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Abstract This article investigates Reduced Order Models (ROMs) based on Proper Orthogonal Decomposition (POD)
for efficient computation of the homogenized diffusion properties of saturated porous media. The homogenized tensor,
whose classical expression may be obtained from periodic homogenization techniques, is computed by solving a local
problem on an elementary cell that includes one or several circular solid inclusions. The cost of the repeated resolution of
this problem by the Finite Element Method (FEM) for different inclusions radii may be important, and classical model
order reduction methods based on the computation of a spatial basis can not be applied directly. The method proposed in
this work to cope with the variability of circular inclusions relies on the introduction of a transformation from a reference
domain to the physical domain that admits an exact affine decomposition in the three dimensional cases, allowing to split
the problem into an offline learning phase and an online evaluation phase which does not depend on the number of degrees
of freedom of the original full order solution. Approximate affine decomposition for two dimensional cases is also provided
with an explicit estimation of the truncation error. The efficiency of the proposed algorithm in terms of accuracy and of
computing time is evaluated firstly for 2D and 3D isotropic and anisotropic elementary cells with a single inclusion, and
secondly for a 2D anisotropic cell with multiple inclusions. Furthermore the ROM is used to estimate in quasi-real time
the homogenized diffusion tensor for a given probability distribution of the geometry parameters.

Keywords: Homogenization, Reduced Order Model, Proper Orthogonal Decomposition

1 Introduction

Diffusion in cementitious media is of crucial importance to estimate durability of reinforced concrete, as chlorides migrate
across the pore solution, leading to rebar corrosion. Electrical double layer effects may occur when the Debye length (at
the scale of nanometer for cementitious materials) is of the order of the pore size, resulting in a modification of transfer
properties of ionic species. Ionic diffusion in saturated porous media is generally described by Nernst-Planck-Poisson
system (NPP) or the Nernst-Planck-Poisson-Boltzmann system (NPPB) at the microscopic pore scale (the interested
reader can refer to references [18, 20] for details). In order to estimate the lifetime of concrete structures, engineers must
have at their disposal homogenized transfer models describing the diffusion at the material macroscale. Such models
may be obtained by homogenization methods, whose best-known are periodic homogenization methods [5, 6, 32], volume
averaging methods [2, 28, 29], or homogenization by two scale convergence [2, 19, 21, 22]. In the present work, we focus
on the systems of equations obtained by periodic homogenization method, where the porous media microstructure is
modelled as the periodic repetition of an elementary cell. Note that this approach has been also used in other physical
contexts like advection or convection [4] and moisture diffusion [25].

The homogenization of NPP and NPPB systems to describe ionic diffusion in porous media has been performed in
[8–11, 13, 26]. To determine the associated homogenized transfer properties at the macroscale (namely the homogenized
diffusion tensor), we need to solve a partial differential equation (local problem) defined on an elementary cell characterizing
the porous medium. Regarding cementicious media, such elementary cells may be modelled by a fluid phase across which
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ions can migrate, with one or several ball shaped solid inclusions parametrized by their radii. The aim of this work is to
propose a model order reduction procedure to evaluate, with reduced computational resources, the homogenized transfer
properties of a porous medium when the geometry of its microstructure varies. The proposed approach consists in the
construction of a reduced order model that takes into account the variability of the microstructure, thus avoiding the full
numerical computation for each new geometry.

In the present work, the Reduced-Order Model (ROM) is constructed based on the Proper Orthogonal Decomposition
(POD) [24,33]. This allows to approximate the solutions in a lower dimensional subspace that retains mean features of the
original system. The POD-ROM approach has been widely used in Fluid mechanics [3,35], control problems [7] and solid
mechanics [16]. In the scope of homogenization, the POD was already used to solve wave propagation in inhomogeneous
media and Richards equation in an unsaturated soil [1], the non-linear homogenization of hyperelastic media at finite
strains [36], hyperelastic heterogeneous structures [37], and has been combined with spectral decomposition in [17,23]. In
these applications, the POD is applied to approximate the solutions parametrized by the time or the static loading while
the geometry of the problem is fixed. In the present work, the parameter of interest is the geometry of the computational
(fluid) domain so that the POD can not be applied directly since each solution belongs to a different functional space.

To overcome this difficulty, we propose a POD-ROM method based on a geometrical transformation that maps the fluid
domain to a virtual reference fluid domain. The use of a mapping between the physical domain and a reference domain
has been considered in previous works [30, 31] in conjunction with the reduced basis method for geometries that can be
well approximated by triangles, yielding to a reduced order model with an affine dependence to the geometry parameter.
We propose in the present work a transformation specially tailored to address the circular geometries usually encountered
in periodic homogenization of cementitious porous media. This transformation admits an exact affine decomposition in
the three-dimensional cases, that allows a splitting of the classical operators associated with the homogenized NPPB
problem. It yields as in [30,31] to a reduced order model with affine dependence to the geometry parameter, and without
any reference to the number of degrees of freedom in the full order model. Approximate affine decomposition for two
dimensional cases is also provided with an explicit estimation of the truncation error. Then, the computation of an
orthogonal spatial basis of small size by POD method is straightforward, and a Galerkin projection of the physical
problem onto this spatial POD basis results in a system of low order algebraic equations (ROM) whose resolution for
a new geometry parameter is inexpensive. Furthermore, the resulting procedure could be used to build reduced order
models for other kind of problems defined on geometries with circular or ball shaped components.

The paper is organized as follows. In section 2, the periodic homogenization of the multiscale ionic diffusion model is
summarized and the classical cell problem is recalled. In section 3, the proposed POD based model order reduction
method is presented. We firstly detail the procedure for an elementary cell with a single inclusion and secondly generalizes
to the case of multiple inclusions. In section 4, we present numerical results that illustrate the accuracy and the reduced
computational cost of the proposed method. Applications include isotropic and anisotropic elementary cells with single
inclusion in 2D and 3D, a 2D anisotropic multi inclusions setting and the estimation in quasi-real time of the homogenized
diffusion tensor for a given probability distribution of the geometry parameter.

2 Problem statement

In this section, we detail the motivations for the development of the model order reduction method proposed in section 3
for the computation of homogenized diffusion tensors parametrized by the geometry of the problem. First, we recall
the Nernst-Planck-Poisson-Boltzmann (NPPB) equations that govern the ionic diffusion in porous media, taking into
account the electrical double layer (EDL). Second, we state the nonlinear problem obtained from the classical periodic
homogenization of the NPPB equations, along with the linear approximation applying in the usual cases for which the
EDL can be neglected. Third, we recall the main steps in POD-based model order reduction and highlight the difficulties
encountered with a direct application of this method to the linear problem due to the dependency to the geometry of the
elementary cell .

2.1 Ionic diffusion in porous media

Here, we briefly recall the Nernst-Planck-Poisson-Boltzmann (NPPB) equations governing the ionic diffusion in porous
media. The interested reader may refer to [15, 18, 20, 34] for more details. We denote by Ω ∈ Rd the physical domain
(d ∈ {2, 3}) occupied by a saturated porous cementitious medium with path-wise connected fluid phase Ωf ⊂ Ω through
which ions can migrate, solid inclusions Ωs = Ω \Ωf (not necessarily path-wise connected) and solid-fluid interface Γ (see
figure 1).
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Fig. 1: Magnified view of a typical saturated porous medium, with fluid phase Ωf , solid inclusions Ωs and solid-fluid
interface Γ .

The electro-diffusion in such media can be described by the Nernst-Planck equations governing the ionic diffusion coupled
with the Poisson equation governing the electrical potential [14,15,34]. We consider the same simplifying assumptions as
in [14,15], i.e. there is no convection of the fluid in the pores and the ionic solution is in (1,1) cation-anion coordination.
Then, denoting c± (mol.m−3) the concentrations of anions and cations in the pore solution and ψ (V) the electrical
potential, the Nernst-Planck equations read:

∂c±
∂t
−D± div

(
∇c± +B c±∇ψ

)
= 0, in Ωf , (1)(

∇c± +B c±∇ψ
)
· n = 0, on Γ, (2)

where D± (m2.s−1) are the self-diffusion coefficients and B = F
RT with T (K) the constant temperature, F = 96485

(Cb.mol−1) the Faraday constant and R = 8314 (J.K.mol−1) the perfect gas constant. The homogeneous Neumann
boundary condition stands from the impermeability of the pores with n the unit normal vector on Γ exterior to Ωf . The
Poisson equation for the electrical potential reads:

εv∆ψ + F (c+ − c−) = 0, in Ωf , (3)

εv∇ψ · n = σ, on Γ, (4)

where εv (C.V−1.m−1) is the electrical permittivity of the pore solution and σ (C.m−2) is the surface charge density on Γ .

