σiee,0

eg (vi)(
1
2vi − ϕ̄∗iz

)3/2 ḡ2ieedḡieedωieedωe1e2

=
∑
i

mi

∫ ∫
S2×S2

∫ √
vi
2 −ϕ̄∗

iz

0

v2l+1
i σiee,0

eg (vi)(
1
2vi − ϕ̄∗iz

)3/2 ḡ2ieedḡieedωieedωe1e2

The first integral needs a change of variable on top of it and yields∫
R+

∫ ∫
S2×S2

∫ √
1
2 v−ϕ̄∗

iz

0

v2l+1σiee,0
eg(

1
2v − ϕ̄∗iz

)3/2 fR(ve1(v))ḡ2ieedḡieedωieedωe1e2

=
∑
i

mi

∫ ∫
S2×S2

∫ √
v
−1
e1

(vi)

2 −ϕ̄∗
iz

0

v−1
e1 (vi)

2l+1σiee,0
eg (v−1

e1 (vi))(
1
2v

−1
e1 (vi)− ϕ̄∗iz

)3/2 ḡ2iee
dv−1

e1

dv
(vi)dḡieedωieedωe1e2 .

C Hermitian closure and collisional integrals

C.1 Irreducible Hermite polynomials: definitions and closure
As described by Balescu [50], the irreducible scalar Hermite polynomials are written as

H(2l)(V) = β2l

l∑
m=0

(−1)m+l l!

m!(l −m)!

(2l + 1)!!

(2m+ 1)!!
V2m with

β2l =

(
1

2ll!(2l + 1)!!

)1/2

, (130)

which fulfill the orthogonality relation∫
R3

ϕ0(V)H(2l)H(2m)dV = δlm. (131)

We can invert the definition of (130) to obtain the monomial velocity moments as function of the Hermitian
moments, as follows,

V2l =

l∑
m=0

1

β2m

l!

m!(l −m)!

(2l + 1)!!

(2m+ 1)!!
H(2m). (132)

With these relations, one can compute the relation between the (monomial) velocity moments p(2l) defined
in (79), and the non-dimensional scalar Hermitian moments h(2m) (112) for a moment closure considering
N moments, as follows,

p(2l) = nT l

[
(2l + 1)!! +

l∑
m=2

1

β2m

l!

m!(l −m)!

(2l + 1)!!

(2m+ 1)!!
h(2m)

]
. (133)
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Note that the sum does not take into account the first two Hermite moments as they are h(0) = h(2) = 0.
Similarly, we can retrieve the inverse relation, which reads,

h(2l) = β2l

l∑
m=2

(−1)m+l l!

m!(l −m)!

(2l + 1)!!

(2m+ 1)!!

[
p(2m)

nTm
− (2m+ 1)!!

]
. (134)

The system of moments is closed with p(2N+2) that needs to be computed as a function of p(2l) with
l ∈ {0, 1, · · · , N}. With (133) and (134), we can write

p(2N+2) = nTN+1

[
(2N + 3)!! +

N∑
m=2

1

β2m

(N + 1)!

m!(N + 1−m)!

(2N + 3)!!

(2m+ 1)!!
h(2m)

]
=

nTN+1αN+1 +

N∑
m=2

m∑
l=2

αlmT
N+1−lp(2l), (135)

Where the coefficients αN+1 and αlm are fractions that are obtained by using (134) and read

αN+1 =

{
(2N + 3)!!−

N∑
m=2

m∑
l=2

(−1)m+l(N + 1)!(2N + 3)!!

l!(m− l)!(N + 1−m)!

}
, (136a)

αlm =
(−1)m+l(N + 1)!(2N + 3)!!

l!(m− l)!(N + 1−m)!(2l + 1)!!
. (136b)

C.2 Collisional terms in the Hermitian moment model
The Hermitian moment closure of the collisional terms, i.e., right-hand-side of (97), is given in the following
propositions.

Proposition 10. The electron-neutral elastic collision term in the moment equations with the Hermitian
expansion of the zero-th order distribution function, given in (110), reads as follows

p(2l)
(
C2,el

e,g (f0)
)
= −2lνeg

{(
1− Tg

T

)
p(2l) +

Tg
T

[
p(2l) − (2l + 1)Tp(2l−2)

]}
(137)

for l ∈ {1, · · · , N}

and p(0)
(
C2,el

e,g (f0)
)
= 0.

