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Abstract

Constitutive mixoplankton—plastid-bearing microbial eukaryotes capable of both phototrophy and phagotrophy—are ubiquitous in
marine ecosystems and facilitate carbon transfer to higher trophic levels within aquatic food webs, which supports enhanced sinking
carbon flux. However, the regulation of the relative contribution of photosynthesis and prey consumption remains poorly characterized.
We investigated the transcriptional dynamics behind this phenotypic plasticity in the prasinophyte green alga Pterosperma cristatum.
Based on what is known of other mixoplankton species that cannot grow without photosynthesis (obligate phototrophs), we
hypothesized that P. cristatum uses phagotrophy to circumvent the restrictions imposed on photosynthesis by nutrient depletion,
to obtain nutrients from ingested prey, and to maintain photosynthetic carbon fixation. We observed an increase in feeding as a
response to nutrient depletion, coinciding with an upregulation of expression for genes involved in essential steps of phagocytosis
including prey recognition, adhesion and engulfment, transport and maturation of food vacuoles, and digestion. Unexpectedly, genes
involved in the photosynthetic electron transfer chain, pigment biosynthesis, and carbon fixation were downregulated as feeding
increased, implying an abatement of photosynthesis. Contrary to our original hypothesis, our results therefore suggest that depletion of
inorganic nutrients triggered an alteration of trophic behavior from photosynthesis to phagotrophy in P. cristatum. While this behavior
distinguishes P. cristatum from other groups of constitutive mixoplankton, its physiological response aligns with recent discoveries
from natural microbial communities. These findings indicate that mixoplankton communities in nutrient-limited oceans can regulate
photosynthesis against bacterivory based on nutrient availability.

Keywords: phagotrophy, mixoplankton, bacterivory, prasinophyte, gene expression

Introduction taxa are primarily phagotrophic, using photosynthesis during

Mixoplankton constitute a paraphyletic assemblage of micro-
bial eukaryotes capable of autotrophic (photosynthesis) and het-
erotrophic (phagotrophy, i.e. prey ingestion) nutrition [1]. With
their widespread contribution to pigmented plankton communi-
ties, mixoplankton can play a significant role in marine ecosys-
tems by fulfilling important yet underexplored ecological func-
tions [2, 3]. For example, small-sized (2-10 wm) mixoplankton
can contribute to a large fraction of bacterivory in the open
ocean [4-6], implying that their absence from conceptual and
biogeochemical models might lead to a mischaracterization of
nutrient and carbon cycling processes [7].

Constitutive mixoplankton possess genes for both photosyn-
thesis and phagotrophy [8]. However, while both are conserved
cellular processes, the extent to which the two nutritional modes
are utilized varies across different algal groups [9, 10]. Some

periods of limited prey availability, as observed in the chrysophyte
Poterioochromonas malhamensis [11]. In contrast, other taxa found
among the prasinophytes and haptophytes are primarily photo-
synthetic, using phagotrophy to supplement a dietary need [12,
13]. Within this latter category, further distinctions exist between
mixoplankton relying on phagotrophy for the acquisition of differ-
ent resources. For instance, mixoplankton such as the haptophyte
Prymnesium parvum [13] or the dinoflagellate Ceratium furca [14]
obtain nutrients through phagotrophy, whereas the prasinophytes
Nephroselmis spp. also seem to obtain vitamins from their prey
[12]. While taxa such as P. malhamensis and Ochromonas danica
derive carbon and/or energy from predation [11, 15], their relative
Ochromonas sp. BG-1 can acquire both nutrients and carbon from
preys [16]. In addition, some taxa, such as the dinoflagellate
Prorocentrum minimum [17] and small marine flagellates [18], can
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temporarily adjust the relative contribution of each trophic mode
depending on environmental conditions.

As an inducible trait, phagotrophy represents a phenotypic
plasticity allowing the use of an intermittently available source
of limiting elements [17] while reducing the energetic costs of
maintaining two trophic modes [19]. The differential contribution
of photosynthesis and phagotrophy to cellular metabolism likely
depends on the availability of a growth-limiting resource, whose
depletion triggers the expression of genes involved in the synthe-
sis and activity of the cellular machinery for the alternate trophic
mode. To better decipher the cellular processes involved in this
shift in trophic mode, a growing number of studies have evalu-
ated the drivers of phagocytosis in mixoplankton using compar-
ative transcriptomics. Investigations carried out on two species
of the chrysophyte genus Ochromonas have shown that light and
prey availability have different effects on gene expression in pri-
marily heterotrophic compared with primarily phototrophic con-
stitutive mixoplankton [20-22]. For the primarily heterotrophic
Ochromonas BG-1, the combined availability of light and prey
led to the downregulation of photosynthesis-related genes. The
same conditions stimulated upregulation of genes involved in
photosynthetic processes as well as phagotrophy for the primarily
phototrophic Ochromonas CCMP1393 [22]. These results suggest
a light-dependent coupling between bacterivory and photosyn-
thesis in primarily phototrophic mixoplankton. However, as most
primarily phototrophic mixoplankton are obligate phototrophs
unable to grow in the absence of light, limiting our explorations
to light availability likely leads to overlooking more subtle alter-
ations in trophic behavior that nonetheless affect carbon fixation
in marine and freshwater environments.

