
HAL Id: hal-04886663
https://hal.science/hal-04886663v1

Submitted on 14 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometry dependent Reduced-Order Models for the
computation of homogenized transfer properties in

porous Media, Part II -Electrical Double Layer effects
Antoine Moreau, Cyrille Allery, Olivier Millet, Antoine Falaize

To cite this version:
Antoine Moreau, Cyrille Allery, Olivier Millet, Antoine Falaize. Geometry dependent Reduced-Order
Models for the computation of homogenized transfer properties in porous Media, Part II -Electrical
Double Layer effects. Acta Mechanica, In press, �10.1007/s00707-024-04196-3�. �hal-04886663�

https://hal.science/hal-04886663v1
https://hal.archives-ouvertes.fr


Acta Mechanica manuscript No.
(will be inserted by the editor)

Geometry dependent Reduced-Order Models for the computation of
homogenized transfer properties in porous Media, Part II - Electrical
Double Layer effects

Antoine Moreau · Cyrille Allery · Olivier Millet ·
Antoine Falaize

Received: date / Accepted: date

Abstract A Reduced-Order Model (ROM) based on Proper Orthogonal Decomposition (POD) is proposed to
solve fastly the strongly nonlinear Elementary Cell Problem derived from the Periodic Homogenization of the
Nernst-Planck-Poisson-Boltzmann equations. In previous works, multiscale models have been developed, in order
to take separately into account the macro and microscopical aspects of ionic diffusion, under the assumption
that the porous medium consists of the periodic repetition of a single microscopic Representative Elementary
Volume (REV). More recently, a numerical method based on POD-ROM has been developed in order to take
into account the variability of the REV at the macroscopical scale, which involves the numerical resolution of a
large amount of instances of the Cell Problem. Presently, this method is extended to the case where the REV’s
size is of the order of the Debye Length and where the adsorption during the transfer of ions by the solid-fluid
interface is considered.

Keywords: Homogenization, ionic diffusion, Debye length, Reduced Order Model, Proper Orthogonal Decom-
position

1 Introduction

Early degradation of reinforced concrete buidings exposed to sea water is due to chloride diffusion in the pore
solution. Indeed, chloride diffuse inside the water contained in the concrete’s pores until they reach the steel
skeleton. This induces oxidation-reduction and swelling of the rebar, threatening the whole structure. Thus,
it is necessary to understand transfer mechanism in cementitious media and to model them precisely at a
microscopical scale. Such a modelization is not possible at the scale of a whole structure, which motivates the
use of homogenization techniques. Introduced by Whitaker [41,42] in the case of volume averaging methods, these
consist of assimilating the porous medium to a virtual homogeneous medium, whose physical properties (here
diffusion coefficients) are computed on microscopical elementary cells. Computational homogenization covers
a wide range of numerical methods like the FE2 method introduced by Feyel in [16] which combines Finite
Elements simulations at both macro- and micro- scales ; this method has been applied to the modelization of
foams in [23]. Homogenization methods have also been applied to multiphysics modelization like in [14] where
homogenization is combined to deep neural networks in the context of multiscale deformations. In this work we
focus on periodic homogenization method [3, 37], applied to a problem that depends both on geometrical and
physical parameters.
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LaSIE UMR-7356-CNRS, Université de La Rochelle Pôle Science et Technologie, Avenue Michel Crépeau 17042 La Rochelle
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Usually, ionic diffusion in saturated porous media is modelled by Nernst-Planck-Poisson (NPP) equations, which
combine Fick law, and transport of ions by electrical field in the pore solution. Furthermore, at the Debye lenght
scale, ionic diffusion is influenced by the electrical double layer (EDL) of ions that have been adsorbed by the
solid-fluid interface. According to the model proposed by Gouy and Chapman [21], that was used in [29,30,36] to
model electrical double layers in clays, the EDL results in an electrical potential so that the pore solution close
to the solid-fluid interface is not neutral. The ionic species concentrations are then determined by a Boltzmann
factor, which in turn depends on the EDL potential. This model, combined to the NPP (electro-)diffusion
equations, gives the Nernst-Planck-Poisson-Boltzmann equations for ionic diffusion at the EDL scale.

The periodic homogenization technique is relevant to obtain macroscopic models of ionic diffusion when applied
to NPP or NPPB equations [9–11]. It assumes that microstructure of the porous medium is assimilated to the
periodic repetition of an elementary cell which must be small enough comparatively to the whole medium size, in
order to the macro and micro scales to be separated Homogenized properties, which are supposed not to vary at
the macroscopical scale, are then computed by solving on the REV a partial differential equation called the cell
problem. The resolution of the cell problem is generically done numerically. Then it remains to solve the Nernst-
planck-Poisson equation at the maroscopical scale, provided homogenized coefficients, to simulate a diffusion
process depending on time. This approach has been successfully used to model ionic transfer phenomenon in
porous media [4,5,9], as well as other phenomenen like diffusion-advection-adsorption of pollutant in clays [1,2]
and to diffusion reaction coupled problems [8, 12,25,26].

However, in cementitious media, the REV geometry is complex, and varies over time. For the latter reason,
a single REV may not be sufficient to represent the microstructure of a whole concrete structure. Thus, in
order to use the periodic homogenization procedure, several REV must be considered, to take into account the
variability of the microstructure and its possible time-dependent evolution. Then, for each REV, we must solve
the cell problem (composed of several partial differential equations). The issue is that it is computationally
expensive, especially because of nonlinearities. To overcome this difficulty it is possible to use a model order
reduction approach to obtain in reduced time the diffusion properties when the geometry of the REV varies. A
previous work [28] based on a ROM obtained by Proper Orthogonal Decomposition (POD) has been dedicated
to the resolution of a great number of cell problems, depending on geometrical parameters, in the case of the
NPP system, where the EDL effects are neglected. POD-ROM consists in, for a parametrized space dependent
problem, structuring an orthonormal family of space-dependent functions, which are the most representative
of the solution to the problem, for all parameter values considered. The original full-order problem is then
projected on these spatial modes to obtain the reduced-order model (ROM) valid for each parameter, which
allows to approximate the parameter dependent solutions in a lower dimensional subspace that retains mean
features of the original full system. Thus, and contrarily to the Full-Order Model (FOM), the ROM is a set of
algebraic equations whose size is reduced. The POD-ROM method is of current use in engineering sciences such
as Fluid Mechanics [22, 35], Fluid-Structure Interaction [15, 27] and control problems [31, 32] . . . Performing
POD for a geometry dependent problem is not straightforward, and the issue was adressed in [28] using a
parametrized geometrical transformation linking the REVs to a reference elementary cell, on which POD was
formulated. In the present work, the approach is generalized to the strongly non linear Nernst-Planck-Poisson-
Boltzmann system. Several works also combine model order reduction methods to homogenization like in [44]
for the modelization of hyperelastic media at finite strains, or in [23] where ROM is combined with the FE2
method, and more recently in [45] where POD contributes to the reduction of the number of variables that
characterize damage at a microscopic scale. In [18], a reduced order homogenization method is presented in
the case of materials including cohesive interfaces at microrcopic scale. Like in [44], this method relies on a
single space coordinate system for the initial and the deformed state of a representative volume element, which
corresponds to the undeformed state. However, this approach cannot be used for the geometry dependent ROMs
seen in this work. In the present case, the NPP equation depends on the Boltzmann factor r = e−Bϕ associated
with the electrical potential ϕ generated by the EDL. The latter is computed from the electrical potential, which
is solution of the Poisson-Boltzmann equation (PB), which is strongly nonlinear and depends on the physical
parameters of the EDL. The difficulty to apply POD-ROM here, is due to the fact that the Boltzmann factor
is an exponential function of the potential ϕ solution of the PB equation (5). It seems natural and easy to
build a ROM associated to the variable ϕ but it is not efficient in terms of computation time because of the
nonlinearity of the Boltzmann factor, which would entail, at each use of the ROM, the expensive projection of
the full-order problem on the POD basis of ϕ. To avoid this problem, it would be possible to use the Discrete
Empirical Interpolation Method (DEIM) approach [13, 43], combined with Finite Element Method. Here, we
propose to apply directely the POD to the factor r which implies to reformulate the PB equation into a problem
explicitely dependent on the Boltzmann factor r.

The aim of this paper is to propose a method to compute, in a reduced time, the homogenized coefficients
derived from NPPB cell problems for a large number of REVs. It is organized as follows. In section 2, the
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periodic homogenization of the multiscale ionic diffusion model is summarized and the classical cell problem is
recalled. In section 3, the proposed POD based model order reduction method is presented. We firstly detail
the procedure for an elementary cell with a single inclusion and secondly generalize it to the case of multiple
inclusions. In section 4, we present numerical results that illustrate the accuracy and the reduced computational
cost of the proposed method. Applications are done on a three-dimensional isotropic elementary cell depending
on a single geometry parameter, for various values of physical parameters Cb and σ, and on a two-dimensional
cell, with eight solid inclusions, depending themselves on two geometry parameters.

2 Problem statement

In this section, we firstly present the Nernst-planck-Poisson-Boltzmann (NPPB) equations which rule ionic
diffusion in a saturated porous medium1 like cementitious media, taking into account for the electrical double
layer (EDL) due to adsorbed ion on the solid-fluid interface. Secondly, we recall briefly the periodic homogeniza-
tion technique and present the results when it is applied to the NPPB system. In a third time, we explicit the
calculation of the macroscopic homogenized coefficients from the ROM proposed for the non linear cell problem.

2.1 Ionic diffusion with EDL effect

Consider a saturated porous (cementitious) medium occupying a domain constituted of a path-wise connected
fluid phase Ωf ⊂ Ω through which ions can migrate, a solid phase Ωs = Ω \ Ωf (not necessarily path-wise
connected), and a solid-fluid interface Γsf (see figure 1).

Γsf

Ωs
Ωs Ωs

Ωf

Ω

n

Fig. 1: Schematic view of a typical saturated porous medium, with fluid phase Ωf , solid inclusions Ωs and
solid-fluid interface Γsf .