2.2 Periodic homogenization of ionic diffusion in porous media

Periodic homogenization is based on the assumption that the porous medium with characteristic length L (m) can be
well approximated by the periodic repetition of a single microscopic cell with characteristic length ` (m), representative
of the actual microstructure. Following the classical procedure of periodic homogenization, we introduce the coordinate
systems x and y at the macroscopic scale and the microscopic scale, respectively, which are supposed to be independent.
The electrical potential is decomposed as ψ = ψb + ϕ with ψb the bulk potential at the macroscopic scale and ϕ the
Electrical Double Layer (EDL) potential at the microscopic scale [12, 14, 15]. The EDL is effective only in the vicinity of
the boundary Γ so that it is assumed that ϕ ' 0 in the bulk sub-domain. Additionally, the ionic concentrations follow a
Boltzmann distribution with c± = cb e

∓B ϕ with cb the bulk ionic concentration. Therefore, equations (3–4) rewrite as
the so-called Poisson-Boltzmann equation at the microscopic scale:

εv∆yϕ− 2F cb sinh (B ϕ) = 0, in Ωf , (5)

εv∇yϕ · n = σ, on Γ. (6)

It is shown in [14, eq. (32-33)] that an asymptotic expansion of the solutions to NPPB equations at the leading order yields
to a coupled diffusion-migration problem governing the ionic concentrations c± at the macroscopic scale and characterized
by an homogenized diffusion tensor D±. In the remaining of the paper, we drop the distinction ± between anions and
cations, focusing on the later without any loss of generality. The homogenized diffusion tensor is given by [14,15]:

D =
1

|Ω|

∫
Ωf

D e−B ϕ (I +∇yχᵀ) dΩ, (7)

where the vector-valued function χ : Ωf → Rd is the solution to the following local problem at the elementary cell scale:

divy
(
D e−B ϕ (I +∇yχᵀ)

)
= 0 in Ωf , (8)(

D e−B ϕ (I +∇yχ)
)
· n = 0 on Γ, (9)

where I denotes the identity matrix of appropriate dimension. Notice that the non-physical function χ characterizes the
geometry of the microstructure of the porous medium. When the characteristic length of the elementary cell is of several
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orders larger than Debye length, the influence of the EDL can be neglected (ϕ = 0) so that the homogenized diffusion
tensor is given by:

D =
1

|Ω|

∫
Ωf

D (I +∇yχᵀ) dΩ, (10)

with

divy (∇yχᵀ) = 0, in Ωf , (11)

(I +∇yχ) · n = 0, on Γ. (12)

We focus on the computation of the homogenized diffusion tensor (10) which requires the resolution of the linear problem
(11–12) for each geometry of the elementary cell, typically by the finite-element method. The purpose of the present work
is to develop reduce-order modeling methods to circumvent this computational cost, taking into account the variability
of the geometry.

2.3 Inapplicability of the classical POD based model order reduction

The Proper Orthogonal Decomposition (POD) is a method to derive empirical spatial modes (i.e. a spatial basis) from
measurements or numerical data. Then, the so-called POD-based model order reduction aims at computing approximate
solutions of the problems at hand that live in a subspace of the original solution space, usually by orthogonal projection.
All the methods used to compute the POD basis rely on the solutions to an eigenvalue problem associated with a spatial
correlation matrix which is formally defined as:

[C]ij =

∫
Ω

u(y;λi) · u(y;λj) dΩ, (13)

where u(y;λi) denotes the solution to the physical problem associated with a given parameter λi (usually the time or
any physical property). In the present work, the construction of such a correlation matrix is not possible because all the
solutions live in a functional space that is by definition parametrized by the shape of the spatial domain. Then, denoting ρ
a geometry parameter, each solution χ(y; ρ) to the problem (11–12) lives in a functional space which is specific to the
value of ρ, so that spatial correlations has no meaning in this context.

In this work, we address this issue by firstly mapping a reference domain to the physical domain through a transformation
parametrized by the geometry, and secondly applying the POD-based model order reduction methodology in the reference
domain to derive POD-ROMs that preserve the dependency to the actual geometry. As already stated in the introduction,
the use of a mapping between the physical and a reference domain has been considered in previous works such as [30,31]
for geometries that can be well approximated by triangles, in conjunction with the reduced basis method. We detail
in the next section the proposed POD-based model order reduction method specifically tailored to address the case of
ball-shaped inclusions usually encountered in the context of periodic homogenization of porous media.

3 POD-ROM parametrized by the geometry of the elementary cell

We introduce below the proposed parametric POD-based reduced order model associated with the homogenized NPPB
problem in order to evaluate efficiently the homogenized diffusion tensor D in equation (10) for a given geometry of
the elementary cell . For the sake of clarity, we firstly consider a physical domain Ω = [−1, 1]d, d = 2, with a single
solid inclusion Ωs(ρ) = B(0, ρ) ⊂ Rd where B(yc, ρ) denotes the d-dimensional ball of radius ρ centered at yc. For
this case, we define in subsection 3.1 the parametric transformation that maps a reference geometry to this actual
elementary cell geometry. Then, we introduce in subsection 3.2 the proposed POD-based reduced-order model associated
with the linear system (11-12) to compute the approximation χ̂ ' χ of the auxiliary function and the approximation

D̂ ' D of the homogenized diffusion tensor. We secondly generalize the procedure to several inclusions associated with
a vector of geometry parameters in subsection 3.3. Finally, we discuss the features of the proposed method. Notice that
the presentation allows a direct generalization to the three-dimensional case considered in the next section devoted to
numerical applications.

3.1 Mapping from a reference domain to the physical domain

The definition of the proposed parametric transformation that maps the reference domain Ω? = [−1, 1]d to the actual
elementary cell domain parametrized by the radius ρ of the solid inclusion is given below. Then, we detail some of its
properties that will appear necessary in the construction of the POD-ROM. Finally, we make use of this transformation
to state the variational problem associated with (10–12) posed on the reference domain.
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3.1.1 Definition

The proposed transformation τρ : Ω? → Ω is depicted in figure 2. It naturally divides the reference domain into three
parts Ω? = Ω?s ∪Ω?c ∪Ω?e where

Ω?s = B(0, ρ?) denotes the reference ball-shaped solid inclusion with constant reference radius ρ?,

Ω?c = B(0, q) \Ω?s denotes a crown around Ω?s of constant exterior radius q and interior radius ρ?,

Ω?e = Ω? \ (Ω?s ∪Ω?c ) denotes the remaining domain exterior to Ω?c .

The transformation τρ is defined as follows:

τρ(ξ) =

{
αρu(ξ) + βρ ξ, if ρ? ≤‖ ξ ‖< q,
ξ, if ‖ ξ ‖≥ q, (14)

where u(ξ) =
ξ

‖ ξ ‖ denotes the radial unit vector and

αρ = q
ρ− ρ?
q − ρ?

, βρ =
q − ρ
q − ρ?

. (15)

This transformation maps the reference fluid domain Ω?f = Ω?c ∪Ω?e to the physical fluid domain Ωf(ρ) and the reference
solid-fluid interface is Γ ? to the physical interface Γ (ρ), preserving barycenters (see figure 2).

q

Γ⋆

Ω⋆
s

Ω⋆
c

Ω⋆
e

b
ξ

τρ

qΓ(ρ)

Ωs(ρ)

Ωc(ρ)

Ωe

b y

Fig. 2: Transformation τρ : Ω?
ξ 7→τρ(ξ)=y−→ Ω(ρ) defined in equation (14).

3.1.2 Properties

Any quantity of interest a : Ω → Rd defined over the physical domain can be expressed on the reference domain as a(y) =
a
(
τρ(ξ)

)
= a?(ξ) or equivalently a?(ξ) = a?

(
τ−1
ρ (y)

)
= a(y). We have by the chain rule ∇ya(y) = ∇ya?

(
τ−1
ρ (y)

)
=

∇ξa?(ξ) · J−1
ρ (ξ), where Jρ(ξ) = ∇ξτρ(ξ) denotes the Jacobian matrix of the transformation. We also introduce jρ(ξ) =

det (Jρ(ξ)) the determinant of the Jacobian matrix and gρ the ratio of curvature of Γ to that of Γ ?. Explicit formula for
J−1
ρ (ξ), jρ(ξ) and gρ are given below (see appendix B for the proof):

J−1
ρ (ξ) =


1

βρ
I − αρ

βρ
· 1

βρ‖ξ‖+ αρ
Gu(ξ), if ρ? ≤ ‖ξ‖ < q ,

I, if q ≤ ‖ξ‖,
(16)

where Gu(ξ) = I − ξ · ξ
ᵀ

‖ξ‖2 ,

jρ(ξ) =


d−1∑
p=0

Cpd−1 α
p
ρ β

d−p
ρ

‖ ξ ‖p , if ρ? ≤ ‖ξ‖ < q ,

1 if q ≤ ‖ξ‖.
(17)

where Cpd−1 =
(d− 1)!

p!(d− 1− p)! is the binomial coefficient and

gρ =

(
ρ

ρ?