Proof. For this proof, we use the result of Corollary 1 with Maxwell molecules, and we take the moment,

p(2l)
(
C2,el

e,g (f0)
)
= νeg

∫
R3

v2l−2
e

∂

∂ve

{
v2e

(
vef

0 + Tg
∂f0

∂ve

)}
dve (138)

= −2lνeg

∫
R3

v2le

(
f0 +

Tg
ve

∂f0

∂ve

)
dve.

In order to obtain the previous relation, we have used spherical coordinates for the integration in the velocity
space and the fact that

∫∞
0

∂
∂ve

{
v2l+2
e

(
vef

0 + Tg
∂f0

∂ve

)}
dve = 0. By injecting the Hermite expansion of (110)

into the previous integral and after some algebra, we obtain (137). Finally, to obtain (137), we have injected
the Hermitian expansion into (138). For l = 0, the contribution is zero, as the elastic collision conserves the
number of electrons.
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Proposition 11. The electron-neutral inelastic collision term in the moment equations with the Hermitian
expansion of the zero-th order distribution function, for general cross-sections, reads as follows

p(2l)
(
C0,inel

e,g (f0)
)
= ngnT

l
∑

m∈Q∗
g

l−1∑
r=0

2ll!(−1)l−r

r!(l − r)!
K

(r)
inel,m

(
ϕ∗m
T

)l−r

(139)

for l ∈ {1, · · · , N} where the rates K(r)
inel,m(T, p(4), · · · , p(2N)) are functions of the moments, and they are

computed by integrating the cross-section over the norm of the electron velocity, as follows,

K̄
(r)
inel,m = 4π

(
1

2T

)r ∫ ∞

0

v2r+3
e

f0

n
Q0→m

eg dve

with the total cross section Q0→m
eg (v̄e) =

∫
S2

σ0→m
eg dω.

Proof. The moment of the inelastic operator of the transition from the ground state to the m-th excited
state reads:

p(2l)
(
C0,inel

e,g (f0)
)
=

∫
R3

∫
S2

v2le σ
0→m
eg (ve,ω · v̂e)ve

[
f0(ṽm,inel

e )− f0(ve)
]
dωdve. (140)

By using the reciprocity relations, we can write the previous integral as

p(2l)
(
C0,inel

e,g (f0)
)
=

∫
R3

∫
S2

(
ṽ2le − v2le

)
σ0→m
eg (ve,ω · v̂e)vef0(ve)dωdve. (141)

with the energy conservation at the zero-th order ṽ2e = v2e −2ϕ∗m. With the binomial theorem and the energy
conservation, one obtains the following relation

ṽ2le − v2le =

l−1∑
r=0

(
l
r

)
v2re (−2ϕ∗m)l−r. (142)

By injecting the previous relation into (141), after some algebra, one retrieves (139).

Proposition 12. The electron-neutral ionization collision term in the moment equations with the Hermitian
expansion of the zero-th order distribution function, for general cross-sections, reads as follows

p(2l)
(
C0,iz

e,g (f0)
)
=

ngnK
(0)
iz for l = 0

ngnT
l

{
a
(l)
iz K

(l)
iz +

∑l−1
r=0 a

(r)
iz K

(r)
iz

(
ϕ∗
iz

T

)l−r
}

for l ∈ {1, · · · , N}
(143)

where the rates K(r)
iz,m(T, p(4), · · · , p(2N)) are functions of the moments, and they are computed by integrating

the cross-section over the norm of the electron velocity, as follows,

K̄
(r)
iz,m = 4π

(
1

2T

)r ∫ ∞

0

v2r+3
e

f0

n
Qiz

egdve with the total cross section Qiz
eg(v̄e) =

∫
dσ0

iz. (144)

The coefficients aiz depend on the energy sharing between the two resulting electrons. In the case of equal-
sharing and zero-sharing, the coefficients read:

a
(l)
iz =

{
(2− 2l) for equal-sharing
0 for zero-sharing

(145a)

a
(r)
iz =

{
2 l!(−1)l−r

r!(l−r)! for equal-sharing

2l l!(−1)l−r

r!(l−r)! for zero-sharing
for r ∈ {1, · · · , l − 1} (145b)
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Proof. The moment of the ionization operator reads:

p(2l)
(
C0,iz

e,g (f0)
)
=

∫
R3

v2le
(
2f0(v′e1)− f0(ve)

)
Qiz

eg(ve)vedve. (146)

By using the reciprocity relations, we can write the previous integral as

p(2l)
(
C0,inel

e,g (f0)
)
=

∫
R3

(
2v′2le1 − v2le

)
Qiz

eg(ve)vef
0(ve)dve. (147)

with the energy conservation at the zero-th order that reads, for the two electron-sharing models, as follows:{
2v′2e1 = v2e − 2ϕ∗iz for equal-sharing
v′2e1 = v2e − 2ϕ∗iz for zero-sharing

With the binomial theorem and the energy conservation, one obtains the following relation
2v′2le1 − v2le = 2

∑l
r=0

(
l

r

)(
v2
e

2

)r
(−ϕ∗iz)l−r − v2le for equal-sharing

v′2le1 − v2le =
∑l

r=0

(
l

r

)
v2re (−2ϕ∗iz)

l−r − v2le for zero-sharing

By injecting the previous relation into the moment of the operator and integrating, after some algebra, one
retrieves (143).

