
HAL Id: hal-04886531
https://hal.science/hal-04886531v1

Preprint submitted on 14 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

D-ECS: Towards decentralising video games
Divi De Lacour

To cite this version:

Divi De Lacour. D-ECS: Towards decentralising video games. 2025. �hal-04886531�

https://hal.science/hal-04886531v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


D-ECS: Towards decentralising video games
Divi De Lacour

Orange Innovation, IMT Atlantique, Inria
divi1.delacour@orange.com

Abstract
Current multiplayer video games are hard to scale in the
number of players and simulated entities. Multiplayer ar-
chitectures beyond basic client-server architectures are not
provided by game engines and must be re-implemented for
each game. Peer-to-peer approaches have been proposed
to improve scalability, either to reduce the server network
load created by broadcasts, or to create a scalable server
infrastructure based on multiple machines. However, this ap-
proach increases the complexity of video game architectures.
We provide a model to adapt games for p2p multiplayer, sep-
arating game and network logic. It allows for a game to be
in a client-server or peer-to-peer setting seamlessly for any
kind of game. We show how it can be applied to improve
the performances and identify its security requirements and
associated countermeasures.

Keywords: online video games, decentralization, entity com-
ponent system, ECS, security

1 Introduction
The market for online games is experiencing significant
growth, with revenues projected to reach 27.97 billion USD
by 2024. This drives the growth of various applications, in-
cluding metaverse use cases [6] and the simulation of multi-
agent systems [5]. Multiplayer online games and massively
multiplayer online games (MMOGs) are at the forefront of
this expansion, offering complex and immersive experiences
to players worldwide. They are to be distinguished from
online social networks [14] which aim to provide communi-
cations without the ability to simulate a virtual environment.
Multiplayer games can be designed using either centralized
or decentralized networking architectures [19]. Centralized
architectures, such as the traditional client-server model, are
easier to design and offer robust protection against cheating.
In these configurations, a central server manages game state
and player interactions, ensuring consistency and security.
However, centralized architectures come with higher hosting
costs and can become bottlenecks as the number of players
increases [19].
In contrast, decentralized architectures aim to reduce host-
ing costs by distributing the computational and networking
load across multiple machines or even directly among play-
ers. While this approach can enhance scalability and reduce
server costs, sensitive tasks are often delegated to untrusted
devices, introducing significant challenges related to security
and cheating [16].

One of the primary challenges in developing multiplayer
games is scaling the number of simultaneous players and
the number of entities that need to be simulated. A common
solution to this problem is to distribute both execution and
data. For instance, games like World of Warcraft (WoW) di-
vide the game world into distinct areas or zones (Interest
Management [11] ), each managed by different servers. This
approach allows for horizontal scaling, enabling the game
to support a large number of players by distributing the
load across multiple servers. However, such games are typi-
cally built using client-server architectures that can become
complex and cumbersome. The mixing of game logic with
distribution logic often results in a complicated server in-
frastructure, with for example the use of separate inventory,
authentication, and area of interest servers.
Another significant challenge is the lack of a standard for-
malization for games, which complicates research and devel-
opment efforts focused on game distribution. Most games are
developed using object-oriented programming (OOP) with
serialization, which can be difficult to synchronize and may
introduce security vulnerabilities by introducing payloads.
The Entity-Component-System (ECS) paradigm [17] offers
a solution to these issues, separating data and code to be
executed. ECS allows for efficient management of a large
number of entities and is used in game engines like Bevy
and Unity DOTS.
In this paper, we propose a model for flexible online video
games that is adaptable to any ECS-based game and can
operate in both centralized and decentralized architectures.
Inspired by aspect oriented programming [9], our model
separates game logic from networking logic, making it easier
to scale and secure. We also study the security implications
of our model and propose various optimizations to enhance
performance.
The structure of this paper is as follows: Section 2 reviews
the related works on ECS and decentralising video games,
accounting for performances and security. Section 3 presents
our proposed architecture. Section 4 identifies the security
countermeasures available and how they can be added to
our architecture.