)d−1

. (18)
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3.1.3 Variational problem on the reference domain

We first state the variational formulation of the problem on the physical domain, and then uses the transformation (14)
to formulate the variational problem on the reference domain. Since the problem (11–12) is defined up to an additive
constant, it is necessary to introduce the following regularizing functional space of twice continuously differentiable L-
periodic functions with zero spatial average over the fluide domain Ωf(ρ) with ρ the geometry parameter:

Vρ =

{
u(·; ρ) ∈ H1

]

(
Ωf(ρ)

)
;

∫
Ωf(ρ)

u(y; ρ) dΩ(ρ) = 0

}
, (19)

where L = 2 is the width of the square-shaped domain Ωf(ρ). Then, the variational formulation of the governing equations

(11–12) is given for χ ∈
(
Vρ
)d

and ∀v ∈
(
Vρ
)d

by∫
Ωf(ρ)

∇yχ : ∇yv dΩ(ρ) = −
∫
Γ (ρ)

n · v dΓ (ρ). (20)

Notice that the problem (20) above is suitable for a direct application of the finite-element method to obtain the solution
for a single value of the geometry parameter ρ.

Making use of the Jacobian jρ of the transformation τρ proposed in section 3.1, we introduce the following functional
space of twice continuously derivable L-periodic functions with zero spatial average over the reference fluid domain Ω?f :

V? =

{
u?(·; ρ) ∈ H1

]

(
Ω?f
)
;

∫
Ω?f

u?(ξ; ρ) jρ dΩ? = 0

}
. (21)

Then, the variational problem equivalent to (20) on the domain Ω?f reads for χ? ∈
(
V?
)d

and ∀v? ∈
(
V?
)d

:∫
Ω?c

(
∇ξχ? · J−1

ρ

)
:
(
∇ξv? · J−1

ρ

)
jρ dΩ? +

∫
Ω?e

(∇ξχ?) : ∇ξv? dΩ? = −
∫
Γ ?
n · v? gρ dΓ ?, (22)

where A : B = Tr(A ·B) with Tr the trace operator. Additionally, the homogenized diffusion tensor (10) is computed for
a given auxiliary function χ? defined over the reference domain as follows:

D(ρ) = D

(
|Ω?f |
|Ω?|I +

∫
Ω?c

(
∇ξχ? · J−1

ρ

)ᵀ
jρ dΩ? +

∫
Ω?e

∇ξχᵀ
? dΩ?

)
. (23)

Note that
(
∇ξχ? · J−1

ρ

)ᵀ
jρ =

(
∇ξχ? · J−1

ρ jρ
)ᵀ

and
(
∇ξχ? · J−1

ρ

)
:
(
∇ξv? · J−1

ρ

)
jρ =

(
∇ξχ? · J−2

ρ jρ
)

: ∇ξv? due to the

symmetry of operator J−1
ρ . Making use of these relations in (22–23) yields the following equivalent variational problem

on the reference domain:∫
Ω?c

(
∇ξχ? · J−2

ρ jρ
)

: ∇ξv? dΩ? +

∫
Ω?e

(∇ξχ?) : ∇ξv? dΩ? = −
∫
Γ ?
n · v? gρ dΓ ?, (24)

D(ρ) = D

(
|Ω?f |
|Ω?|I +

∫
Ω?c

(
∇ξχ? · J−1

ρ jρ
)ᵀ

dΩ? +

∫
Ω?e

∇ξχᵀ
? dΩ?

)
. (25)

3.2 Geometry dependent POD-based Reduced-Order-Model

We introduce below the proposed POD-based reduced-order model to compute firstly the auxiliary function χ and sec-
ondly the homogenized diffusion tensor D. The efficiency of this construction relies on rewriting (24)–(25) as an affine
combination of space-dependent quantities, with coefficients parametrized by the geometry parameters. This approach
is usual in reduced-basis methods and is exposed, in the context of pulling back a parametrized to a reference domain,
in [27], chapter 8. Thus, we first detail the requirements to derive such an affine dependency on the geometry parameters.
We then show that these requirements are readily satisfied for three-dimensional geometries, and provide the construc-
tion of the associated POD-ROM. Then, we propose an approximate POD-ROM based on a truncated power series for
two-dimensional geometries.
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3.2.1 Affine dependency on the parameter

According to the previous subsection, the dependency on the geometry parameter in (24)–(25) is all contained in the
terms J−kρ jρ, k = 1 or 2. According to the binomial theorem, this expression can be formulated generically as follows:

J−kρ jρ =
β1−k
ρ

‖ξ‖d−1

k∑
κ=0

(−1)κακρC
κ
k (αρ + βρ‖ξ‖)d−1−κ . (26)

Thus, a condition for an exact affine decomposition of (24–25) with respect to the geometry parameter ρ is that d−1−κ ≥ 0.
The worst case is κ = 2, so that the requirement on the dimension d reads:

d ≥ 3. (27)

3.2.2 Reduced-order model for three-dimensional geometries

Here, the requirement (27) is verified so that one can directly apply a Galerkin projection of the governing equation (24)

for the auxiliary function, provided a suitable POD basis
(
φi
)
1≤i≤nχ

made of nχ spatial modes φi ∈
(
V?
)d

. This is done

by firstly injecting in (24) the following ersatz:

χ?(ξ; ρ) ' χ̂?(ξ; ρ) =

nχ∑
j=1

aj(ρ)φj(ξ), (28)

then replacing successively the test-functions v? by the i-th mode φi, and finally injecting the relation (26) for k = 2 and
d = 3. This results in the following reduced-order model:

Aρ · a(ρ) = cρ, (29)

for the coefficients a(ρ) = (a1(ρ), · · · , anχ(ρ)) of χ̂? in the basis
(
φi(ξ)

)
1≤i≤nχ

. Both sides of the POD-ROM equation (29)

are given by:

Aρ = A+ βρÃ0,0 + 2αρÃ1,0 +
α2
ρ

βρ
Ã2,0 − 2αρÃ−1,1 −

α2
ρ

βρ
Ã−2,1, (30)

and:

c(ρ) = gρ c, (31)

with [
A
]
ij

=

∫
Ω?e

∇ξφj : ∇ξφi dΩ?, (32)

[
Ãp,0

]
ij

=

∫
Ω?c

∇ξφj : ∇ξφi
‖ ξ ‖p dΩ?, for 0 ≤ p ≤ d− 1, (33)

[
Ãr,1

]
ij

=

∫
Ω?c

(
∇ξφj · ‖ξ‖rGu(ξ)

)
: ∇ξφi dΩ?, for − 2 ≤ r ≤ −1, (34)

[
c
]
i

= −
∫
Γ ?
n · φi dΓ ?. (35)

Injecting the ersatz (28) in equation (25) an making use of equation (26) yields the following low-cost evaluation of the
homogenized diffusion tensor:

D(ρ) ' D̂(ρ) = D

(
|Ω?f |
|Ω?|I +Kρ · a(ρ)

)
, (36)

with

Kρ = K + β2
ρK̃0,0 + 2αρβρK̃1,0 + α2

ρK̃2,0 − αρβρ K̃1,1 − α2
ρ K̃2,1, (37)

where: [
K
]
ijk

=

∫
Ω?e

[∇ξφk]ji dΩ?, (38)

[
K̃p,0

]
ijk

=

∫
Ω?c

[∇ξφk]ji
1

‖ ξ ‖p dΩ?, for 0 ≤ p ≤ 2, (39)

[
K̃p,1

]
ijk

=

∫
Ω?c

[∇ξφk ·Gu(ξ)]ji
1

‖ ξ ‖p dΩ?, for 1 ≤ p ≤ 2. (40)
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3.2.3 Reduced-order model for two-dimensional geometries

The requirement (27) is not satisfied for d = 2, so that an exact affine decomposition of (24) is not possible. To cope
with this difficulty, we express J−2

ρ (ξ)jρ as a convergent power series of ‖ξ‖ (see theorem 2 in appendix B), which can be
truncated to yield the following approximation:

J−2
ρ jρ '

(
1 +

αρ
βρ‖ξ‖

)
I −

(
1 + βnt+1

ρ + (1− βρ)

(
nt∑
l=1

(−1)l
(

nt∑
m=l

βmρ C
l
m

)
‖ξ‖l

ql

))
αρ

βρ‖ξ‖
Gu(ξ) (41)

with nt ≥ 0 the truncation order. The latter is chosen in practice as nt = 2 based on numerical experiments. The
POD-based reduced-order model yields as follows:

Aρ · a(ρ) = cρ, (42)

for the coefficients a(ρ) = (a1(ρ), · · · , anχ(ρ)) of χ̂? in the basis
(
φi(ξ)

)
1≤i≤nχ

. where both sides of the POD-ROM

equation (29) are given by:

Aρ = A+

(
Ã0,0 +

αρ
βρ
Ã1,0

)
−
(

1 + βnt+1
ρ

) αρ
βρ
Ã−1,1 +

nt∑
l=1

(−1)l
(

nt∑
m=l

βmρ C
l
m

)
(1− βρ)

αρ
βρql

Ãl−1,1. (43)

The operator J−1
ρ jρ in (25) is decomposed as in (26), providing exact formula for the reduced evaluation of the homoge-

nized tensor D(ρ) in (36) with:

Kρ = K + βρK̃0,0 + αρK̃1,0 − αρ K̃1,1. (44)

3.3 Generalization to several inclusions

In this section we propose a direct generalization of the procedure described above to the case of several solid inclusions by
firstly defining piecewise transformations over a set of subdomains centered on the inclusions and secondly assembling the
reduced operators over this subdomains. Consider ns non-overlapping ball-shaped solid inclusions Ωs,n(ρn) = B(yn, ρn),
1 ≤ n ≤ ns, in the physical domain Ω, with the set of balls centers

{
yn
}
1≤n≤ns

and the vector of balls radii ρ =

(ρn)1≤n≤ns
. The fluid phase is then Ωf = Ω \

(⋃ns

n=1Ωs,n(ρn)
)

with the solid-fluid interfaces Γn(ρn), 1 ≤ n ≤ ns (see
figure 3). We associate to this configuration the reference domain Ω? divided into the following subdomains:

– Ω?s,n = B(ξn, ρ?) the reference solid inclusions centered at ξn = yn all with same reference radius ρ?,

– Ω?c,n = B(ξn, qn) \Ω?s,n the crowns around the solid inclusions each with exterior radius qn and interior radius ρ?,

– Ω?e = Ω? \
⋃ns

n=1(Ω?s,n ∪Ω?c,n) the remaining fluid domain exterior to
⋃ns

n=1Ω
?
c,n.

Notice that we consider a single reference radius ρ? to alleviate the notations and the generalization of the procedure
described in this section to several reference radii is straightforward. Similarly to the case of a single inclusion, the
transformation from the reference domain to the physical domain acts only on the crowns around the solid inclusions,
which are required to be non-overlapping (see figure 3). It is defined as follows:

τρ(ξ) =

{
αρnu(ξ − ξn) + βρn(ξ − ξn), if ξ ∈ Ω?c,n, for 1 ≤ n ≤ ns,
ξ, if ξ ∈ Ω?e ,

(45)

where

αρn = qn
ρn − ρ?
qn − ρ?

, βρn =
qn − ρn
qn − ρ?

. (46)

The computation of the Jacobian and the inverse Jacobian matrix for the transformation τρ follows directly from the
chain rule for the gradient of the radial unit vector which yields the following expressions:

J−1
ρ (ξ) =


1

βρn

(
I − αρn

1

βρn‖ξ − ξn‖+ αρn
Gu(ξ−ξn)

)
, if ξ ∈ Ω?c,n, for 1 ≤ n ≤ ns,

I, if ξ ∈ Ω?e ,
(47)

jρ(ξ) =


d−1∑
p=0

Cpd−1 α
p
ρn β

d−p
ρn

‖ ξ − ξn ‖p
, if ξ ∈ Ω?c,n, for 1 ≤ n ≤ ns,

1 if ξ ∈ Ω?e ,

(48)

and the ratio of curvature of Γn to that of Γ ?n is

gρ,n =

(
ρn
ρ?

)d−1

, 1 ≤ n ≤ ns. (49)
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q1

Γ⋆
1

Ω⋆
s,1

Ω⋆
c,1

q2

Γ⋆
2

Ω⋆
s,2

Ω⋆
c,2

Ω⋆
e

τρ

Ωe

q1Γ1(ρ1)

Ωs,1(ρ1)

Ωc,1(ρ1)

q2

Γ2(ρ2)

Ωs,2(ρ2)

Ωc,2(ρ2)

Fig. 3: Transformation τρ : Ω?
ξ 7→τρ(ξ)=y−→ Ω(ρ) defined in equation (45) for ns = 2 inclusions.

The variational problem associated with (11–12) for the multi-inclusions setting is given for χ ∈
(
Vρ
)d

and ∀v ∈
(
Vρ
)d

by∫
Ωf(ρ)

∇yχ : ∇yv dΩ = −
ns∑
n=1

∫
Γn(ρ)

n · v dΓ (ρ), (50)

with the same functional space Vρ as for a single inclusion defined in (19), replacing the scalar parameter ρ by the vector

parameter ρ. Similarly, the variational problem on the reference domain Ω?f reads for χ? ∈
(
V?
)d

and ∀v? ∈
(
V?
)d

:

ns∑
n=1

∫
Ω?c,n

(
∇ξχ? · J−1

ρ

)
:
(
∇ξv? · J−1

ρ

)
jρ dΩ? +

∫
Ω?e

(∇ξχ?) : ∇ξv? dΩ? = −
ns∑
n=1

∫
Γ ?n

n · v? gρ,n dΓ ?, (51)

for the same functional space V? defined in (21), replacing the scalar parameter ρ by the vector parameter ρ. The
homogenized diffusion tensor reads

D(ρ) = D

(
|Ω?f |
|Ω?|I +

ns∑
n=1

∫
Ω?c,n

(
∇ξχ? · J−1

ρ

)ᵀ
jρ dΩ? +

∫
Ω?e

∇ξχᵀ
? dΩ?

)
. (52)

The reduction is performed similarly to the single inclusion case with the same ersatz (28), resulting in the following reduced
order models for the coefficients a(ρ) = (a1(ρ), · · · , anχ(ρ)) of χ̂? in the basis

(
φi(ξ)

)
1≤i≤nχ

in the two-dimensional case:

Aρ · a(ρ) = cρ, (53)

with

Aρ = A+

ns∑
n=1

Ã0,0,n +
αρn
βρn

Ã1,0,n

−
ns∑
n=1

(
1 + βnt+1

ρn

) αρn
βρn

Ã−1,1,n

+

ns∑
n=1

nt∑
l=1

(−1)l
(

nt∑
m=l

βmρnC
l
m

)
(1− βρn)

αρn
βρnq

l
Ãl−1,1,n

(54)

and

c(ρ) =

ns∑
n=1

gρ,n cn, (55)

where [
A
]
ij

=

∫
Ω?e

∇ξφj : ∇ξφi dΩ?, (56)

[
Ãp,0,n

]
ij

=

∫
Ω?c,n

∇ξφj : ∇ξφi
‖ ξ − ξn ‖p

dΩ?, for 0 ≤ p ≤ d− 1, (57)

[
Ãr,1,n

]
ij

=

∫
Ω?c,n

(
∇ξφj · ‖ξ − ξn‖rGu(ξ−ξn)

)
: ∇ξφi dΩ?, for − 1 ≤ r ≤ nt − 1, (58)

[
cn
]
i

= −
∫
Γ ?n

n · φi dΓ ?. (59)
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The reduced order model for the homogenized diffusion tensor is given in the two-dimensional case by:

D(ρ) ' D̂(ρ) = D

(
|Ω?f |
|Ω?|I +Kρ · a(ρ)

)
, (60)

with

Kρ = K +

ns∑
n=1

(
βρnK̃0,0,n + αρnK̃1,0,n − αρn K̃1,1,n

)
, (61)

where

[
K
]
ijk

=

∫
Ω?e

[∇ξφk(ξ)]ji dΩ?, (62)

[
K̃p,0,n

]
ijk

=

∫
Ω?c,n

[∇ξφk(ξ)]ji
‖ ξ − ξn ‖p

dΩ?, (63)

[
K̃p,1,n

]
ijk

= −
∫
Ω?c,n

[∇ξφk(ξ) · ∇ξu(ξ − ξn)]ji
‖ ξ − ξn ‖p

dΩ?. (64)

Expressions for Aρ and Kρ in the three-dimensional case are given by

Aρ = A+

ns∑
n=1

(
βρnÃ0,0,n + 2αρnÃ1,0,n +

α2
ρn

βρn
Ã2,0,n − 2αρnÃ−1,1,n −

α2
ρn

βρn
Ã−2,1,n

)
, (65)

and

Kρ = K +

ns∑
n=1

(
β2
ρnK̃0,0,n + 2αρnβρnK̃1,0,n + α2

ρnK̃2,0,n − αρnβρn K̃1,1,n − α2
ρnK̃2,1,n

)
. (66)

Obviously, the procedure for a single inclusion is given by that for several inclusions with ns = 1, ρ1 = ρ and y1 = 0.