Proposition 13. The electron-electron elastic collision term in the moment equations with the Hermitian
expansion of the zero-th order distribution function, given in (110), reads as follows

p(2l)
(
Cel

e,e(f
0, f0)

)
= −nT lν

(2l)
ee for l ∈ {2, · · · , N} (148)

where the frequencies ν(ln)ee (n, T, h(2), · · · , h(2N)) are functions of the moments, and they are computed by
integrating the electron-electron cross-section over the angles and the electron velocity norm, as follows,

ν̄
(2l)
ee =

1

nT l

l−1
2∑

r=0

l−2r∑
m=0

l!

2m(2r)!m!(l − 2r −m)!

×
∫
R3

∫
R3

G2(l−2r−m)g2m+2r+1K(n) : G⊗ · · · ⊗G︸ ︷︷ ︸
2r times

f0f01 dGdg (149)

with the angular integral of the cross-section

K(n)(g) =

∫
S2

(e⊗ · · · ⊗ e︸ ︷︷ ︸
2r times

−ω ⊗ · · · ⊗ ω︸ ︷︷ ︸
2r times

)σee(g,ω)dω (150)

where the unit vector in the direction of the relative velocity e = g/g and the distribution functions that are
written as function of the integration variables with the transformation

ve = G+
1

2
g and ve1 = G− 1

2
g. (151)

Proof. By using the collision reciprocal relations, the moment of the electron-electron collision operator can
be written as,

p(2l)
(
Cel

e,e(f
0, f0)

)
=

1

2

∫ ∫ ∫
R3×R3×S2

(
v′2le + v′2le1 − v2le − v2le1

)
gσeef

0f01 dωdve1ve, (152)
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The integral is done by using the center of mass variables, which, after using the energy and momentum
conservation, allows for writing the electron velocities as follows

ve = G+
1

2
g, ve1 = G− 1

2
g, v′e = G+

1

2
g′, and v′e1 = G− 1

2
g′, (153)

with G = 1
2 (ve + v̄e1) the velocity of the center of mass and g = (ve − ve1) the relative velocity. Note that

the energy conservation yields ∥g∥ = ∥g′∥. With these relations, we can write,

v2le =

l∑
k=0

(
l
k

)(
G2 +

1

4
g2
)k

(G · g)l−k (154a)

v2le1 =

l∑
k=0

(−1)l−k

(
l
k

)(
G2 +

1

4
g2
)k

(G · g)l−k (154b)

v′2le =

l∑
k=0

(
l
k

)(
G2 +

1

4
g2
)k

(G · g′)l−k (154c)

v′2le1 =

l∑
k=0

(−1)l−k

(
l
k

)(
G2 +

1

4
g2
)k

(G · g′)l−k (154d)

when l − k is odd, some of the terms of the integral (152) cancel out. As a result, we keep only the terms
where l − k is even, as follows

v′2le + v′2le1 − v2le − v2le1 =

l−1
2∑

r=0

(
l

l − 2r

)(
G2 +

1

4
g2
)l−2r

2
{
(G · g′)2r − (G · g)2r

}
(155)

By using the binomial theorem,(
G2 +

1

4
g2
)l−2r

=

l−2r∑
m=0

(
l − 2r
m

)
1

22m
G2(l−2r−m)g2m. (156)

Finally, to obtain (148), we use the energy conservation to write g′ = gω, and hence{
(G · g′)2r − (G · g)2r

}
= g2r(e⊗ · · · ⊗ e︸ ︷︷ ︸

2r times

−ω ⊗ · · · ⊗ ω︸ ︷︷ ︸
2r times

) : (G⊗ · · · ⊗G︸ ︷︷ ︸
2r times

). (157)

After some algebra, and using the fact that the Jacobian of the transformation (ve,ve1) → (G, g) is unity,
one obtains the expression in (148).

Note that the integral of (148) can be analytically obtained as a function of the Chapman-Cowling
Ω-integrals in the case of Hermitian expansions.
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