Ionic diffusion of anions and cations in the pore solution obeys the Nersnt-Planck equations:





∂c±
∂t
−D± div

(
∇c± ±B c±∇Ψ

)
= 0, in Ωf ,(

∇c± ±B c±∇Ψ
)
· n = 0, on Γsf ,

(1)

where the c± (mol.m−3) denote the concentrations of anions (c−) and cations (c+) in the pore solution, Ψ
(V) the electrical potential, D± (m2.s−1) the self-diffusion coefficients assumed to be constant, B = F

RT with

T (K) the constant temperature, F = 96485 (Cb.mol−1) the Faraday’s constant and R = 8.314 (J.K.mol−1)
the perfect gas constant. The homogeneous Neumann boundary condition stands from the impermeability of
the pores with n the unit normal vector on Γsf exterior to Ωf . Equation (1) consists in the Fick’s law with
the transport of electrically charges ions by the electrical field εv∇Ψ . For an acqueous solution composed of
two ionic species, with single positive and negative charge respectively, the Poisson equation for the electrical
potential reads: {

εv∆Ψ + F (c+ − c−) = 0, in Ωf , ,
εv∇Ψ · n = σ, on Γsf .

(2)

1 The interested reader will find more information in [10,19,20,40].
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where σ (C.m−2) is the surface charge density on Γsf and εv (C.V−1.m−1) the electrical permittivity of the
pore solution.

Classically, the electrical potential is decomposed into ([6, 9, 10]):

Ψ = ψb + ϕ2 , (3)

where ψb is the electrical potential in the bulk (the pore solution far from the solid-fluid interface), and ϕ
the potential generated by the EDL effects. According to the Gouy and Chapman (1913) model [21], the ionic
species lying in a diffuse layer close to the EDL follow the Boltzmann distribution:

c± = Cb e
∓B ϕ , (4)

where Cb is the ionic concentration in the bulk. Following equation (2) combined with relation (4) leads to the
Poisson-Boltzmann equation: {

εv∆ϕ− 2F Cb sinh (B ϕ) = 0, in Ωf ,
εv∇ϕ · n = σ, on Γsf ,

(5)

which describes ionic diffusion at the microscopical scale. Resolution of this nonlinear, transcendental equation
provides the electrical double layer potential ϕ.

2.2 Periodic homogenization

Periodic homogenization is based on the assumption that the porous medium with characteristic length L (m)
can be well approximated by the periodic repetition of a single microscopic cell with characteristic length ` (m),
representative of the real microstructure (see figure 2). In the sequel, we adopt the classical notation: x for the
spatial coordinates at macroscopical scale, and y for spatial coordinates at the microscopical scale. Finally, the
overall solid and fluid domain of the elementary cell Y will be noted Ys and Yf , and its solid-fluid interface will
be noted Ssf .

(a) Periodic microstructure (b) Elementary Cell or REV

Fig. 2: Example of a periodic microstructure

Provided the relation

ε =
`

L
� 1 , (6)

which is a homogenizability condition, the periodic homogenization procedure [6,7,9,10] consists in developping

the physical quantities c±, Ψ , ϕ as formal power series of the perturbation parameter ε =
`

L

2 This relation is the electroneutrality of the system constituted of the pore space and the interface.
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c± = c±
0(x,y, t) + εc±

1(x,y, t) + ε2c±
2(x,y, t) + . . . , (7)

ψb = ψb
0(x,y, t) + εψb

1(x,y, t) + ε2ψb
2(x,y, t) + . . . , (8)

ϕ = ϕ0(x,y, t) + εϕ1(x,y, t) + ε2ϕ2(x,y, t) + . . . , (9)

whose terms before ε0, ε1, ε2 . . . represent the physical quantities of NPPB equations at different space scales.

The leading term (C0
b, ϕ

0) in the NPPB equations is then identified through the resulting cascading problems
coming from the cancellation of powers in εp, p ∈ Z. It is solution of the expected homogenized problem
(see [6, 7, 9, 10] for more details) summarized below where C0

b and ϕ0 have been denoted Cb and ϕ for ease of
reading

εp
∂
〈
Cbe

∓Bϕ〉
y

∂t
− divx

(
Dhom
± (∇xCb ±BCb∇xψb)

)
= 0 (10)

where 〈 〉y is the spatial mean-value operator on the Elementary Cell fluid domain. εp denotes the medium’s

porosity defined by εp =
|Yf |
|Y| with |Y| the volume of Y. The homogenized diffusion tensor is given by:

Dhom
± =

1

|Y|

∫

Yf

D± e
∓B ϕ (I +∇ᵀ

yχ±
)

dY , (11)

where Aᵀ denotes the transposition operator of tensor A.

Electrical potential ϕ, at the microscale, is solution of:

{
εv∆yϕ = 2F Cb sinh (B ϕ) in Yf ,

εv∇yϕ · n = σ on Ssf .
(12)

Moreover, vector field χ± is solution to the following equation:

{
divy

(
D± e

∓B ϕ (I +∇yχ±ᵀ)
)

= 0 in Yf ,(
D± e

∓B ϕ (I +∇yχ±)
)
· n = 0 on Ssf ,

(13)

The problem (13) where ϕ is given by (12) constitutes the so-called cell problem, whose solutions characterize
geometrical and physical properties of the REV. Since the two problems are analogous, and for the sake of
simplicity, we will only consider this multiscale model for a single, positively charged ionic specy. Thus we drop
the ± specification from all quantities in the sequel. Furthermore, the ionic diffusion coefficient D in the pore
solution is assumed to be constant.

2.3 Reduced Order Model for the NPPB equations

2.3.1 A geometry dependent reduced order model

The aim of this work is to compute fastly the homogenized tensor Dhom given by (11) for an elementary cell
whose geometry depends on a vector set of parameters ρ. We can for example take the Elementary Cell figured
on Fig. 2b, and choose for parameters the radii ρ1, . . . , ρn of its solid inclusions. A fast computation of Dhom

for each individual value of ρ is useful if one needs to take care of the variability of a porous medium geometry.
The approach consists in approximating the vector field χ and the electrical double layer potential ϕ into the
following form:

χ̂(y,ρ) '
nχ∑

j=1

aj(ρ)φj(y) and ϕ̂(y,ρ) '
nϕ∑

i=1

pi(ρ)φϕi (y) , (14)

where (φj)j and (φϕi )i are two sets of orthogonal space-dependent functions, that will be used to perform the
Galerkin projection of the associated weak form of the cell problem (see appendix A).
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In a previous work [28], for the case of NP problem where the EDL effects are neglected (that corresponds to

e
−B

nϕ∑
i=1

pi(ρ)φ
ϕ
i (y) ' 1), the authors used an efficient POD-ROM in which explicitely appears the geometrical

parameters ρ = (ρ1, . . . , ρn). It is based on an analytical transformation which maps the various geometrical
domains Yf(ρ) on a reference domain Y?

f = Yf(ρ?). In the present paper, the method is extended to the NPPB
problem. Now we present the approach for the NPPB problem.

2.3.2 Recall on the correlations tensors

Coefficients aj(ρ) and pi(ρ) are obtained by solving a set of algebraic equations whose size is of the order of nχ,
the so-called reduced-order model (ROM). The spatial functions or modes φj and φϕi are built using Proper
Orthogonal Decomposition (POD) with the method of snapshots [39]. More precisely, the so-called Snapshot
POD for field χ or ϕ consists of computing, for a finite set ρ1, ρ2, . . . , ρnsnap of values of the geometry
parameter, particular solutions of the cell problems (12)–(13), using the classical, Finite Element Method. Once
these solutions have been computed, the spatial correlation tensors

[Cϕ]ij =

∫

Yf

ϕ(y,ρi)ϕ(y,ρj) dY and [Cχ]ij =

∫

Yf

χ(y,ρi) · χ(y,ρj) dY (15)

are computed. Their eigenvalues and eigenvectors provide the POD spatial modes φϕi and φj . In both expressions
in (15), a unique integration (fluid) domain Yf is needed, which is not possible if ρi 6= ρj . This motivates the
reformulation of the cell problems on a single geometrical domain Y? with spatial coordinates ξ, where the
dependency on the geometrical parameter ρ lies in Jacobian matrices Ĵρ (respectively its determinant ĵρ),
which are tensor fields (respectively scalar fields). The transformation that maps Yf to Y?

f that has been
proposed in [28] is detailed in appendix B.2.

2.3.3 The POD-ROM for NPPB and Poisson-Boltzmann: Galerkin projection

Taking the EDL into account for periodic homogenization leads to the weak form of the Nernst-Planck-Poisson-
Boltzmann problem (13):

∫

Yf

e−Bϕ∇yχ : ∇yvdY =

∫

Yf

∇y
(
e−Bϕ

)
· vdY −

∫

Ssf

e−Bϕv · ndS ∀v ∈ Vρ , (16)

where Vρ is the space of regular vector-valued functions defined on Yf .

After a pullback3 ξ = τ̂ρ
−1y on the reference domain Y?, it may rewritten as

∫

Y?f

e−Bϕ?
(
∇ξχ? Ĵρ

−1)
:
(
∇ξv? Ĵρ

−1)
ĵρdY? =

∫

Y?f

Ĵρ
−ᵀ
∇ξ e−Bϕ? ·v? ĵρdY?−

∫

Ssf
?

e−Bϕ?v?·n? gρ dS? ∀v? ∈ V?,

(17)
where

χ?(ξ,ρ) = χ(y,ρ), (18)

ϕ?(ξ,ρ) = ϕ(y,ρ), (19)

v?(ξ,ρ) = v(y,ρ). (20)

and where V? is the space of vector-valued functions defined on Y?
f .

Moreover, relation (11) becomes

Dhom =
1

|Y?|

∫

Y?f

D e−Bϕ?
(
I +∇ξχ? Ĵρ

−1ᵀ)
ĵρ dY?, (21)

Once the POD basis is obtained, approximations (14) are substituted in equation (17). Thus, the ROM is
obtained:

3 See the previous work [28] or Appendix B.1 for a detailed presentation
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∫

Y?f

e
−B

nϕ∑
i=1

pi(ρ)φ
ϕ
i ∇

( nχ∑

j=1

aj(ρ)φj

)
Ĵρ
−1

: ∇φl Ĵρ
−1
ĵρ dY? =

∫

Y?f

Ĵρ
−ᵀ


∇e

−B
nϕ∑
i=1

pi(ρ)φ
ϕ
i


 · φl ĵρ dY?