3.4 Discussion

The proposed method to compute the homogenized diffusion tensor splits into a training phase described in algorithm 1
and an evaluation phase described in algorithm 2. The training phase consists firstly in the computation of the auxiliary
function by the finite-elements method for nρ sampling values of the geometry parameter, secondly in the computation
of the POD basis and thirdly in the computation of the components of the reduced order model. The evaluation phase
consists firstly in the assembly of reduced operators and secondly in the resolution of the reduced order model.

At the training phase, the computation of the auxiliary function in the reference domain can be done in two ways: (i) by
solving the variational problem (50) for χ(y,ρk) over the physical domain Ωf(ρk) and transporting the solution to the
reference domain Ω?f , or (ii) by solving directly the variational problem (51). In both cases, it is required to solve nρ linear
diffusion problems by the finite-elements method, and the first method requires nρ additional interpolations of the data
onto a reference mesh, as illustrated in figure 4.

(a) Mesh on Ωf(ρk)

τ−1
ρk−−−→

(b) Moved mesh on Ω?f

Interpolation−−−−−−−−−→

(c) Reference mesh on Ω?f

Fig. 4: Mesh used in the transport of the solution χ(y,ρk) from the physical domain to the reference domain in step 2 of
algorithm 1. The interpolation step is required to ensure that all the solutions {χ?(ξ,ρk)}1≤k≤nρ in the reference domain
are defined over the same mesh.
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Algorithm 1: Offline phase to compute the elementary reduced tensors in (56–59) and (62–64).

Data: Set of geometry parameters {ρk}1≤k≤nρ .
Result: POD basis (φi)1≤i≤nχ

and reduced tensors in (56–59) and (62–64).
1 forall k ← 1 to nρ do
2 Compute the auxiliary function χ?(ξ,ρk) either by (i) solving the variational problem (50) over the physical

domain Ωf(ρk) for χ(y,ρk) and transporting the solution to the reference domain Ω?f as in figure 4 or (ii) by
solving directly the variational problem (51);

3 end
4 Assemble the matrix of snapshots [S]jk = [χ?(ξ,ρk)]j for 1 ≤ j ≤ ndof with ndof the number of degrees of

freedom of the finite elements space and 1 ≤ k ≤ nρ;
5 Compute the POD basis (φi)1≤i≤nχ

from the first nχ left singular vectors of S;
6 Assemble the reduced tensors in (56–59) and (62–64);

Then the POD basis is computed using the Singular Value Decomposition (SVD) with asymptotic computational cost in
O
(
ndof nχ

2
)

with ndof the number of degrees of freedom of the finite-elements space and nχ the truncation order associ-
ated with the number of POD modes. The computation of the components in (56–59) for the auxiliary function is done
in O

(
((1 +ns (3 +nt))nχ

2 +ns nχ)ndof

)
, respectively O

(
((1 + 5ns)nχ

2 +ns nχ)ndof

)
operations, and the components in

(62–64) for the homogenized tensor is done in O
(
4(1 + 3ns)nχndof

)
, respectively O

(
9(1 + 5ns)ndof

)
operations, for d = 2

and d = 3.
At the evaluation phase, it is required firstly to assemble the operator (54)–(55) in O

(
(1 + ns (3 + nt))nχ

2 + ns nχ
)

or

O
(
(1 + 5ns)nχ

2 + ns nχ
)

operations, and the operator (61) in O
(
4(1 + 3ns)nχ

)
or O

(
9(1 + 5ns)nχ

)
operations whether

d is 2 or 3, and secondly to solve a linear system of size nχ in equation (53) and to perform d2 direct contractions
of vectors of size nχ in equation (60). Thus, the proposed method is particularly interesting when the number of de-
grees of freedom of the finite-elements space ndof is very large (typically in the 3-dimensional cases) and when the
homogenized diffusion tensor has to be evaluated for a large number of different geometry parameters. In practice, both
offline and online computations can be further reduced by taking into account symmetries in tensors

[
A
]
ij

and D.

Algorithm 2: Online phase to compute the POD-ROM approximations for the homogenized diffusion tensor
D̂(ρ) and the auxiliary function χ̂?(ξ;ρ) (optional).

Data: Target geometry parameter ρ and reduced tensors in (56–59) and (62–64) computed from algorithm 1.

Result: POD-ROM approximation for the homogenized diffusion tensor D̂(ρ) in (60) and (optional) the
auxiliary function χ̂?(ξ;ρ) in (28).

1 Assemble the matrix Aρ and the vector cρ as in (54)–(55);
2 Solve the POD-ROM (53) for the coefficients a(ρ);
3 Assemble the matrix Kρ as in (61);

4 Compute the homogenized diffusion tensor D̂(ρ) from the POD-ROM (60);
5 (Optional) Assemble the POD-ROM approximation for the auxiliary function χ̂?(ξ;ρ) as in (28);

4 Numerical results

In this section, we illustrate the accuracy and the reduced computational cost of the proposed method. We primarily focus
on the ability of the method to approximate the homogenized diffusion tensor D in equation (10) when D is constant.
However, since the latter splits in two terms as follows:

D =
D |Ωf |
|Ω| I + T , T =

D

|Ω|

∫
Ωf

∇yχᵀdΩ, (67)

and the computation of the the first part is easy for all geometries, we also focus on the computation of T which is more
challenging. In the following, we compare the results obtained by solving the following numerical problems:

FOM corresponds to the classical full-order finite-element model associated with (50) defined over the physical domain
which is remeshed for every value of the geometry parameter,

FOM? corresponds to the full-order finite-element model associated with (51) define on a single reference domain for
every value of the geometry parameter,

ROM denotes the reduced order model constructed from snapshots computed with the full order model labelled by FOM
whose solutions are pulled back to the reference domain, distorting the mesh, and then interpolating on the reference
mesh,

ROM? denotes the reduced order model constructed from snapshots computed with the full order model labelled by
FOM? whose solutions are defined directly on the reference mesh.

As a first application, three different cell problems are considered in the case of a single solid inclusion:
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(i) a two-dimensional isotropic cell, (ii) a three-dimensional isotropic cell and (iii) a three-dimensional anisotropic cell. As
a second application, we consider a two-dimensional elementary cell with eight inclusions and two geometry parameters.
Finally, we reconsider the previous applications when only a probability law is known for the geometry parameter.

All programs have been written in Python3 using packages from the FEniCS project, and executed on 4 CPU cadenced
at 2.90GHz, with 16GB of working memory. In all this section, the full order solutions FOM and FOM? are computed
with quadratic Lagrange elements.

4.1 Single inclusion

For each case studied in this subsection, the test procedure is as follows. First, the influence of mesh refinement on the
prediction of the tensor T defined in equation (67) obtained by solving the full-order problem FOM is tested. This step
allows to select the mesh so that it does not influence the accuracy of the results of the POD-ROMs. Secondly, the efficiency
of the proposed reduced order models ROM and ROM? is evaluated. The accuracy will be studied by considering the
relative error between the FOM and the POD-ROMs solutions, defined as:

eDii =
DROM
ii −DFOM

ii

DFOM
ii

, eTii =
TROM
ii − TFOM

ii

TFOM
ii

, eχ =
‖χ− χFOM‖V?
‖χFOM‖V?

.

In the third case, the vector field χ obtained from the resolution of FOM?, ROM or ROM? over Ω?f is transported to Ωf

using transformation τρ and interpolated on the mesh for Ωf in order to be compared with χFOM.

4.1.1 Single circular inclusion

The first microstructure is the periodical repetition of an elementary cell, which consists in a fluid domain with a solid
inclusion forming a disc at the center (see figure 5). Due to the isotropy of this elementary cell, only computations of
D11(ρ) and T11(ρ) are required.

(a) Periodical microstructure (b) Elementary cell

Fig. 5: Two dimensional periodical microstructure and associated REV fluid domain with single solid circular inclusion
parametrized by its radius ρ.



Geometry dependent Reduced-Order Models for the computation of homogenized transfer properties in porous Media 13

Fig. 6: Influence of the mesh for the prediction of T11 obtained by solving FOM.

a) Convergence of Finite Element Method with respect to the mesh size

Figures 6 show the influence of the mesh size on the computation of T11 obtained by solving the full-order model. On
the right, the relative error of the component T11 given by:

eMesh,k =
T

Meshk+1

11 − TMeshk
11

TMeshk
11

, (68)

obtained with two successive meshes is shown. We observe that the difference between two consecutive meshes is
inferior to 0.1% as soon as 0.04 ≤ h ≤ 0.05. Then, in the following, the snapshots required to build the POD basis are
computed with a mesh size h = 0.04.