2 Related Works
2.1 Formalising video games
There is no standard formalization for video games, which
complicates research and development. Traditionally, most
games are developed using object-oriented programming



D. De Lacour

Figure 1. ECS illustration

(OOP). However, this approach limits the ability to use mul-
tithreading to improve performances and makes synchro-
nization harder, as it involves both data and code.
Data-oriented game design treats the game as a database, fo-
cusing on efficient data management. A specific paradigm in
data-oriented game design is the Entity-Component-System
(ECS) architecture [17], which is used for managing a large
number of entities, as seen in games like Cities: Skylines 2.
Better performances have been observed in games developed
with a data-oriented approach [18], which is enhanced by
its ability to parallelize execution into multiple threads [13].
The ECS paradigm consists of three elements (figure 1):
Entities: Unique identifiers representing game objects. En-
tities themselves do not contain data or behavior; they are
simply references that can be associated with various com-
ponents.
Components: Data containers that store properties of en-
tities, such as position, velocity, or health. Components are
simple data structures and do not integrate any game logic.
Systems: Logic processors that execute game logic on enti-
ties based on their components. Systems iterate over entities
with specific components and update their state accordingly.

2.2 Multiplayer video games
In multiplayer online games, clients exchange information
about game objects in two approaches (figure 2):
Client-Server Model: a central server verifies actions and
access rights. It is responsible for receiving updates from
clients and broadcasting the new game status to all con-
nected clients, ensuring consistency and security. The server
infrastructure can be distributed into multiple servers com-
municating with each other.
Peer-to-Peer (P2P) Model: clients communicate directly
with one another. They share information about the game
environment without the need for a central server.
Scalability in multiplayer games encompass several critical
challenges. Scalability of execution is a significant concern
when the computational requirements of game logic exceed
available resources, resulting in performance degradation.
Additionally, the scalability in the number of simulated enti-
ties poses a challenge, as the management of an excessive
volume of data related to game objects can overwhelm sys-
tem capabilities and hinder responsiveness. Furthermore, the

Figure 2. Multiplayer architectures

scalability in the number of players complicates the archi-
tecture, as broadcasting status updates within constrained
timeframes becomes increasingly difficult with a growing
player base. A promising solution to these scalability issues
is distribution, specifically through the segmentation of the
game into multiple semi-independent worlds of interest, a
methodology referred to as Interest Management. This strat-
egy enables horizontal scaling, allowing the system to ac-
commodate increased loads by distributing the processing
across multiple servers.

2.3 Peer-to-Peer approaches
Peer-to-peer (P2P) approaches, as surveyed in [19], offer a
cost-effective alternative to traditional client-server mod-
els by distributing the computational and networking load
among multiple peers. These approaches can either involve
a full P2P model with no central server or a hybrid model
where a federation of servers handles different parts of the
game world. An example of the latter is Second Life, which
operates on a vast network of servers. While P2P architec-
tures can significantly reduce server costs and improve scala-
bility, they require the game to be designed with specific dis-
tribution strategies in mind, making them difficult to change
and adapt. Additionally, P2P models pose significant security
challenges, as any peer can potentially illegally read and
modify game variables.

2.4 Interest management
Interest management [11] improves scalability inmultiplayer
online games by dividing the game world into distinct zones,
each managed by different servers, this reduces the number
of entities each player or server needs to track. This distri-
bution of data, bandwidth, and execution load reduces the
load on individual servers.
As illustrated in figure 3, players are dispatched into different
zones, each handled by a different server. Servers communi-
catewith each other to handle the transfer of players between
zones. Distinct servers handle the players authentication and
manage the zone servers.
Strategies for interest management include static zoning,
with predefined regions, and dynamic zoning, which adapts
to the current distribution of players and entities[19].
However, adapting an already existing game to interest man-
agement is challenging as the game logic and distribution
logic are mixed in the game architecture.