−
∫

Ssf
?

e
−B

nϕ∑
i=1

pi(ρ)φ
ϕ
i (
φl · n?

)
ĵρ dS? ∀l ∈ 1, . . . , nχ

(22)

and the same operation on (21) gives (see also [28] for more details)

Dhom =
1

|Y?|

∫

Y?f

D e
−B

nϕ∑
i=1

pi(ρ)φ
ϕ
i


I +


∇

( nχ∑

j=1

aj(ρ)φj

)
Ĵρ
−1




ᵀ
 ĵρ dY? . (23)

In expressions (22)-(23), the sum
nχ∑
j=1

and integral symbols can be inverted, but this is not the case of the

symbols

∫
and

nϕ∑
i=1

, due to the nonlinearity of the factor

e
−B

nϕ∑
i=1

pi(ρ)φ
ϕ
i (ξ)

. (24)

Consequently, every expression in (22)–(23) involving the factor (24) must be integrated for each value of ρ in
order to perform the Galerkin projection. As these integral computations cannot be done in a reduced time, the
ROM efficiency is compromised.

Obviously, the same difficulty is encountered when performing model order reduction on the highly nonlinear,
Poisson-Boltzmann equation (5). Both issues are adressed in the next section.

3 POD-ROM for NPPB

In this section, we present a POD reduced-order model dedicated to the computation, in a reduced time, of the
homogenized tensor Dhom which appears in the periodic homogenization procedure, in the case when Electrical
Double Layer effects are taken into account. This reduced-order model relies on the reformulation of cell problems
on a reference geometrical domain, using the method developed by the authors in [28]. Furthermore, the issues
about Galerkin projection that have been outlined in the former section are resolved.

The main idea of this work is to rewrite the Poisson-Boltzmann equation (5) and the cell problem (13) as
equations satisfied by the Boltzmann factor

r
def
= e−Bϕ , (25)

associated to the double layer potential ϕ. As well as for ϕ, r is pulled back onto the reference domain Y?
f , and

it results in the field r? which verifies:

r?
def
= e−Bϕ? , (26)

where ϕ? is defined by relation (19).

Let us write the POD of the field r?:

r̂?(ξ,ρ) =

nr∑

i=1

bi(ρ)φri (ξ) . (27)

Thus, substituting r? to e−Bϕ? in equation (17), the following equation is obtained

∫

Y?f

r?
(
∇ξχ? Ĵρ

−1)
:
(
∇ξv? Ĵρ

−1)
ĵρdY? =

∫

Y?f

Ĵρ
−ᵀ
∇ξ r? · v? ĵρdY? −

∫

Ssf
?

r?v? · n? gρ dS? ∀v? ∈ V?, (28)
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and it is possible to decompose the fields χ?, v?, r? on the two POD basis (φri (ξ))
nr
i=1 and (φj(ξ))

nχ

j=1. This

provides the reduced-order linear system whose solution is (aj(ρ))
nχ

j=1

nχ∑

j=1

aj(ρ)

nr∑

i=1

bi(ρ)

∫

Y?f

φri ∇φj Ĵρ
−1

: ∇φl Ĵρ
−1
ĵρ dY? =

nr∑

i=1

bi(ρ)

∫

Y?f

Ĵρ
−ᵀ
∇φri · φl ĵρ dY? −

nr∑

i=1

bi(ρ)

∫

Ssf
?

φri φl · n? gρ dS?

∀l ∈ 1, . . . nχ ,

(29)

as well as the estimation of D̂hom

D̂hom(ρ) =
D

|Y?|

(
nr∑

i=1

bi(ρ)

∫

Y?f

φri ĵρ dY?

)
I +

D

|Y?|

nχ∑

j=1

aj(ρ)

nr∑

i=1

bi(ρ)

∫

Y?f

φri
(
∇ξ φj Ĵρ

−1)ᵀ
ĵρ dY? , (30)

which is obtained by substituting r̂?(ξ,ρ) =
nr∑
i=1

bi(ρ)φri (ξ) to e
−B

nϕ∑
i=1

pi(ρ)φ
ϕ
i (ξ)

in relation (23). Contrarily to

the ROMs of (22)–(23), which relied on the POD of the potential ϕ?, the inversion of operators
nr∑
i=1

and

∫
is

possible, providing the precomputation of the ROM coefficients.

The reformulation, involving r = e−Bϕ, of the NPPB problem, followed by its model order reduction, consists
in three steps:

1. Writing weak forms of the Poisson-Boltzmann equation involving the Boltzmann factor r = e−Bϕ. These
must depend multilinearily from r so that the Galerkin projection can be precomputed ;

2. Using the Galerkin projection, building a reduced-order model of the Poisson-Boltzmann equation that
computes in a reduced time an estimate r̂? of the Boltzmann factor ;

3. Using the Galerkin projection, building a reduced-order model that computes in a reduced time estimates
χ̂? (respectively D̂hom) of the cell problem’s solution (respectively of the diffusion tensor).

3.1 Reformulation of the Poisson-Boltzmann equation

Let us recall the strong formulation of Poisson-Boltzmann equation (5) on the elementary cell:
{
εv∆yϕ− 2F Cb sinh (B ϕ) = 0, in Yf ,

εv∇yϕ · n = σ, on Ssf .
(31)

A weak form of this problem is derived using the divergence theorem on Yf ∪ Ssf :

εv

∫

Yf

∇ϕ∇qdY + 2F Cb

∫

Yf

sinh (B ϕ) qdY =

∫

Ssf

σqdS , (32)

for all test function q in a function space Wρ defined on the fluid domain Yf . By using the identities

– ∇ϕ = −B−1r−1∇r,

– ∆ϕ = B−1

(
∇r · ∇r
r2

− ∆r

r

)
,

associated to the Boltzmann factor r, it is seen that equation (31) is equivalent to

{
εv (r∆r −∇r · ∇r) = F BCb

(
r3 − r

)
on Yf ,

εv∇r · n = −Brσ on Ssf ,
(33)

and (32) can be reformulated as

εv

∫

Yf(ρ)

r−1∇r∇qdΩ + F BCb

∫

Yf(ρ)

(
−r−1 + r

)
qdΩ +B

∫

Ssf(ρ)

σqdΓ = 0 , ∀q ∈Wρ . (34)
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It must be noticed that, like in the case of the original Poisson-Boltzmann equation, it is not possible to
precompute the coefficients of the ROM associated to equation (34). Indeed, if we write

r̂? =

nr∑

i=1

bi(ρ)φri (ξ) , (35)

and substitute the right side of (35) to r in equation (34), we see that the expression

(
nr∑
i=1

bi(ρ)φri (ξ)

)−1

appears in place of r−1. Then, the sum
nr∑
i=1

and integral symbols in (34) can’t be inverted, and the coefficients

of the ROM must be computed for each parameter ρ where the ROM is supposed to be performed.

This issue is overcome by splitting equation (34) into a system of two equations, satisfied by a pair (r, u) of
scalar functions:





εv

∫

Yf

u∇r · ∇q dY + CbB

∫

Yf

rq dY = CbB

∫

Yf

uq dY − B

∫

Ssf

σq dS , ∀q ∈Wρ ,

ru = 1 .

(36)

Here, the second equation states that u will play the role of r−1, and the first equation provides the solution r
of equation (34), without involving the inversion r−1 of the unknown function. Thus, the Galerkin projection
can be precomputed, providing a reduced-order model for the couple (r, u). It is important to see that this
reduced-order model requires not only the proper orthogonal decomposition (35) of the Boltzmann factor r, but

also the POD û? =
nu∑
e=1

ceφue of the scalar field u.

In the sequel, we manage to construct POD-ROM for NPPB using equation (33) or equation (36).

3.2 ROM of the Poisson-Boltzmann equation

3.2.1 Galerkin projection

To get started, let us write the weak form of equation (33)

εv

∫

Yf

(∇r · ∇q) r dY + 2εv

∫

Yf

(∇r · ∇r) q dY + FBCb

(∫

Yf

r3 q dY −
∫

Yf

r q dY

)

+Bσ

∫

Ssf

r2 q dS = 0, ∀q ∈Wρ.

(37)

The presence of the cubic term r3 is an issue. Indeed, the ROM of equation (37), pulled back in the reference
domain Y?

f , involves:

∫

Y?f

φri φ
r
j φ

r
k φ

r
l ĵρ dY? (38)

for all i, j, k, l in 1, . . . , nr, and where (φri )i are the POD modes of the salar function r. For example, when
nr = 5, this involves 625 integral computations, including O(ndof) operations each. Although it is possible
to reduce this arithmetical complexity by taking the symmetrical roles of i, j, k and l into account, it is not
sufficient to thwart the O(nr

4) increase of the number of operations involved by the Galerkin projection. For
this reason, we give up this approach for the POD-ROM computation of Dhom, we will focus on the coupled
problems (36) instead.

Let us write the problem to reduce on the reference domain Y?
f . We have
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



εv

∫

Y?f

u? J
−ᵀ
ρ ∇ r? · J−ᵀ

ρ ∇ q? ĵρ dY? + CbB

∫

Y?f

r?q? ĵρdY?= CbB

∫

Y?f

u?q? ĵρdY? − B

∫

Ssf
?

σq? gρ dS? ∀q?

∫

Y?f

r? u? q? ĵρdY? =

∫

Y?f

q? ĵρ dY? ∀q?

(39)

where the weak equation

∫

Yf

r? u? q? ĵρ dY? =

∫

Yf

q? ĵρ dY? is derived from equation ru = 1.

Galerkin projection of equation (39) consists in substituting:

r? =

nr∑

i=1

biφri ; u? =

nu∑

e=1

ceφue (40)

and taking the generic φrl (respectively φuf ) as test functions in the first (respectively the second) equation. It
particularly requires to do a POD on the inverse Boltzmann factor u?. It results in the following, nonlinear
reduced problem





εv
nr∑
i=1

n∗
r∑

e=1
Aρileb

ice + FCbB

(
nr∑
i=1

Dρ
ilb
i −

n∗
r∑

e=1
Gρlec

e

)
= −Bσfρl ∀l ∈ 1, . . . , nr

nr∑
i=1

n∗
r∑

e=1
Cρeif b

ice = hρf ∀f ∈ 1, . . . , n∗r

(41)

with

fρl =

∫

Ssf
?