Fig. 7: Accuracy of the FOM? to predict T11. The error is defined as
TFOM?
11 − TFOM,h=0.04

11

TFOM,h=0.04
11

.

Figure 7 shows the ability of the FOM? model to predict T11, according to the mesh size. The reference corresponds
to the solution obtained by FOM for a mesh size of h = 0.04. From h = 0.05 the error decrease is low. In the following
we consider h = 0.04, that implies a maximal error of 3% between the predictions of FOM? and FOM.

b) POD-ROM performances

The POD bases are built by considering 12 snapshots corresponding to values {0.4, 0.45, . . . , 0.90, 0.95} of radius ρ.
For this range of radius, the volume fraction of the fluid phase varies between 0.29 and 0.87. The POD bases for
ROM? and ROM are truncated to 4 and 5 modes respectively, corresponding to an error of ν = 10−5 on the relative
information content as given by formula (69) in appendix B. The transformation τρ is built with the reference radius
ρref = 0.8. The POD-ROMs are tested for the 11 values {0.425, 0.475, . . . , 0.875, 0.925} of ρ̃, which do not belong to
the training set. D11, T11 and χ obtained with the full order models FOM, FOM? and the POD-ROMs ROM, ROM?

are shown in figures 8 and 9.
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(a) Coefficient D11 (b) Coefficient T11

Fig. 8: Comparison of D11 and T11 obtained by the full order models FOM, FOM? and the reduced order models ROM,
ROM?.

According to figure 8a, the diffusion coefficients D11 obtained with ROM, ROM? and FOM? are very close to those
obtained by the reference FOM model. The same statement can be made for T11, according to figure 8b, as far as the
parameter ρ̃ is lesser than 0.825. For great values of the parameter, ROM? results are close to those computed with
FOM?, values of T11 obtained with ROM are slightly superior.

(a) Homogenized diffusion coefficient D11 (b) Coefficient T11

(c) Vector field χ

Fig. 9: Errors associated with ROM, ROM? and FOM? on the prediction of D11, T11 and χ relatively to FOM.

Figures 9 show the relative errors between coefficients D11, T11 and vector χ predicted by the POD-ROMs and those
obtained by the reference FOM. According to figure 9a, ROM? is able to predict the coefficient D11, with relative
error smaller than 2%. The error for ROM is inferior to 8%, and even to 2% if ρ̃ ≤ 0.9. Moreover, both reduced-order
models are able to predict coefficient T11 with a relative error lesser to 3%, when compared to FOM, except for ρ̃ ≥ 0.9
with ROM method where the error is lesser than 8% anyway. Furthermore, the relative error of vector χ restituted
by ROM? and ROM is lesser than 6%. These errors are mainly due to the mapping onto the reference domain, or to
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the use of the transformation Jacobian in the full-order problem on Ω?. Indeed, the errors measured for ROM? and
FOM? are the same, so that the POD-Galerkin projection is not involved. Moreover ROM gets errors that are slightly
different from the ROM?’s, inferior to 3%.

Fig. 10: Computing time for the full and reduced order models.

The online computing time is shown in figure 10. This figure exhibits efficiency of the POD-ROM. They allow to divide
by 100 the computation time of D in comparison with the full simulation. We note also that the computing time of
the full model FOM? based on transformation τρ is greater than that of the standard full model FOM due to slower
convergence of the underlying linear solver.

4.1.2 Single spherical inclusion

The second microstructure for which POD-ROM is performed to compute tensor D and T consists in the periodic
repetition of a cubical cell with a single ball shaped solid inclusion located at the center of the cell (see figure 11).
According to the symmetry of the elementary cell, the tensor D exhibits isotropic properties. Therefore, we limit the
presentation of results to the tensor components D11 and T11.

(a) Periodical microstructure (b) Elementary cell

Fig. 11: Three dimensional periodical microstructure and associated REV fluid domain with single solid spherical inclusion
parametrized by its radius ρ.

a) Convergence of Finite Element Method with respect to the mesh size
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Fig. 12: Influence of the mesh for the prediction of T11 obtained by solving FOM.

The convergence of coefficient T11 with the mesh size and the associated relative error are shown in figure 12. Similarly
to the previous 2D case, we see that relative errors between consecutive computations of T11 is low for h ≤ 0.05 so we
select h = 0.05 for this application.

b) POD-ROM performances

The POD bases are built by considering 12 snapshots corresponding to values {0.4, 0.45, . . . , 0.90, 0.95} of radius ρ.
For this range of radius, the volume fraction varies between 0.55 and 0.97 for the fluid phase. Again, the POD bases
for both ROM? and ROM are truncated to 5 modes, corresponding to an error of ν = 10−5 on the relative information
content as given by formula (69). The transformation τρ is built for ρref = 0.8.

Fig. 13: D11 and T11 obtained by the full-order models and the reduced-order models.
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(a) Coefficient D11 (b) Coefficient T11

(c) Vector field χ

Fig. 14: Relative errors of ROM, ROM? and FOM? models relatively to FOM model, on the prediction of D11, T11 and
χ.

Figures 13 and 14 show that the POD-ROMs give a good prediction of the coefficient D11. Indifferently from the
offline POD-ROM construction, the relative error is below 1%. The latter error is below 8% for T11 and 6% for χ.
Moreover, according to figure 15, ROM and ROM? are 10000 times faster than FOM method. However, it should be
noticed that the construction of the reduced order model ROM requires an additional interpolation step as detailed
in algorithm 1.

Fig. 15: Computing times for the full order models and reduced order models.

4.1.3 Three-dimensional anisotropic cell

The third microstructure studied in this article is defined by the anisotropic elementary cell in figure 16. Here, the tensor
T is diagonal with coefficient T22 different of T11 and T33, while the latter are identical. Indeed, axes represented in the
right side of figure 16 indicate that axes Ox and Oz can be switched in a way that preserves the cell’s geometry, while
it is not the case if Oy is substituted to one of these two axes. In the following paragraph, results are presented for both
T11 and T22.
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(a) Periodical microstructure (b) Elementary cell (c) Axes xyz

Fig. 16: Three dimensional periodic microstructure and associated REV fluid domain which includes one solid spherical
inclusion parametrized by its radius ρ, and four quarters of cylinders independent from ρ located at the edges of the cell.

Fig. 17: Influence of the mesh for the prediction of T11 obtained by solving FOM.

Fig. 18: Influence of the mesh for the prediction of T22 obtained by solving FOM.

a) Convergence of Finite Element Method with respect to the mesh size

The convergence of T11 and T22 with the mesh size and the associated relative error are shown in figure 17 and 18. We
see that relative errors between consecutive computations of T11 and T22 is low for h ≤ 0.05. Thus, we fix h = 0.05
for this application.

b) POD-ROM performances

The POD bases are built by considering 12 snapshots corresponding to values {0.4, 0.45, . . . , 0.90, 0.95} of radius ρ.
For this range of radius, the volume fraction varies between 0.43 and 0.85 for the fluid phase. Again, the POD basis
for ROM? truncated to 6 modes and that for ROM is truncated to 5 modes, corresponding to an error of ν = 10−5

in (69). Transformation τρ is built with ρref = 0.8. In this paragraph, results obtained with the different models are
presented similarly to the previous example.
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Fig. 19: D11 and D22 obtained by the full-order models and the reduced-order models.

(a) Coefficient D11 (b) Coefficient D22

Fig. 20: Relative errors of components D11 and D22 of the homogenized tensor, between the predictions of the reduced-
order models and the reference full-order model FOM.

Figures 19 and 20 show that POD-ROM gives an accurate prediction of the diffusion coefficients D11 and D22. The
relative error with respect to FOM is inferior to 2% for D11 and 0.2% for D22.
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(a) T11 (b) T22

(c) T22−T11
T11

Fig. 21: T11, T22 and
T22 − T11

T11
obtained by the POD-ROMs and Finite Element Method.
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(a) Coefficient T11 (b) Coefficient T22

(c) Vector field χ

Fig. 22: Relative errors: vector field χ and T coefficients.

Figures 21 and 22 confirm these results. ROM?and ROM allow to predict T ’s coefficients with lesser that 6% error in
all cases, moreover χ is restituted with less than 8% error. Furthermore, figure 21c shows that the cell’s anisotropy is
well restituted by POD-ROM. Figure 23 shows that POD-ROM, executed online, is 10000 times faster than FEM.

Fig. 23: Computing time for the full and reduced models

4.1.4 Random distributions of a scalar parameter

Here we are interested in the computation of the components of the homogenized tensor D(ρ) when only a probability law
is known for ρ. For each of the three configurations addressed previously, a normal distribution N

(
m,σ2

)
with m = ρref

and σ = 0.15 is simulated by the Monte-Carlo method, providing a pseudo-random value of the parameter ρ for which
D(ρ) is computed online with ROM.
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(a) One circular inclusion. (b) One spherical inclusion.