D-ECS: Towards decentralising video games

Figure 3. Interest management illustration

2.5 Security of online games
Online games are vulnerable to various types of cheating
and security threats [16]. Unauthorized writing of values
can lead to incorrect game execution and corrupted game
data, undermining the integrity of the game. Unauthorized
reading of values can compromise player privacy and provide
unfair advantages.
Some other cheating techniques such as aim bots and mod-
ified controllers exploit automation on the user side, they
use legal game actions to gain an edge over other players.
Players can also use design errors in the game logic (bugs)
to gain an unfair advantage.
Network attacks are also a significant concern. Withhold-
ing information during status dissemination can disrupt the
game’s state synchronization, and finding other players’ IP
addresses can lead to targeted attacks.

3 The D-ECS model
We extend the ECS model for multiplayer games with the
D-ECS model, making it flexible for either client-server or
full p2p online games. It can be compared to real-time data-
base synchronisation [12]. This allows to easily port existing
games (written with the ECS paradigm) into multiplayer and
to separate game and networking logic for any game engine;
To allow developers to focus on the core game development
first and on multiplayer security and optimizations later, as
it often happens in game development processes.

3.1 Proposed model
Figure 4 shows our proposed architecture:

• ECS engine: is the engine used when creating the
game.

• Executor: executes systems in a function like ap-
proach: function (current_state, action) -> new_world_state,
this makes it compatible with FaaS approaches [10].

• Network component: is in charge of the game state
synchronization and network security

• Distribution engine: defines the policy on the distri-
bution and synchronization and replication, it handles
conflicts in values. In practice, it sets the synchroniza-
tion as specific systems run in the ECS Engine, and
regularly calls them.

We keep the existing ECS engine as it may have its own
database optimizations[12].
Developers can set behavior for distribution (e.g. scope for
interest management areas, regularity of synchronization)
and security (e.g. data access rights) of entities by adding
components (meta-components) which are parsed by the de-
centralization systems. This allows to change the multiplayer
policy without changing the logic of the game handled by
normal components. This way, systems can be limited to
a specific scope to reduce execution load. Specific values
can also be anticipated by a client before the network up-
date as in dead reckoning [3] which is used to anticipate the
trajectories of objects in distributed virtual environments.

3.2 Performance optimization
The presented architecture can be extended for improved
performances
Decentralizing the architecture of multiplayer games can
help improve the performances by helping scaling and re-
silience.
For that, the network component can utilize either a cen-
tralized server or decentralized pub/sub systems like Libp2p
pubsubs [2] to propagate updates or decentralized databases
such as OrbitDB [1] hosting the entity-component data.
Scope composition allows to dynamically handle the load
change in the different scopes. It can be done hierarchically
with scopes featuring sub-scopes. The composition does not
rely on spatial assumptions (such as a world being in 2D or
3D world), this allows for greater flexibility.
The distribution manager is in charge of fusing or spliting
the scopes. It updates the entities scopes. It must make sure
no entity is lost because no peer monitored it.
Inside/outside interface – In some cases, interactions be-
tween two scopes can be very limited. For instance, the
precise positions of planets within a stellar system can be
disregarded when viewed from another stellar system, which
can be treated as a single point with all its mass concentrated.
As illustrated in Figure 5, developers can provide a specific
API to interact with a scope as a whole. This requires cre-
ating an entity symbolizing the entire scope, which has an
is_an_interface component. Only one such entity can repre-
sent a scope, it can be present in multiple scopes and must
be present in the scope it represents.



D. De Lacour

ECSEngine

entities

systems

systemExecutor

networkComponent

read(Entity, Component)

write(Entity, Component)

register_system(System)

DistributionEngine

policy

scopesToSurvey

eCSEngine

NetworkComponent

policy

executionVerifier

synchronise(scope, data)

SystemExecutor

execute(function, data,
input): output, proof

verify_proof(proof, function,
data, input): Bool

User

n

n

MetaComponent

1
1

System

metaComponents

Entity

components

metaComponents

Component
n

n

n

1

n
1

Scope 

sub_scopes: Scope

n

Figure 4. Proposed architecture

Figure 5. Interface for stellar system isolation

Specific systems must be added to update the interface entity,
both from inside and outside. For example, in a stellar system
simulated using mechanics: From inside: Update its mass
and position components by processing all planets. From
outside: receive and aggregate the external forces from other
stellar systems.