φrl gρ dS? (42)

Aρile =

∫

Y?f

(
Jρ
−ᵀ∇ξφri

)
·
(
Jρ
−ᵀ∇ξφrl

)
φue ĵρ dY? (43)

Dρ
il =

∫

Y?f

φrl φ
r
l ĵρ dY? (44)

Gρle =

∫

Y?f

φrl φ
u
e jρ dY? (45)

hρf =

∫

Y?f

φuf ĵρ dY? (46)

Cρeif =

∫

Y?f

φue φ
r
i φ

u
f ĵρ dY? (47)

Provided these coefficients are calculated, the nonlinear algebraic equations (41) are resolved by either using
Newton method, or computing alternatively coefficents bi and ce in an iterative procedure, which converges
according to a fixed-point property. The performances of both methods are very close. The fixed-point method
has been retained for the numerical applications presented in this work, since its implementation is simpler.

3.2.2 Explicit ROM coefficients

Computing, for any value of ρ, tensor Dhom(ρ) in a reduced time using equations (29), (30) and (41), requires
that the integral expressions which result from Galerkin projection are precomputed, independently from the

geometrical parameter. Scalar or tensor fields ξ 7→ ĵρ, ξ 7→ Ĵρ
−1

and ξ 7→ gρ must then be decomposed into
expressions where space variable ξ and geometrical parameter ρ are separated. In [28], the authors derive such
decompositions from the explicit formulas (B.77)–(B.78), when the EDL effects are neglected. This method
is recalled in the appendix B.3, and is apparented to Reduced Basis techniques that and have been widely
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used in the context of fluid mechanics [17, 24, 34] 4.The full and reduced problem set on the reference domain
are thus said to be affinely dependent from the parameter ρ. Formulae (B.90) and (B.98) provide the affine

decompositions for ĵρ and gρ. Moreover, relation (B.81) proves that Ĵρ is, for each ξ, a symmetrical operator.
Thus we have the following expressions

∫

Y?f

(
Jρ
−ᵀ∇ξφri

)
·
(
Jρ
−ᵀ∇ξφrl

)
φue ĵρ dY? =

∫

Y?f

(
Jρ
−2ᵀ ĵρ∇ξφri

)
· ∇ξφrl φue dY? (48)

where A−ᵀ denotes the inverse of the conjugate of matrix A. Consequently, to separate ρ and ξ in all integral
expressions resulting from Galerkin projection, it is sufficient to achieve this operation for the tensor fields

ξ 7→ Ĵρ
−2
ĵρ. (49)

since tensor Ĵρ and its inverse are symmetric. We notice that variable separation is not directely possible for Ĵρ
−1

because of the βρn‖ξ− ξn‖+αρn denominators. Anyway, these denominators are simplified in expressions (49)

thanks to the
(
βρn‖ξ−ξn‖+αρn

)d−1
factor which appear in (B.90) (see appendix B.3). An affine decomposition

will be possible if d− 1− 2 ≥ 2 (worst case). Nevertheless, this simplicifation depends on the dimension d of the
elementary cell Y, which can be 2 or 3. The authors of [28] stated that consequently, an affine decomposition
exists exactely if d = 3, but not if d = 2. For d = 2 the decomposition can be approximated by using a truncated
power series. Formulae allowing this decomposition are developed in [28] and recalled in appendix B.3. We
deduce, from expressions (B.90)–(B.94), coefficients Aρile, C

ρ
eif , Dρ

il, G
ρ
le, f

ρ
l and hρf of the ROM (39) of

the Boltzmann factor

Cρ = C +

ns∑

n=1

d−1∑

p=0

Cpd−1α
p
ρnβ

d−p
ρn C̃p,n (50)

where Cpd−1 =
n!

(n− p)!p! is the generic binomial coefficient, ns the number of solid inclusions and with

[
C]eif =

∫

Y?e

φue φ
r
i φ

u
f dY? and

[
C̃p,n

]
eif

=

∫

Y?c,n

φue φ
r
i φ

u
f

1

‖ ξ − ξn ‖p
dY? (51)

Dρ is written as

Dρ = D +

ns∑

n=1

d−1∑

p=0

Cpd−1α
p
ρnβ

d−p
ρn D̃p,n, (52)

with

[
D]il =

∫

Y?e

φrl φ
u
l dY? and

[
D̃p,n

]
il

=

∫

Y?c,n

φrl φ
r
l

1

‖ ξ − ξn ‖p
dY?. (53)

The tensor Gρ is given by

Gρ = G+

ns∑

n=1

d−1∑

p=0

Cpd−1α
p
ρnβ

d−p
ρn G̃p,n, (54)

with

[
G]le =

∫

Y?e

φrl φ
u
e dY? and

[
G̃p,n

]
le

=

∫

Y?c,n

φrl φ
u
e

1

‖ ξ − ξn ‖p
dY?. (55)

The other coefficients are given by

4 See the pedagogical treatise [33] for more information on Reduced Basis Methods.
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fρ =

ns∑

n=1

gρ,n fn with
[
fn
]
i

=

∫

Γ ?n

φrl dS?. (56)

and

hρ = h+

ns∑

n=1

d−1∑

p=0

Cpd−1α
p
ρnβ

d−p
ρn h̃p,n , (57)

with

[
h]f =

∫

Y?e

φuf dY? and
[
h̃p,n

]
f

=

∫

Y?c,n

φuf
1

‖ ξ − ξn ‖p
dY? . (58)

Finally, the tensor Aρ is expressed approximately as

Aρ ' A+

ns∑

n=1

(
Ã0,0,n +

αρn
βρn

Ã1,0,n

)
−

ns∑

n=1

(
1 + βNdev+1

ρn

) αρn
βρn

Ã0,1,n

+

ns∑

n=1

Ndev∑

p=1

(−1)p
(
Ndev∑

m=p

βmρnC
p
m

)
(1− βρn)

αρn
βρnq

p
Ãp,1,n ,

(59)

with

[
A
]
ile

=

∫

Y?e

φue∇ξφri · ∇ξφrl dY?, (60)

[
Ãp,0,n

]
ile

=

∫

Y?c,n

φue
∇ξφri · ∇ξφrl
‖ ξ − ξn ‖p

dY? , (61)

[
Ãp,1,n

]
ile

=

∫

Y?c,n

φue

(
‖ξ − ξn‖p−1Gu(ξ−ξn)∇ξφ

r
i

)
· ∇ξφrl dY? . (62)

where Ndev is the number of terms that are kept, in the case of d = 2, in the power series of Ĵρ
−2
ĵρ. It must

be noticed that these coefficients are independent from ρ and are precomputed once and for all.

3.3 ROM for the NPPB problem

Like in subsection 3.2.2, the symmetry of operator Ĵρ for all ξ can be employed to reformulate the integral
expressions over fluid domains, which appear in (29)–(30), as:

∫

Y?f

φri ∇φj Ĵρ
−1

: ∇φl Ĵρ
−1
ĵρ dY? =

∫

Y?f

φri ∇φj Ĵρ
−2
ĵρ : ∇φl dY? (63)

∫

Y?f

Ĵρ
−ᵀ
∇φri · φl ĵρ dY? =

∫

Y?f

(
Ĵρ
−1
ĵρ
)ᵀ∇φri · φl dY? (64)

∫

Y?f

φri
(
∇ξ φl Ĵρ

−1)ᵀ
ĵρ dY? =

∫

Y?f

φri
(
∇ξ φl Ĵρ

−1
ĵρ
)ᵀ

dY? . (65)

(66)

These expressions are involved in the computation of χ̂? and D̂hom. Consequently, variables ρ and ξ can be
separated in all integral expressions resulting from Galerkin projection, if this operation is done for tensor fields:

ξ 7→ Ĵρ
−1
ĵρ and ξ 7→ Ĵρ

−2
ĵρ. (67)

Formulae providing χ̂? and D̂hom are similar, they are sent into Appendix C for the sake of clarity.
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3.4 Summary of the method

The reduced-order model developed in this section for periodic homogenization consists in the following steps:

Offline 1. Using firstly equation (39) and secondly equation (28), compute the snpshots5 r?(ξ, ρ1), . . . ,
r?(ξ,ρnsnap), u?(ξ, ρ1), . . . , u?(ξ,ρnsnap) and χ?(ξ,ρ1), . . . , χ?(ξ,ρnsnap), for a sample {ρ1, . . . ,ρnsnap}
of parameter values where r? = e−Bϕ? and u? = e+Bϕ? ;

2. Compute correlation tensors [Cχ]jk =

∫

Y?f

χ?(ξ;ρj) · χ?(ξ;ρk) dY?, [Cr]il =

∫

Y?f

r?(ξ;ρi) r?(ξ;ρl) dY?

[Cu]ef =

∫

Y?f

u?(ξ;ρe)u?(ξ;ρf ) dY? ;

3. Build basis (φj)
nsnap

j=1 , (φri )
nsnap

i and (φue )
nsnap
e ;

4. Determine the truncation indexes nχ, nr and nu such that

χ?(ρ, ξ) '
nχ∑

j=1

aj(ρ)φj(ξ) ; r?(ρ, ξ) '
nr∑

i=1

bi(ρ)φri (ξ) ; u?(ρ, ξ) '
nu∑

e=1

ae(ρ)φue (ξ) ,

according to the criterion seen in the appendix A (Equation (A.74)).

5. Using the POD modes obtained in step 4, compute coefficients
[
A
]
ile

,
[
Ã0,0,n

]
ile

,
[
Ã0,1,n

]
ile

,
[
C
]
eif

,
[
C̃
]
eif

,
[
D̃
]
il

,
[
D
]
il

,
[
G
]
le

,
[
G̃
]
le

,
[
f
]
l
,
[
f
]
l
,
[
h
]
f
,
[
h̃
]
f

(formulae (50)–(62)) ;

and coefficients [Cχ]ki, [C̃χn]ki, s,
[
s̃p
]
i
,
[
Aχ
]
jki

,
[
Ãχp,0

]
jki

,
[
Ãχp,1

]
jki

,
[
Ãχp,1

]
jki

,
[
Bχ
]
ki

,
[
B̃χp,0

]
ki

,
[
B̃χp,1

]
ki

,
[
Kr

ji

]
ab

,
[
K̃r

(p,0) ji

]
ab

,
[
K̃r

(p,1) ji

]
ab

, (appendix C).