(c) 3D anisotropic cell.

Fig. 24: Distribution of D(ρ): 100 occurences of ρ and probability law N (0.80, 0.15) compared with 8 values obtained
from the Finite Element Method.

On figure 24, it can be seen that the direct calculation of D11(ρ) (respectively D11(ρ)) where ρ follows the probability
law N (0.70, 0.15) (in yellow) interpolates with high accuracy the eight values D11(ρj) (respectively D22(ρj)) computed
with FOM (in red), where ρj belongs to the training set. Once the offline part of POD-ROM computation is performed,
the distribution of D(ρ) can be estimated in real time for a given probability law simulated by Monte-Carlo.

4.2 Multiple inclusions with various parameters

We now focus on an elementary cell with 8 circular inclusions parametrized by two radii ρ1 and ρ2 (see figure 25a).
The elementary cell Ω = (−1, 1)2 consists in a fluid phase and of eight solid discs whose centers have coordinates
(0, 35; 0), (0; 0, 25), (−0, 35; 0), (0;−0, 25), (0; 0, 75), (0, 75; 0), (0;−0, 75), (−0, 75; 0). The radii ρ?1 and ρ?2 of the reference
configuration are both set to 0, 1125. Computations of T11 and T22 with FOM using different meshes lead us to choose
the value h = 0.02 for the mesh resolution. Figure 25b shows the solution of the full-order cell problem.

(a) Mesh, h = 0.02 (b) χ computed with FOM

Fig. 25: Mesh and FOM solution for the case: (ρ1, ρ2) = (0.0975, 0.0675).



Geometry dependent Reduced-Order Models for the computation of homogenized transfer properties in porous Media 23

The POD bases are built by considering 36 snapshots corresponding to the six values {0, 0525; 0.0675; . . . ; 0, 1275; 0, 1425}
taken independently by each parameter ρ1, ρ2. By choosing ν = 10−5, there are 7 modes for ROM? and 34 modes for
ROM. The reduced order models are tested for the 36 values of (ρ̃1, ρ̃2) where each parameter takes independently the
6 values {0, 06; 0, 075, . . . ; 0, 135} which do not belong to the training set.The choice of (0.1125, 0.1125) for the reference
values of parameters ρ1 and ρ2 is motivated, like in the monoparametric cases seen in this work, by the accuracy of
ROM? and ROM. For each couple (ρ1, ρ2), the logarithm of the relative error between the solutions obtained by ROM?

(respectively ROM) are shown in figure 26 (respectively figure 27). The ROM and ROM? methods restitute T11 and T22
with less than 1% error for most of the 36 parameter pairs (ρ1, ρ2), in fact the error is lesser than 3% for each tested value
and reachs 0.1% when (ρ1, ρ2) is close to (ρ?1, ρ?2). Furthermore, the vector field χ is restituted by the ROM method
with less than 10% error for each bi-parameter value, and this error reachs 1% in a vicinity of (ρ?1, ρ?2). Finally, the

value of
T22 − T11

T11
, which quantifies the anisotropy, is shown in figure 28 for each of the 36 tested pairs (ρ1, ρ2). Both

POD-ROMs reproduce properly this coefficient 100 times faster than FOM.

Fig. 26: Relative error of ROM?, relatively to FOM, on the prediction of coefficients T11, T22 and of vector field χ. The
value of ρ2, which changes in the same range than ρ2, is recalled at the left side of the first plot.

Fig. 27: Relative error of ROM, relatively to FOM, on the prediction of coefficients T11, T22 and of vector field χ.

Fig. 28:
T22 − T11

T11
obtained with FOM, ROM? and ROM models.
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5 Conclusion and perspectives

In this work, we proposed a POD-based model order reduction technique for efficient computation of the homogenized
diffusion properties of periodic elementary cells parametrized by their geometries, for which classical model order reduction
methods based on the computation of a spatial basis can not apply. This difficulty was overcome by the introduction of a
transformation from a reference domain to the physical domain that is specially tailored to address the circular geometries
used to model the microstructure in the framework of periodic homogenization of porous media. This transformation
admits for three-dimensional geometries an explicit and exact affine decomposition that allows to split the problem into
an offline learning phase and an online evaluation phase, so that the computational complexity of the latter does not
depend on the number of degrees of freedom of the original full order solution space. We also provided an approximate yet
accurate decomposition for two-dimensional geometries. The efficiency of the proposed POD-ROMs in terms of accuracy
and computing time was shown for two dimensional and three dimensional isotropic or anisotropic elementary cells
parametrized by a single parameter, and for elementary cells with multiple inclusions parametrized by several geometry
parameters. For all the studied cases, the proposed POD-ROMs predict the homogenized diffusion properties with a
relative error of the order of 10% compared with the value obtained by the Finite Element Method, and of the order of 1%
in most cases, while dividing by 100 the computing time for two dimensional cells, and by 10s000 for three dimensional
cells. Two methods to compute the snapshots required to build the POD basis have been tested. The first one consists in
solving the cell problem on the physical domain and transporting the solution to the reference domain. The second one is
based on the resolution of the cell problem defined over the reference domain. Both methods give similar results, but the
implementation of the first method is not intrusive and can be easily used with a classical FEM solver. Direct perspectives
are the optimization-based parametric study of the microstructure from measured diffusion properties on real materials
which would require repeated evaluation of the physical model for several different geometries, and the consideration of
the nonlinearized Nernst-Plank-Poisson-Boltzmann equations.
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A Recalls on the Proper Orthogonal Decomposition (POD)

Reduced-order models consist in approximating the solution χ?(ξ; ρ) of a given problem parametrized by ρ on a spatial basis (φi)
Nrom
i=1 of

small size Nrom:

χ?(ξ; ρ) ' χ̂?(ξ; ρ) =

nχ∑
i=1

ai(ρ)φi(ξ)

where ξ is the space variable. There exists numerous methods to build this spatial basis, but the most used stays the Proper Orthogonal
Decomposition that combines accuracy and optimality. The space-dependent functions φi obtained by the POD, lying in the Hilbert space(
V?
)d

, satisfy the two conditions:

i) Orthogonality: (φi)i is orthogonal,

ii) Optimality of (φi)i: φl = argmax
φ∈
(
V?
)d 〈(φ ∣∣∣∣∣ l−1∑

k=1

(χ?|φk)(
V?
)d φk

)
(
V?
)d
〉
,

where (•|•)(
V?
)d denotes the scalar product of

(
V?
)d

and 〈•〉 denotes the mean over the variable ρ. The latter condition ensures that the

space engendered by the {φi}li=1 gives the best approximation of the functions χ?(ξ; ρ), among the subspaces of
(
V?
)d

with rank l.

The method of snapshots introduced in [33] is used in this article. It consists in computing by the FEM a set of vector fields χ?(ξ; ρj)

(called the the snapshots) for a finite set of parameter values {ρj}Nsnap

j=1 . Then, POD modes φi are sought inside the functional space

[χ?(ξ; ρj)]
Nsnap

j=1 . The snapshots χ?(ξ; ρj) are expected to be linearly independent in practical cases so that, by exploiting the orthogonality

and optimality conditions, the POD modes can be determined by the formula:

φi =
1
√
λi

Nsnap∑
j=1

[vi]jχ?(ξ; ρj),

where λi are the eigenvalues and vi are the unit eigenvectors of the symmetric positive definite correlation matrix C whose coefficients are
given by:

Cjk =
1

Nsnap

∫
Ω

χ?(ξ; ρk) · χ?(ξ; ρj)dy.
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The POD basis is then truncated to a number of Nrom modes which is selected to ensure that the error on the relative content of information
due to the projection on the retained POD modes is below a given threshold ν:

Nrom = min

N ∈ 1 . . . Nsnap;

N∑
i=1

λi

Nsnap∑
i=1

λi

> 1− ν

 · (69)

B Formulas and proofs associated with the parametrized transformation

Let us recall the definition of transformation τρ, for each ξ in the reference fluid domain:

τρ(ξ) =

{
αρu(ξ) + βρξ, if ρ? ≤‖ ξ ‖< q,
ξ, if q ≤‖ ξ ‖,

where ρ? and q are the internal and external radii of the crown Ω?c , u(ξ) =
ξ

‖ ξ ‖
denotes the radial unit vector and

αρ = q
ρ− ρ?
q − ρ?

, βρ =
q − ρ
q − ρ?

.

The following formulas related with the Jacobian matrix of the transformation τρ are the core of the affine dependence to the geometry of
the proposed POD-ROM.