4 Security countermeasures
We review here the available security countermeasures for
our architecture:

Proactive approaches aim to prevent attacks: Access rights
policies are applied to the game status, for reading and writ-
ing. They are applied by the network component that may
refuse to share certain data (entities or components) or re-
strict writing permissions [8]. Additionally, it can verify the
result of a system execution with the system executor.
Network security – Techniques such as mixnets and onion
routing [4] can help hide IP addresses to protect user privacy.
Network resilience can be bolstered by employing p2p net-
works, which distribute data across multiple nodes, reducing
the risk of failure and improving overall connectivity.
TEEs [15] provide a secure execution environment within
a processor, ensuring that code and data loaded inside are
protected with respect to confidentiality and integrity. They
can be used in the system executor to guarantee the integrity
of system execution and game data privacy.
Reactive countermeasures aim to detect and limit the impact
of on-going attacks:
Reputation systems [7] can be set in the network component
where peers verify systems executions to guarantee the game
status integrity.
Behavior monitoring based on AI systems can be set to detect
cheating that is legitimate from the execution flow point of
view (e.g. aim bots, modified controllers).



D-ECS: Towards decentralising video games

Bug exploitation can be limited by regular monitoring by the
game developpers, patching the game to keep it equilibrate.

5 Conclusion
We proposed here a model for customizable online games.
We showed how performances can be improved by segment-
ing the game trough interest management and distributed
in a decentralised way. We identified the security properties
and countermeasures. Remains the question of trade-offs
between performances and security. For that, an implemen-
tation an benchmarking of D-ECS is needed.

References
[1] [n. d.]. OrbitDB - Home. https://orbitdb.org/
[2] Pedro Agostinho, David Dias, and Luís Veiga. 2022. SmartPubSub:

Content-based Pub-Sub on IPFS. In 2022 IEEE 47th Conference on
Local Computer Networks (LCN). 327–330. https://doi.org/10.1109/
LCN53696.2022.9843795 ISSN: 0742-1303.

[3] Youfu Chen and Elvis S. Liu. 2018. Comparing Dead Reckoning Al-
gorithms for Distributed Car Simulations. In Proceedings of the 2018
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
ACM, Rome Italy, 105–111. https://doi.org/10.1145/3200921.3200939

[4] Roger Dingledine, Nick Mathewson, and Paul Syverson. [n. d.]. Tor:
The Second-Generation Onion Router. ([n. d.]), 18.

[5] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. 2017. CARLA: An Open Urban Driving Simulator.
In Proceedings of the 1st Annual Conference on Robot Learning. PMLR,
1–16. https://proceedings.mlr.press/v78/dosovitskiy17a.html ISSN:
2640-3498.

[6] Andreas Haeberlen, Linh Thi Xuan Phan, and Morgan McGuire. 2023.
Metaverse as a Service: Megascale Social 3D on the Cloud. In Proceed-
ings of the 2023 ACM Symposium on Cloud Computing. ACM, Santa
Cruz CA USA, 298–307. https://doi.org/10.1145/3620678.3624662

[7] Ferry Hendrikx, Kris Bubendorfer, and Ryan Chard. 2015. Reputation
systems: A survey and taxonomy. J. Parallel and Distrib. Comput. 75
(Jan. 2015), 184–197. https://doi.org/10.1016/j.jpdc.2014.08.004

[8] Vincent C Hu. 2024. Access control on NoSQL databases. Technical
Report NIST IR 8504. National Institute of Standards and Technology
(U.S.), Gaithersburg, MD. NIST IR 8504 pages. https://doi.org/10.6028/
NIST.IR.8504

[9] G. Kiczales. 1996. Aspect-oriented programming. Comput. Surveys 28,
4es (Dec. 1996), 154. https://doi.org/10.1145/242224.242420

[10] Yongkang Li, Yanying Lin, Yang Wang, Kejiang Ye, and Chengzhong
Xu. 2023. Serverless Computing: State-of-the-Art, Challenges and
Opportunities. IEEE Transactions on Services Computing 16, 2 (March
2023), 1522–1539. https://doi.org/10.1109/TSC.2022.3166553