Online For ρ /∈ {ρ1, . . . ,ρnsnap}:
1. Update Aρile, D

ρ
il, G

ρ
le, h

ρ
f , Cρeif , fρl, from coefficients

[
A
]
ile

,
[
Ã0,0,n

]
ile

,
[
Ã0,1,n

]
ile

,
[
C
]
eif

,

C̃
]
eif

,
[
D̃
]
il

,
[
D
]
il

,
[
G
]
le

,
[
G̃
]
le

,
[
f
]
l
,
[
f
]
l
,
[
h
]
f
,
[
h̃
]
f

(see formulae (59), (50), (52), (54), (56), (59)) ;

update coefficients Aχρ jli, B
χ
ρ li, C

χ
ρ li, sρi,

[
Kr
ρij

]
ab

, (see appendix C).

2. Resolution of the nested ROMs (41) and (29) to obtain (bi)i(ρ) and (aj)j(ρ)

3. Computation in a reduced time of tensor D̂hom(ρ) estimated by ROM from relation (30).

The Offline part, which involves the costly Snapshot computation with Finite Element Method, the correlation
tensor structure and the Galerkin projection, is done only one time. Online ROM computations can then be
done, in a reduced time, for a great number of values of ρ.

4 Numerical results

In this section, we illustrate the accuracy and the reduced computational cost of the proposed method. We
primarily focus on the ability of the method to approximate the homogenized diffusion tensor Dhom given by
equation (11) when D is constant. However, the latter may be split in two terms as follows:

Dhom = shomI + T hom, shom =
D

|Ω|

∫

Yf

e−BϕdY and T hom =
D

|Ω|

∫

Yf

e−Bϕ∇yχᵀdY . (68)

As the computation of the the first part is easy for all geometries, focus will be done on the computation of
T hom which is more challenging. In the next, the results obtained by solving the full-order model FOM and
the reduced-order are compared. FOM corresponds to the classical full-order finite-element model associated
with (32) defined over the physical domain which is remeshed for every value of the geometry parameter,
ROM denotes the reduced order model constructed from snapshots χ?(ξ;ρj), r?(ξ;ρi), u?(ξ;ρe), themselves
computed using full-order equations (28)–(39) set on Y?

f .

The accuracy will be studied by considering the relative error between the FOM and the ROM solutions, defined
as:

5 In this work, for the numerical applications, the snapshots for r? and u? were obtained from relations r? = e−Bϕ? and
u? = e+Bϕ? , where ϕ? came from the full-order Poisson-Boltzmann equation (12) pulled-back on Y?f .
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ev =
vROM − vFOM

vFOM
(69)

where v = shom, T hom
ij or Dhom

ij is a scalar ρ-dependent homogenized coefficient. On the other hand, for the
scalar-valued (respectively vector-valued) function v = r (respectively v = χ), the following error

ev =
‖v̂ref ◦ τ̂ρ−1 − v‖Vρ

‖v‖Vρ
(70)

between the ROM and full-order solutions will be evaluated on the physical domain Yf . All programs have been
written in Python3 using packages from the FEniCS project, and executed on 4 CPU cadenced at 2.90GHz,
with 16GB of working memory. In all this section, the full order solutions FOM are computed with quadratic
Lagrange elements.

4.1 Single spherical inclusion

The first microstructure for which POD-ROM is performed to compute tensor Dhom and T hom consists in the
periodic repetition of a cubical cell with a single spherical solid inclusion located at the center of the cell (see
figure 3). According to the symmetry of the elementary cell, the tensor Dhom exhibits isotropic properties.
Therefore, we limit the presentation of results to the tensor components Dhom

11 and T hom
11 .

(a) Periodical microstructure (b) Elementary cell

Fig. 3: Three dimensional periodical microstructure and associated REV fluid domain with single solid spherical
inclusion parametrized by its radius ρ.

4.1.1 POD-ROM construction

The POD bases are built by considering 6 snapshots corresponding to values {0.45, 0.55, . . . , 0.95} of radius ρ.
For this range of radius, the volume fraction of the fluid phase varies between 0.29 and 0.87. The POD bases
for ROM are truncated to 4 and 5 modes respectively, using the so-called energy criterion with ν = 10−4 of
POD (99, 99% of representativity, see appendix A). The transformation τρ is built with the reference radius
ρref = 0.8. The POD-ROM is tested for the 10 values {0.475, 0.525, . . . , 0.925} of ρ̃, which do not belong to the
training set. Physical paramters are F = 96490 C ·mol−1, R = 8.3143 J.K.mol−1, εv = 80 · 8.854 · 10−12 F.m−1

and T = 293 K. The ROM is tested for 4 sets of the pair (Cb, σ):

– Cb = 500 mol.m−3 and σ = −0.02 C.m−2,
– Cb = 500 mol.m−3 and σ = −0.2 C.m−2,
– Cb = 100 mol.m−3 and σ = −0.01 C.m−2,
– Cb = 20 mol.m−3 and σ = −0.01 C.m−2.
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4.1.2 Homogenized coefficients

Firstly, the results obtained on shom are evaluated, these are summarized on figure 4.

(a) Two values of σ (b) Two values of Cb

Fig. 4: Comparison of the coefficients shom obtained by the FOM and by the ROM for 4 values of (Cb, σ)

Figure 4 shows the shom values obtained with FOM method (respectively ROM method), plotted by circles (re-

spectively triangles). More precisely, the values of shom obtained by ROM are defined by ŝhom =
1

|Y?|
nr∑
i=1

bi sρi,

according to equation (30). The obtained value are sensitively the same, except from σ = −0.2 C.m−2 when
ρ < 0.7. The latter case is characterized by a relatively high value of the surface charge due to the adsorbed
ions, and then a relatively important influence of EDL. However, this is combined with a large porosity, which
isn’t realistic for cementitious media.

Fig. 5: Relative errors between the values of shom obtained by the ROM and those obtained by the FOM for 4
values of (Cb, σ)

Figure 5 presents the ROM error of ŝhom estimator. This error is computed with formula (69). We see that the

ROM error comparatively to FOM is less than 1% except if σ = −0.2 C.m−2. In the latter case, ŝhom errors

are less than 9%, and even 2% if ρ ∈ [0.7, 0.93]. This is of huge relevance since the error on ŝhom measures the
accuracy of the ROM of the Boltzmann factor.



16 Antoine Moreau et al.

(a) Two values of σ (b) Two values of Cb

Fig. 6: Comparison of the coefficients T hom
11 obtained by the FOM and by the ROM for 4 values of (Cb, σ)

With the conventions of figure 4, figure 6 shows the values of the first coefficient T hom
11 of the tortuosity tensor

T hom. The default values, obtained with FEM, are compared to the first coefficient of T̂ hom =
1

|Y?|
nr∑
i=1

bi
∑nχ

j=1 a
jKr

ρij
,

see again (30). According to figure 6, the ROM is able to correctly predict the value of T hom
11 except from the

small values of ρ in the case where σ = −0.2 C.m−2.

Fig. 7: Relative errors between the values of T hom
11 obtained by the ROM and those obtained by the FOM for 4

values of (Cb, σ)

Figure 7 presents the ROM error on coefficient T hom
11 , computed with formula (69). It confirms the observations

made with figure 6. In particular, ROM errors are less than 1% unless σ = −0.2 C.m−3. For fixed values of
physical parameters Cb et σ, errors are more important for low values of ρ (large porosity), they eventually
reach 7% when Cb = 20 mol.m−3. For σ = −0.2 C.m−3, ROM errors are more important. These are however
less than 4% if ρ ≥ 0.7.

We recall that Dhom
11 values are the sum of shom and T hom

11 . Thus, and according to figures 4 and 6, ROM
estimations of Dhom

11 are sensibly the same than values obtained with the full model FOM when σ 6= −0.2 C.m−3,
or when σ = −0.2 C.m−3 and ρ ≥ 0.7.
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Fig. 8: Relative errors between the values of Dhom
11 obtained by the ROM and those obtained by the FOM for

4 values of (Cb, σ)

We see more precisely on figure 8 that Dhom
11 estimation errors are less than 1% if σ 6= −0.2 C.m−2. When

σ = −0.2 C.m−2 and ρ ≥ 0.7, the estimation error of Dhom
11 is less than 10%.

4.1.3 Scalar and vector fields

Finally, figure 9 (respectively 9a) presents the ROM errors on the Boltzmann factor r (respecively χ), computed
using formula (70).

(a) e r (b) e χ

Fig. 9: Relative errors between the fields r and χ obtained by the ROM and those obtained by the FOM for 4
values of (Cb, σ)

According to figure 9a, the error made by the estimator r̂? is less than 1%, when σ 6= −0.2 C.m−2. If σ =
−0.2 C.m−2, the ROM error stays below 9%, moreover it is less than 4% if = ρ ≥ 0.625. This error is associated
with important differences between ρ and ρ?, which happen when porosity is large. According to figure 9b,
ROM errors on χ are less than 4% for all ρ, if σ 6= −0.2 C.m−3. When σ = −0.2 C.m−3, ROM errors are less
than 10% if ρ ≥ 0.7, e.g if the porosity is low.

4.1.4 Computing performances

Figure 10 presents, for all tested parameter values ρ̃, the time of execution of the FOM model (respectivement

the ROM model), which compute Dhom (respectively its estimation D̂hom). This time of execution includes r̂?

computation, ŝhom construction, χ̂? and T̂ hom estimation.
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Fig. 10: Time elapsed to compute D̂hom for σ = −0.01 C.m2 and Cb = 100 mol.m−3

Figure 10 presents the time of execution of the ROM. In the worst case, the computation of Dhom is 3 000 times
faster than using Finite Element Method. These performances do not depend on parameters Cb or σ, but only
of the mesh size.