Lemma 1 For all ρ such that ρ < q:

Jρ(ξ) = βρI + αρ∇ξu(ξ), (70)

J−1
ρ (ξ) =

1

βρ
I −

αρ

βρ
·

1

βρ‖ξ‖+ αρ
Gu(ξ), (71)

jρ(ξ) = βρ

d−1∑
p=0

Cpd−1

αpρ

‖ξ‖p
βd−1−p
ρ , (72)

with the convention :

Gu(ξ) : = I −
1

‖ξ‖2
ξ · ξᵀ· (73)

Proof (70) is obvious, it follows from the definition of τρ and the linearity of the gradient operator. To prove (71) we need an explicit formula
for the inverse mapping τρ−1. We firstly notice that, according to the geometrical characterization of τρ at the beginning of section 3, τρ−1

is obtained by switching ρ? and ρ in τρ. Then we have for y = τρ(ξ):

τρ
−1(y) =

{
α′ρu(y) + β′ρy, if ρ? ≤‖ y ‖< q,
y, if q ≤‖ y ‖,

where

α′ρ = q
ρ? − ρ
q − ρ

, β′ρ =
q − ρ?
q − ρ

.

Note that α′ρ = −αρ
βρ

and β′ρ = 1
βρ

. Now, differentiating τρ−1 at τρ(ξ) to compute J−1
ρ (ξ) for each ξ < q yields J−1

ρ (ξ) =
(
∇τρ(ξ)τρ

−1
)

(τρ(ξ)),

from which it follows by linearity that

J−1
ρ (ξ) =

1

βρ

(
I − αρ∇τρ(ξ)u(τρ(ξ))

)
.

By definition of the unitary vector u(y) =
y

‖y‖
, we have ∇yu(y) = 1

‖y‖

(
I − 1

‖y‖2 y · y
ᵀ
)

. To conclude, notice that Gu(ξ) = Gu(y) since

τρ(ξ) is always positively co-linear to ξ so that

J−1
ρ (ξ) =

1

βρ

(
I − αρ

1

‖τρ(ξ)‖

(
I −

1

‖ξ‖2
ξ · ξᵀ

))
,

which provides the expected result.
Thereafter, we provide the proof of the latest statement (72) in the case d = 3. Notice that the matrix ξ · ξᵀ is by construction of rank 1
and symmetric so that it exists an orthogonal matrix P for which

ξ · ξᵀ = P ·

Tr (ξ · ξᵀ) 0 0
0 0 0
0 0 0

 · P ᵀ.

Moreover, we have Tr(ξ · ξᵀ) = ‖ξ‖2 for all ξ so that

∇ξu(ξ) = P ·

 0 0 0
0 1
‖ξ‖ 0

0 0 1
‖ξ‖

 · P ᵀ,

and

Jρ(ξ) = P ·

 βρ 0 0
0 βρ +

αρ
‖ξ‖ 0

0 0 βρ +
αρ
‖ξ‖

 · P ᵀ.

We deduce the formula (72) by expending the expression βρ
(
βρ +

αρ
‖ξ‖

)d−1
using the binomial theorem. �
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Notice that this demonstration relies on the symmetry of Jρ(ξ) which stands from the spherical symmetry of the transformation τρ, so that
it does not generalize directly to other kind of transformations. We are ready to establish the two main statements of this paragraph.

Theorem 1

J−1
ρ jρ =


(
βρ + αρ

1
‖ξ‖

)
I − αρ 1

‖ξ‖Gu(ξ), if d = 2 ,(
β2
ρ + 2αρβρ

1
‖ξ‖ + α2

ρ
1
‖ξ‖2

)
I − αρ

(
βρ

1
‖ξ‖ + αρ

1
‖ξ‖2

)
Gu(ξ), if d = 3 .

Proof From lemma 1 and the following equality

jρ = βρ

(
‖τρ(ξ)‖
‖ξ‖

)d−1

,

we have

J−1
ρ jρ = βρ

(
‖τρ(ξ)‖
‖ξ‖

)d−1 ( 1

βρ
I −

αρ

βρ
·

1

βρ‖ξ‖+ αρ
Gu(ξ)

)
.

The multiplication by ‖τρ(ξ)‖d−1 simplifies the denominator which is due to J−1
ρ , whatever d can be. This yields the expected formulas. �

Theorem 2

J−2
ρ jρ =


(

1 +
αρ

βρ‖ξ‖

)
I −

(
1 + βnt+1

ρ + (1− βρ)

(
nt∑
l=1

(−1)l
(
nt∑
m=l

βmρ C
l
m

)
‖ξ‖l

ql
+Rnt (ρ, ξ)

))
αρ

βρ‖ξ‖
Gu(ξ) if d = 2 ,(

βρ + 2αρ
1

‖ξ‖
+
α2
ρ

βρ

1

‖ξ‖2

)
I − 2αρ

1

‖ξ‖
Gu(ξ) −

α2
ρ

βρ

1

‖ξ‖2
Gu(ξ), if d = 3 ,

where the residual is given by Rnt (ρ, ξ) =
(
βρ
q

(q − ‖ξ‖)
)nt+1 1

1− βρ q−‖ξ‖q

.

Proof As well as in the proof of theorem 1 we have

(
J−2
ρ

)
jρ = βρ

(
‖τρ(ξ)‖
‖ξ‖

)d−1 ( 1

βρ
I −

αρ

βρ

(
1

βρ‖ξ‖+ αρ
Gu(ξ)

))2

(74)

ù The result announced for d = 3 follows easily, but the same reasoning fails when d = 2: indeed, the multiplication by ‖τρ(ξ)‖ = αρ+βρ‖ξ‖

does not compensate the presence of

(
1

βρ‖ξ‖+ αρ

)2

in the latest expression. Unfortunately, the fraction
1

βρ‖ξ‖+ αρ
is an obstruction for

the offline computation required for the algorithms 1–2. We overcome this difficulty by approximating
(
J−2
ρ

)
jρ: starting from (74) we get:

(
J−2
ρ

)
jρ = I +

αρ

βρ‖ξ‖
I − 2

αρ

βρ‖ξ‖
Gu(ξ) +

αρ

βρ‖ξ‖
(1− βρ) ·

1

1− βρ q−‖ξ‖q

Gu(ξ) (75)

The key point is the following, intermediate result:

Lemma 2 For every ρ and ρ? ≤‖ ξ ‖< q, we have

βρ
q − ‖ξ‖

q
∈
[
0,
q − ρ
q

]
. (76)

Consequently and for all 0 < ρ < q, this ratio belongs to ]0, 1[.

Then the fraction
1

1− βρ q−‖ξ‖q

can be developped as a power series, which entails:

(
J−2
ρ

)
jρ =

(
1 +

αρ

βρ‖ξ‖

)
I − 2

αρ

βρ‖ξ‖
Gu(ξ) +

(
nt∑
m=0

(
βρ

q

)m
· (q − ‖ξ‖)m

)
(1−βρ)

αρ

βρ‖ξ‖
·Gu(ξ) +Rnt (ρ, ξ) (1−βρ)

αρ

βρ‖ξ‖
·Gu(ξ). (77)

where Rnt (ρ, ξ) is the announced residual of order nt. The latter vanishes when nt → +∞ according to lemma 2, and in practical cases
the convergence is very fast (we use nt ≤ 3 for all numerical applications in this work). To fully establish the affine separation of ξ and ρ
we write:

nt∑
m=0

(
βρ

q

)m
· (q − ‖ξ‖)m =

nt∑
m=0

βmρ

(
1−
‖ξ‖
q

)m
=

nt∑
m=0

m∑
l=0

βmρ Clm(−1)l
‖ξ‖l

ql
=

nt∑
l=0

nt∑
m=l

βmρ Clm(−1)l
‖ξ‖l

ql
. (78)

For l = 0, the sum
nt∑
m=l

βmρ Clm(−1)l
‖ξ‖l

ql
is a geometric sum and equals

1− βnt+1
ρ

1− βρ
, so that

−2
αρ

βρ‖ξ‖
Gu(ξ) +

nt∑
m=l

βmρ Clm(−1)l
‖ξ‖l

ql
(1− βρ)

αρ

βρ‖ξ‖
Gu(ξ) = −(1 + β1+nt

ρ )
αρ

βρ‖ξ‖
Gu(ξ) for l = 0. (79)

Injecting (78) and (79) into (77) gives the announced statement. Provided a rank nt for which the residual Rnt (ρ, ξ) can be neglected, we

obtain an expression of
(
J−2
ρ

)
jρ where variables ρ and ξ are separated. �

Notice that since the inequality stated in lemma 2 is normalized by q, the same nt can be chosen for each inclusion in the multiparametric
case, indifferently to the size of the inclusions. It is the case for hte numerical applications of this work, although a unique q has been used
in this work.
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