[11] Elvis S. Liu and Georgios K. Theodoropoulos. 2014. Interest manage-
ment for distributed virtual environments: A survey. Comput. Surveys
46, 4 (April 2014), 1–42. https://doi.org/10.1145/2535417

[12] Alessandro Margara, Gianpaolo Cugola, Nicolò Felicioni, and Stefano
Cilloni. 2023. A Model and Survey of Distributed Data-Intensive
Systems. Comput. Surveys 56, 1 (Aug. 2023), 16:1–16:69. https://doi.
org/10.1145/3604801

[13] Moreno Marzolla and Gabriele D’Angelo. 2020. Parallel Data Dis-
tribution Management on Shared-memory Multiprocessors. ACM
Transactions on Modeling and Computer Simulation 30, 1 (Jan. 2020),
1–25. https://doi.org/10.1145/3369759

[14] Newton Masinde and Kalman Graffi. 2020. Peer-to-Peer-Based Social
Networks: A Comprehensive Survey. SN Computer Science 1, 5 (Sept.
2020), 299. https://doi.org/10.1007/s42979-020-00315-8

[15] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia,
and Christof Fetzer. 2019. Clemmys: towards secure remote execution
in FaaS. In Proceedings of the 12th ACM International Conference on
Systems and Storage. ACM, Haifa Israel, 44–54. https://doi.org/10.
1145/3319647.3325835

[16] Steven Daniel Webb and Sieteng Soh. [n. d.]. Cheating in networked
computer games – A review. ([n. d.]).

[17] Dennis Wiebusch and Marc Erich Latoschik. 2015. Decoupling the
entity-component-system pattern using semantic traits for reusable
realtime interactive systems. In 2015 IEEE 8th Workshop on Software
Engineering and Architectures for Realtime Interactive Systems (SEARIS).
IEEE, Arles, France, 25–32. https://doi.org/10.1109/SEARIS.2015.
7854098

[18] David Wingqvist, Filip Wickström, and Suejb Memeti. 2022. Evalu-
ating the performance of object-oriented and data-oriented design
with multi-threading in game development. In 2022 IEEE Games, En-
tertainment, Media Conference (GEM). 1–6. https://doi.org/10.1109/
GEM56474.2022.10017610

[19] Amir Yahyavi and Bettina Kemme. 2013. Peer-to-peer architectures
for massively multiplayer online games: A Survey. Comput. Surveys
46, 1 (Oct. 2013), 1–51. https://doi.org/10.1145/2522968.2522977

https://orbitdb.org/
https://doi.org/10.1109/LCN53696.2022.9843795
https://doi.org/10.1109/LCN53696.2022.9843795
https://doi.org/10.1145/3200921.3200939
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.1145/3620678.3624662
https://doi.org/10.1016/j.jpdc.2014.08.004
https://doi.org/10.6028/NIST.IR.8504
https://doi.org/10.6028/NIST.IR.8504
https://doi.org/10.1145/242224.242420
https://doi.org/10.1109/TSC.2022.3166553
https://doi.org/10.1145/2535417
https://doi.org/10.1145/3604801
https://doi.org/10.1145/3604801
https://doi.org/10.1145/3369759
https://doi.org/10.1007/s42979-020-00315-8
https://doi.org/10.1145/3319647.3325835
https://doi.org/10.1145/3319647.3325835
https://doi.org/10.1109/SEARIS.2015.7854098
https://doi.org/10.1109/SEARIS.2015.7854098
https://doi.org/10.1109/GEM56474.2022.10017610
https://doi.org/10.1109/GEM56474.2022.10017610
https://doi.org/10.1145/2522968.2522977

	Abstract
	1 Introduction
	2 Related Works
	2.1 Formalising video games
	2.2 Multiplayer video games
	2.3 Peer-to-Peer approaches
	2.4 Interest management
	2.5 Security of online games

	3 The D-ECS model
	3.1 Proposed model
	3.2 Performance optimization

	4 Security countermeasures
	5 Conclusion
	References