Fig. 11: Time elapsed during the ROM construction

Finally figure 11 shows the time elapsed during the ROM construction. The unity is the mean time of a snap-
shot computation using the Finite Element Method. The performances involving only the Poisson-Boltzmann
equation and the integral shom of the Boltzmann factor are figures in dark blue, the rest is in light blue. It
can be seen that the computation of the snapshots of χ and its POD-ROM construction takes the most of the
time, it due to the fact that the Finite Element space of vetor field χ has more degrees of freedom than the one
containing the scalar field r. To conclude, the use of the ROM for this tridimentional problem is efficient when
the number of Cell problems to be solved is greater than 20.
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4.2 Multiple inclusions with various parameters

We now focus on a 2D elementary cell with 8 circular inclusions parametrized by two radii ρ1 and ρ2 (see
figure 12). These two radii correspond respectively to the inclusions numbered 1 and 2 on subfigures 12a and 12b.
Furthermore, the variation of the radii of the eight solid inclusions is determined by the pair (ρ1, ρ2). Indeed,
radii of the inclusions 3, 5 and 7 represented on subfigure 12a vary proportionnally to ρ1, although with different
amplitudes, as well as radii of the inclusions 4, 6 and 8 represented by subfigure 12b, vary proportionnaly to ρ2.

(a) (ρ1, ρ2) = (0.1387, 0.0547) (b) (ρ1, ρ2) = (0.0511, 0.1485) (c) (ρ?,1, ρ?,2 ) = (0.109, 0.109)

Fig. 12: Meshes for two different Elementary Cells (subigures 12a–12b), and the reference mesh (subigure 12c)

Figure 13 shows the mesh of the reference fluid domain Y?
f , aside with particular solutions ϕ? and χ? computed

using Finite Element Method.

(a) Reference mesh (b) Scalar field ϕ? (c) Vector field χ?

Fig. 13: Mesh of the reference domain ((ρ?1, ρ?2) = (0.1387, 0.1385)) and particular solutions to the cell
problems with (ρ1, ρ2) = (0.1387, 0.1385)

(a) 10 snapshots : Halton sequence

Fig. 14: (ρ1, ρ2) pairs used for the snapshots computation (blue disks) and for ROM model resolution (green
triangles).

The numerical application has been done a set of 10 snapshots. This set corresponds to the parameter values
(ρ1, ρ2) that have been sampled using the Halton sequence method (blue disks, see figure 14a). The reduced
order model has been then evaluated for 36 values of (ρ1, ρ2), represented by the green triangles on figure 14.
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In all numerical applications, the following values of the physical parameters are used: Cb = 500 mol.m−1 and σ =

−0.01 C.m−2. Finally, POD basis (φrl )i, (φr
−1

i )i and (φj)i basis contain 7, 7 and 8 spatial modes, using the
energy criterion with ν = 10−4 of POD (99, 999% of representativity). Notice that, since the periodic mi-
crostructures involved are no more isotropic (a priori), it is relevant to compute two coefficients, T hom

11 and
T hom
22 (respectively Dhom

11 and Dhom
22 ), for tensor T hom (respectively Dhom).

Fig. 15: Relative errors (in percent) between the values of homogenized coefficients obtained by the ROM and
those obtained by the FOM.

Fig. 16: Relative errors (in percent) between the fields r and χ obtained by the ROM and those obtained by
the FOM.

Figures 15 and 16 represent the ROM estimation errors defined by formulas (69) and (70). ROM errors on shom,
T hom
11 and T hom

22 reach at most 0.15% for shom, and 2.8% for T hom
11 and T hom

22 . Moreover, the error is less than
1%, for all coefficients, except for three values of ρ1, ρ2 that clearly appear at the bottom left corner of b) and
c) subplots of figure 15. The associated ROM errors on fields r and χ are reached for the smallest values of ρ1
and ρ2, they are respectively 3.5% and 7%.

Finally, for these numerical applications to two-dimensional cell problems, the ROM computations have been
approximately 100 times faster that those led using the full-order model. An even more important time ratio is
expected for three-dimensional cell problems (see figure 10), since the arithmetical complexity of the ROM is
independent from the number of degrees of freedom of the full-order model (see [28], section 3.4).
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5 Conclusion and perspectives

In this work, we have generalized the approach presented in [28] to solve, in a reduced time, cell problems
coming from the periodical homogenization of the Nernst-Planck-Poisson-Boltzmann (NPPB) equations. This
approach enables to estimate fastly homogenized tensor coefficients. In [28], the study was limited to cell
problems depending only on the fluid phase’s geometry, when the Electrical Double Layer (EDL) effects are
neglected. At the scale of Debye length, electrodiffusion equations of NPPB, involve the Boltzmann factor
r = e−Bϕ associated to the electrical potential ϕ close to the solid-fluid interface. The POD couldn’t be directely
performed on potential ϕ because of the nonlinearity of the NPPB system. To overcome this, a reformulation of
NPPB involving the Boltzmann factor r and its inverse u has been proposed, in order to perform the POD-ROM
on the three variables r, u and χ. This provided an efficient reduced-order model. The results of this approach
have been presented for (i) a three dimensional periodic microstructure consisting of the repetition of a cell
with a single spherical, 3D parametrized inclusion, and (ii) a two-dimensional cell with eight circular inclusions,
parametrized with two numbers ρ1 and ρ2. In the mono-inclusion case, several values of the physical parameters
Cb and σ were tested. We have seen that the homogenized coefficient Dhom

11 is restituted with an error below
1% errors in most cases (the error are more important when σ = −0.2 C.m−2 and when the porosity is large).
Even for the greatest value of σ tested, the ROM error is less than 10% for low porosities, which are the most
realistic for cementitious media. Finally, the time of execution of the ROM is 3 000 times less than when the
Finite Element Method is uesd. This ratio only depends on the size of the Finite Element space, and not on the
geometrical or physical parameters. In the multi-inclusion case, the Halton sampling method has been used to
generate the snapshots, avoiding computing full-order solutions for an important number of parameter values.
For all homogenized coeffients, the ROM errors are less than 3% (they are even less than 8% for the solutions
r or χ of the cell problems).

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgement

The authors would like to express their sincere thanks to the NEEDS program for having supported this work.

A Galerkin POD-ROM based on the snapshot method

The snapshot method, introduced by Sirovich in [38], was used here to build a Galerkin POD-ROM in order to solve fastly the
homogenization cell problem (13) in the case e−B ϕ ' 1. It consists of writing, for all y and ρ:

χ(y,ρ) ' χ̂(y,ρ) =

nχ∑
j=1

aj(ρ)φj(y) , (A.71)

where (φj(y))j is a sequence of space depending fonctions or POD modes.

Firstly, the particular solutions (χ(y,ρj))j of the full-order problem are computed for a set {ρj}
nsnap

j=1 of values of parameter ρ.

Then, the POD modes are computed using the formula:

φi(y) =
1
√
λi

nsnap∑
j=1

[vi]jχ(y,ρj) , (A.72)

where (vi)i (respectively (λi)i) are the unit eigenvectors (respcetively their associated eigenvalues) of the symmetric positive
definite correlation matrix:

[Cχ]ij =

∫
Y
χ(y,ρi) · χ(y,ρj) dY . (A.73)
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Afterwards, the POD basis which appears in the decomposition (A.71) is obtained by retaining the nχ first vectors of basis
(φi)i, where nχ verifies6:

nχ = min

n ∈ 1, . . . , nsnap

∣∣∣∣∣∣∣∣∣
nχ∑
i=1

λi

nsnap∑
i=1

λi

< 1− ν

 (A.74)

where the POD modes have been preliminary sorted so that the λi sequence decreases and where ν represents the relative content
of information that is eliminated by the POD truncation, chosen prior to the POD basis construction. Since in applications
to Mechanics, notably to Fluid Mechanics, threshold ν is of the dimension of an energy, this criterion of selection of the most
representative POD modes is called an energy criterion. Thus, the efficiency of the method relies on a good tradeoff between
two competing objectives: a small value of ν (for accuracy) and a small number nχ of POD modes (for CPU and memory
consumption low costs).

Then, the Galerkin projection is applied. For example, for the homogenization of the Cell Problem with e−Bϕ, the weak form
used for the Finite Element resolution is:

∫
Yf

∇yχ : ∇yvdY = −
∫
Ssf

v · ndS ∀v (A.75)

The Galerkin projection consists of injecting the decomposition (A.71) into (A.75), which gives:

nχ∑
j=1

aj(ρ)

∫
Yf

∇yφj(y) : ∇yφldY = −
∫
Ssf

φl · ndS ∀l (A.76)

where mode φl has been taken in place of the test function v. Equation (A.76), whose solutions are the aj(ρ), is a set of algebraic
equation of size nχ. In practise, its order nχ is small, thus problem (A.76) is called the Reduced-Order Model of (A.75). It is
solved much faster than the original discretized cell problem.

B Geometry-dependent POD-ROM

In order to address the issue of the correlation tensor’s definition evoked in section 2.3.2, the authors of [28] have proposed an
approach which consists of transporting, for each individual geometrical parameter ρ, the cell problem set on Yf(ρ) on a single
reference fluid domain Y?f . This is done by constructing, for each value ρ of the geometrical parameter, a map τ̂ρ which sends
Y?f diffeomorphically onto Yf(ρ).

B.1 Construction of a transformation

Let Y = [−1, 1]d, d = 2 be an elementary cell which consists of a path-wise connected fluid phase, and ns non-overlapping
ball-shaped solid inclusions Ys,n(ρn) = B(yn, ρn), 1 ≤ n ≤ ns. Thus the Elementary Cell’s geometry is entirely determined by
the set of radii (ρn)n for 1 ≤ n ≤ ns, which are the geometrical parameters. We denote the set of balls centers

{
yn
}
1≤n≤ns

and the vector of balls radii ρ = (ρn)1≤n≤ns . Thus Yf = Y \
(⋃ns

n=1 Ys,n(ρn)
)

is the Elementary Cell’s fluid phase, and Γn(ρn),
1 ≤ n ≤ ns its solid-fluid, disconnected interfaces (see figure 17).

The reference domain Y? is the union of the following subdomains:

– Y?s,n = B(ξn, ρ?) the reference solid inclusions centered at ξn = yn all with same reference radius ρ?,

– Y?c,n = B(ξn, qn) \Y?s,n the crowns around the solid inclusions each with exterior radius qn and interior radius ρ?,

– Y?e = Y? \
⋃ns
n=1(Y?s,n ∪Y?c,n) the remaining fluid domain exterior to

⋃ns
n=1 Y?c,n.

6 Thus nχ < nsnap.
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q1

Γ⋆
1

Y⋆
s,1

Y⋆
c,1

q2

Γ⋆
2

Y⋆
s,2

Y⋆
c,2

Y⋆
e

τ̂ρ

Ye

q1Γ1(ρ1)

Ys,1(ρ1)

Yc,1(ρ1)

q2

Γ2(ρ2)

Ys,2(ρ2)

Yc,2(ρ2)

Fig. 17: Transformation τ̂ρ : Y? ξ 7→τ̂ρ(ξ)=y−→ Y(ρ) : case of ns = 2 inclusions.

According to figure 17, τ̂ρ moves only the points of the fluid phase lying in the crowns around the solid inclusions. It is computed
with the explicit formula:

τ̂ρ(ξ) =

{
αρnu(ξ − ξn) + βρn (ξ − ξn), if ξ ∈ Y?c,n, for 1 ≤ n ≤ ns,

ξ, if ξ ∈ Y?e ,
(B.77)

where

αρn = qn
ρn − ρ?
qn − ρ?

, βρn =
qn − ρn
qn − ρ?

. (B.78)

Its inverted is of the same form and is written:

τ̂ρ
−1(y) =


1

βρn
(y − yn) +

αρn
βρn

y − yn
‖y − yn‖

, if ξ ∈ Yc,n, for 1 ≤ n ≤ ns,

y, if y ∈ Y?e ,
(B.79)

In order to rewrite on Y?f the cell problem set on Yf(ρ), the Jacobian matrix Ĵρ(ξ), its inverse Ĵρ
−1

(ξ) and the Jacobian

determinant ĵρ(ξ) for all spatial coordinates ξ an every value ρ of the geometrical parameter. This is easily done through
the (B.77)–(B.79) formulas and results in:

Ĵρ(ξ) =


βρnI + αρn

1

‖ξ − ξn‖
Gu(ξ−ξn), if ξ ∈ Y?c,n, for 1 ≤ n ≤ ns,

I, if ξ ∈ Y?e ,

(B.80)

where Gu(ξ−ξn) = I −
(ξ − ξn)⊗ (ξ − ξn)

‖ξ − ξn‖2
, and

Ĵρ
−1

(ξ) =


1

βρn

(
I − αρn

1

βρn‖ξ − ξn‖+ αρn
Gu(ξ−ξn)

)
, if ξ ∈ Y?c,n, for 1 ≤ n ≤ ns,

I, if ξ ∈ Y?e .

(B.81)

B.2 Pulling-back through the parametrized transformation

For all ρ, the Elementary Cell problem without EDL effects, whose weak form is:∫
Yf (ρ)

∇yχ : ∇yv dY = −
ns∑
n=1

∫
Γn(ρ)

n · v dS(ρ) , (B.82)

is pulled-back, through τ̂ρ
−1, on the reference domain Y?. To do this, the vector field χ is written:

χ(y) = χ?(τ̂ρ
−1(y)) , (B.83)

and the chain rule7 is applied, providing:

∇y χ(y) = ∇ξ=τ̂ρ−1 y χ? · ∇y τ̂ρ
−1 , (B.84)

7 Here, ∇y v denotes the spatial derivative
∂v

∂y
of the vector field v. The gradient of v is then

(
∇y v

)ᵀ
.
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and then, through the identity ∇y τ̂ρ−1 (y) =
(
∇ξ τ̂ρ (ξ)

)−1
= Ĵρ

−1
:

∇y χ(y) = ∇ξ χ? · Ĵρ
−1

. (B.85)

Finally, pulling back the expressions
∫
Yf (ρ)

dY and
∫
Γn(ρ)

n · dS(ρ) involve the mutiplication of the integrands by the jacobian

determinant ĵρ and by the interfaces curvatures ratio gρ,n respectively. Hence, the variational problem (B.82) is rewritten:∫
Y?

f

(
∇ξχ? · Ĵρ

−1
)

:
(
∇ξv? · Ĵρ

−1
)
ĵρ dY? = −

∫
Ssf

?

n · v? gρ dSsf
?, (B.86)

or equivalently:

ns∑
n=1

∫
Y?c,n

(
∇ξχ? · Ĵρ

−1
)

:
(
∇ξv? · Ĵρ

−1
)
ĵρ dY? +

∫
Y?e

(
∇ξχ?

)
: ∇ξv? dY? = −

ns∑
n=1

∫
Γ?n

n · v? gρ,n dΓ ?n , (B.87)

In expression (B.87), the integrals on the reference cell’s subdomains Y?e , Y?c,n and Γ ?n for 1 ≤ n ≤ ns are written separately. The
consequences on model order reduction are explained in the annex B.3. The same approach can be used with the corresponding
homogenized tensor Dhom(ρ):

Dhom(ρ) = D

(
|Y?f |
|Y?|

I +

ns∑
n=1

∫
Y?c,n

(
∇ξχ? · Ĵρ

−1
)ᵀ
ĵρ dY? +

∫
Y?e

∇ξχᵀ
? dY?

)
, (B.88)

This generalizes with no difficulty to the case when the EDL effects are taken into account, provided the relation:

∇y r =

(
∂r

∂y

)ᵀ

=

(
∂r?

∂ξ
(τ̂ρ(ξ)) ◦ Ĵρ

−1
)ᵀ

= Ĵρ
−ᵀ
∇ξ r?(ξ) . (B.89)

involving the scalar field r = e−B ϕ.

B.3 Affine dependency in the parameters

POD-ROM efficiency relies on the possibility to compute expressions involving ĵρ, Ĵρ
−1

ĵρ, Ĵρ
−2

ĵρ and gρ,n. for any given ρ.
This is done by separating the integration variable ξ from the geometrical parameter ρ in each of these expreaaions: this is the
so-called affine dependency on the parameters verified by the four expressions above.

Firstly, an explicit formula for the Jacobian determinant is found by the diagonalization of the matrices that appear in equa-
tion (B.80). Indeed, Gu(ξ−ξn) is a projection matrix and this leads to:

ĵρ(ξ) =


d−1∑
p=0

Cpd−1 α
p
ρn β

d−p
ρn

‖ ξ − ξn ‖p
= βρn

(
βρn‖ξ − ξn‖+ αρn

)d−1

‖ξ − ξn‖d−1
, if ξ ∈ Y?c,n, for 1 ≤ n ≤ ns,

1 if ξ ∈ Y?e ,

(B.90)

For this reason, the left-hand side of equation (B.87) is splitted into integrals computed over the fluid subdomains Y?e , and Y?c,n
for 1 ≤ n ≤ ns.

It is remarkable that the expression upside (B.90) depends on the dimension d = 2, 3 of the elementary cell. Consequently, this

is also the case of expressions Ĵρ
−1

ĵρ and Ĵρ
−2

ĵρ. In [28], the authors proved that, in dimension d = 3:

(
Ĵρ
−1
)
ĵρ =

(
β2
ρn + 2αρnβρn

1

‖ξ − ξn‖
+ α2

ρn

1

‖ξ − ξn‖2

)
I

− αρnβρn
1

‖ξ − ξn‖
Gu(ξ−ξn) − α

2
ρn

1

‖ξ − ξn‖2
Gu(ξ−ξn) ,

(B.91)

and

(
Ĵρ
−2
)
ĵρ =

(
βρn +

2αρn
‖ξ − ξn‖

+
α2
ρn

βρn‖ξ − ξn‖2

)
I

−
2αρn
‖ξ − ξn‖

Gu(ξ−ξn) −
α2
ρn

βρn‖ξ − ξn‖2
Gu(ξ−ξn) .

(B.92)

If ξ ∈ Y?c,n, for 1 ≤ n ≤ ns. For two-dimensional Elementary Cells (d = 2), [28] provides a truncated decomposition of Ĵρ
−2
ĵρ:
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Ĵρ
−2
ĵρ '

(
1 +

αρn
βρn‖ξ − ξn‖

)
I

−
(

1 + β
Ndev+1
ρn

) αρn
βρn‖ξ − ξn‖

·Gu(ξ−ξn)

+

Ndev∑
p=1

(−1)p

Ndev∑
m=p

βmρnC
p
m

 (1− βρn )
αρn
βρnq

p
‖ξ − ξn‖p−1Gu(ξ−ξn)

(B.93)

when ξ ∈ Y?c,n for 1 ≤ n ≤ ns, and Ĵρ
−2
ĵρ = I elsewhere (in practice Ndev = 2 gives a good approximation). Furthermore

Ĵρ
−1
ĵρ admits, when d = 2, the exact decomposition:

Ĵρ
−1
ĵρ =


(
βρn + αρn

1
‖ξ−ξn‖

)
I − αρn

1

‖ξ − ξn‖
Gu(ξ−ξn) if ξ ∈ Y?c,n, for 1 ≤ n ≤ ns,

I if ξ ∈ Y?e ,

(B.94)

Finally, variables ξ and ρ are separated in the integrals over the interfaces Γ ?n , 1 ≤ n ≤ ns. This is done by writing for all n and
vector field v: ∫

Ssf

n · v dΓn =

∫
Γ?n

v? · jρn
(

(Jρn )−ᵀ n?(ξ)
)

dξ =

∫
Γ?n

v? · jρn
(

(Jρn )−1 ξ − ξn
‖ξ − ξn‖

)
dξ , (B.95)

since Jρn is symmetric. Furthermore:

(Jρn (ξ))−1 (ξ − ξn) =
1

βρn

(
ξ − ξn − αρn

1

‖ξ − ξn‖

(
ξ − ξn −

(ξ − ξn)⊗ (ξ − ξn)

‖ξ − ξn‖2
(ξ − ξn)

))
=

1

βρn
(ξ − ξn) . (B.96)

This, combined with relation jρn = βρn
‖τ̂ρ(ξ − ξn)‖d−1

‖ξ − ξn‖d−1
, provides:

∫
Γ?n

v? · jρn
(

(Jρn )−1 ξ − ξn
‖ξ − ξn‖

)
dξ =

∫
Γ?n

v? ·
ξ − ξn
‖ξ − ξn‖

‖τ̂ρ(ξ − ξn)‖d−1

‖ξ − ξn‖d−1
dξ =

∫
Γ?n

v? · n?
ρd−1
n

ρ?
d−1
n

dξ . (B.97)

where the curvature ratio

(
ρn

ρ?

)d−1

of interfaces Γn and Γ ?n appears explicitely. In conclusion, the pullback of

∫
Ssf

n · v dΓn is

simply written ∫
Γ?n

n · v? gρ,n dΓ ?n with gρ,n =

(
ρn

ρ?

)d−1

. (B.98)

In relation (B.98), variables ρ and ξ are trivially separated.

This concludes the affine decomposition of the expressions involved by the pullback of the cell problems. These decompositions
are true, whether or not the EDL effects are taken into account.

C ROM for NPPB

The Galerkin projection of equation (28), recalled here:∫
Y?

f

r?
(
∇ξχ? Ĵρ

−1)
:
(
∇ξv? Ĵρ

−1)
ĵρdY? =

∫
Y?

f

Ĵρ
−ᵀ
∇ξ r? · v? ĵρdY? −

∫
Ssf

?

r?v? · n? gρ dS? ∀v? ∈ V?, (C.99)

on POD basis (φri (ξ))
nr
i=1 and (φj(ξ))

nχ

j=1 provides the following ROM for vector field χ:

nχ∑
j=1

nr∑
i=1

Aχρ jli b
i(ρ)aj(ρ) =

nr∑
i=1

Bχρ lib
i(ρ)−

nr∑
i=1

Cχρ lib
i(ρ), (C.100)

where:

Aχρ jli =

∫
Y?

f

(
∇ξφj Ĵρ

−1
)

:
(
∇ξφl Ĵρ

−1
)
φri ĵρ dY? =

∫
Y?

f

φri ∇φj Ĵρ
−2

ĵρ : ∇φl dY? (C.101)

Bχρ li =

∫
Y?

f

(
Ĵρ
−ᵀ
∇ξφri

)
· φl ĵρ dY? =

∫
Y?

f

(
Ĵρ
−1

ĵρ
)ᵀ∇φri · φl dY? (C.102)

Cχρ li =

∫
Ssf

?
φri n · φl gρ dS?, (C.103)
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Samely, the homogenized tensor D̂hom coming from the Reduced-Order Model is written according to (30):

D̂hom(ρ) =
1

|Y?|

nr∑
i=1

bi sρi I +
1

|Y?|

nr∑
i=1

bi
nχ∑
j=1

ajKr
ρij

, (C.104)

where:

sρi =

∫
Y?c

φri ĵρ dY? , (C.105)

[
Kr
ρij

]
ab

=

∫
Y?

f

φri

[
∇ξφj Ĵρ

−1
]
ba
ĵρ dY? . (C.106)

According to section B.3, the affine decomposition of integrands in Cχρ and sρ is the same for any dimension of the Cell domain.
The coefficients Cχρ that appear in the ROM of χ are thus written:

Cχρ = Cχ +

ns∑
n=1

gρ,n [C̃χn]li , (C.107)

where:

[Cχ]li =

∫
Ssf

?
φri n · φl dS?, ; [C̃χn]li =

∫
Ssf

?
n

φri n · φl gρ,n dS?n and gρ,n =

(
ρn

ρ?n

)d−1

. (C.108)

Moreover, the coefficients sρ used in the fast computation of Dhom are:

sρ = s+

d−1∑
p=0

Cpd−1α
p
ρβ
d−p
ρ s̃p (C.109)

where: [
s]i =

∫
Y?e

φri dY? and
[
s̃p
]
i

=

∫
Y?c

φri
1

‖ ξ ‖p
dY? (C.110)

Furthermore, like in the case where the EDL effects are neglected [28], the affine decomposition formulae (B.90)–(B.94) furnish
decompositions for Aχρ jli, B

χ
ρ li

and Kr
ρ, that are different whether the Cell’s dimension d id 2 or 3.

Dimension 3

Firstly,

Aχρ = Aχ + βρÃχ0,0 + 2αρÃχ1,0 +
α2
ρ

βρ
Ãχ2,0 − 2αρÃχ1,1 −

α2
ρ

βρ
Ãχ2,1, (C.111)

where: [
Aχ
]
jli

=

∫
Y?e

φri∇ξφj : ∇ξφl dY?, (C.112)

[
Ãχp,0

]
jli

=

∫
Y?c

φri
∇ξφj : ∇ξφl
‖ ξ ‖p

dY? , for 0 ≤ p ≤ d− 1, (C.113)

[
Ãχp,1

]
jli

=

∫
Y?c

φri

(
1

‖ξ‖p
∇ξφj Gu(ξ)

)
: ∇ξφl dY? . for p ∈ {1, 2} . (C.114)

Furthermore,

Bχρ = Bχ + β2
ρB̃

χ
0,0 + 2αρβρB̃χ1,0 + α2

ρB̃
χ
2,0 − αρ βρ B̃χ1,1 − α2

ρ B̃
χ
2,1 , (C.115)

where: [
Bχ
]
li

=

∫
Y?e

∇ξφri · φl dY?, (C.116)

[
B̃χp,0

]
li

=

∫
Y?c

∇ξφri · φl
‖ ξ ‖p

dY?, for 0 ≤ p ≤ 2, (C.117)

[
B̃χp,1

]
li

=

∫
Y?c

(
1

‖ ξ ‖p
Gu(ξ)∇ξφri

)
· φl dY?, for p ∈ {1, 2} . (C.118)

Finally:

Kr
ρ = Kr + β2

ρK̃
r
(0,0) + 2αρβρK̃r

(1,0) + α2
ρK̃

r
(2,0) − αρ βρ K̃r

(1,1) − α2
ρ K̃

r
(2,1) (C.119)

where: [
Kr

ji

]
ab

=

∫
Y?e

φri [∇ξφj ]ba dY?, (C.120)

[
K̃r

(p,0) ji

]
ab

=

∫
Y?c

φri [∇ξφj ]ba
1

‖ ξ ‖p
dY?, pour 0 ≤ p ≤ 2, (C.121)

[
K̃r

(p,1) ji

]
ab

=

∫
Y?c

φri [∇ξφj Gu(ξ)]ba
1

‖ ξ ‖p
dY?, pour p ∈ {1, 2} (C.122)
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Dimension 2

In this case, the decomposition of Aχρ cannot be done exactely. The following truncated formula is used:

Aρ ' Aχ + Ãχ0,0 +
αρ

βρ
Ãχ1,0 −

(
1 + β

Ndev+1
ρ

) αρ
βρ
Ãχ0,1

+

Ndev∑
p=1

(−1)p

Ndev∑
m=p

βmρ C
p
m

 (1− βρ)
αρ

βρqp
Ãχp,1

(C.123)

with previous notation for Aχ, Ãχp,0 and:

[
Ãχp,1

]
jli

=

∫
Y?c

φri
(
‖ ξ ‖p−1 ∇ξφj Gu(ξ)

)
: ∇ξφl dY? , for p = 0 , . . . , Ndev . (C.124)

Bχρ , in turn, admits the exact decomposition:

Bχρ = Bχ + βρB̃χ0,0 + αρB̃χ1,0 − αρ B̃χ1,1 (C.125)

with the three-dimensional case convention. Finally:

Kr
ρ = Kr + βρK̃r

(0,0) + αρK̃r
(1,0) − αρ K̃r

(1,1) , (C.126)

again with the convention of the three-dimensional case.
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interaction. Revue européenne de mécanique numérique, 19:41–52, 2010.

28. A. Moreau, A. Falaize, C. Allery, and O. Millet. Geometry ependent reduced-order models for the computation of homoge-
nized transfer properties in porous media. Acta Mechanica, 232:4429–4459, 2021.

29. C. Moyne and M. A. Murad. A two-scale model for coupled phenomena and onsager’s reciprocity relations in expansive
clays : I homogenization analysis. Transport in Porous Media, 62:333–380, 2006.

30. C. Moyne and M. A. Murad. A two-scale model for coupled phenomena and onsager’s reciprocity relations in expansive
clays : Ii computational validation. Transport in Porous Media, 63:13–56, 2006.

31. M. Oulghelou and C. Allery. Optimal control based on adaptive model reduction approach to control transfer phenomena.
32. M. Oulghelou and C. Allery. A fast and robust sub-optimal control approach using reduced order modes adaptation

techniques. Applied Mathematics and Computation, 333:416–434, 2018.
33. A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equations: An introduction.

Springer, 2016.
34. G. Rozza, D. B. P. Huynh, and A. Manzoni. Reduced basis approximation and a posteriori error estimation for stokes flows

in parametrized geometries : roles of the inf-sup stability constants. Numerische Mathematik, 125:115–152, 2013.
35. G. Rozza, N. D. Malik, M. Tezzele, M. Girfoglio, S. Giovanni, and A. Mola. Advances in reduced order methods for parametric

industrial problems in computational fluid mechanics. In 6th European Conference on Computational Mechanics, 2018.
36. G. Rytwo. Applying a gouy-chapman-stern model for adsorption of organic cations to soils. Applied Clay Science, 24:137–147,

2004.
37. E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory. Springer, 1980.
38. L. Sirovich. Turbulence and the dynamics of coherent structures. i. coherent structures. Quarterly of applied mathematics,

45:561–571, 1987.
39. L. Sirovich. Turbulence and the dynamics of coherent structures part i : coherent structures. Quarterly of Applied Mathe-

matics, XLV:561–571, 1987.
40. C. Stemelen, D. abd Moyne and T. Lemaire. Modelling of electro-osmosis in clayery materials including PH effects. Physics

abd Chelistry of the Earth, 31:441–452, 2007.
41. S. Whitaker. Simultaneous heat, mass and momentum transfer in porous media : A theory of drying. Advances in Heat

Transfer, 13:119–203, 1977.
42. S. Whitaker. A simple geometrical derivation of the spatial averaging theorem. Chemical Engineering Science, 19:50–52,

1985.
43. D. Xiao, F. Fang, A. G. Buchan, C. C. Pain, I. M. Navon, J. Du, and G. Hu. Non-linear model reduction for the navier-stokes

equations using residual deim method. Journal of Compuational Physics, 263:1–18, 2013.
44. J. Yvonnet and Q.-C. He. The reduced model multiscale method (r3m) for the non-linear homogenization of hyperelastic

media at finite strains. Journal of Computational Physics, 223:341–368, 2007.
45. J. Yvonnet, Q.-C. He, and P. Li. Reducing internal variables and improving efficiency in data-driven modelling of anisotropic

damage from rve simulations. Computational Mechanics, 72:37–55, 2023.