Prasinophytes, basal members of the Chlorophyta [23], are
ubiquitous in the global oceans [24-26] and some possess the
capacity to ingest bacteria [12, 27-30]. In particular, members
of the Pyramimonadales, such as Cymbomonas, Pyramimonas, and
Pterosperma, were found to be bacterivorous when investigated
in the laboratory [27, 28, 30] or in the field [31], which concurs
with predictions from gene-based trophic models [28, 32]. Inter-
estingly, these prasinophytes present greater bacterivory when
grown under nutrient limitation [12, 28, 30, 33], a key parameter
affecting the distribution of small-sized mixoplankton through-
out the global ocean [34]. However, our understanding of how
nutrient conditions influence the interplay between photosyn-
thetic and phagotrophic mechanisms in bacterivorous prasino-
phytes remains limited. A study of M. polaris and P. tychotreta
reported notable differences in their bacterivorous and transcrip-
tional responses to nutrient depletion [33]. Still, a more recent
study disputes the capacity of M. polaris to feed on bacteria [35].
Such discrepancies in observations within species and differences
in bacterivorous activities between species underscore the neces-
sity for further investigations into various prasinophyte lineages
before we can establish a conceptual model that accurately rep-
resents all of their predatory behaviors.

To address this gap in knowledge, we compared feeding rates
and gene expression in Pterosperma cristatum cultures exposed to
different nutrient availability. Pterosperma cristatum NIES626 was
originally collected from Seto Inland Sea, Kagawa, Japan, but this
Pterosperma genus is globally distributed throughout the oceans
[24,36-38]. Recently identified as a mixoplankton [28], P. cristatum
is, like most prasinophyte mixotrophs [12, 28], an obligate pho-
totroph given its incapacity to grow under light limitation. In other
obligate phototroph taxa, such as the haptophyte P. parvum and
the dinoflagellate Prorocentrum shikokuense, phagotrophy provides
nitrogen while cells continue photosynthetic carbon fixation for
growth, as evidenced by inorganic carbon fixation measurements

[13] and gene expression for this pathway [39]. Simulation models
have also provided evidence that constitutive mixoplankton tend
to use prey-derived resources to support photosynthetic carbon
fixation instead of replacing it [40]. Hence, we hypothesized that
in P. cristatum phagotrophy is (i) an inducible trait triggered by
inorganic nutrient depletion, utilized to obtain (ii) an alternative
source of nutrients to allow the cell to continue photosynthetic
carbon fixation for growth. If true, we would expect that under
nutrient depletion, photosynthesis-related genes would not be
differentially expressed (DE) while genes related to phagotrophy
would be upregulated. To test this, we examined the feeding
behavior of P. cristatum grown in nutrient replete, nutrient reduced
and nutrient depleted conditions and used comparative transcrip-
tomics to investigate how nutrient availability affects P. cristatum
metabolism, especially the shift between phagotrophy and pho-
totrophy.

Materials and methods
Global distribution of P. cristatum

The distribution of P. cristatum was determined using MicroMap,
an on-line visualization tool that uses 18S rDNA datasets to create
global maps of taxon abundances [41]. The partial sequence of the
18S rDNA gene from P. cristatum (AB017127.3) was used as a query
against the Malaspina 2010 18S-based OTUs database, with a 97%
identity cutoff and an e-value threshold of 1e-10.

Nutrient availability experiments

A uniprotistan (but xenic) culture strain of P. cristatum NIES626
was obtained from the Microbial Culture Collection at the
National Institute for Environmental Studies (Tsukuba, Japan).
The culture was maintained in /2 medium [42] prepared with
artificial seawater (made to 33 psu with Instant Ocean® Sea Salt).
These pre-cultures were used to inoculate 5 replicate flasks of
nutrient-replete /2 medium and 5 replicate flasks of 10-times
diluted f/2 medium (hereafter {/2 and /20, respectively) for an
initial density of 1.8 x 10° cells/mL. For 18 days, the cultures were
sampled every 4-5 days to determine cell abundance and feeding
frequency. To evaluate the effect of nutrient availability on the
metabolism of P. cristatum, we compared the transcriptomes of P.
cristatum under three distinct physiological states at different
nutrient availability. We identified time points where feeding
frequency was increasingin the /20 cultures compared to f/2 (Day
11) and/or was significantly different in f/20 cultures compared to
the other days (Day 16) to collect RNA from all replicates of each
physiological state. More detailed information on RNA sample
processing can be found in Supplementary Materials.

Bacterivory measurements

Bacterivory was evaluated by observing the ingestion of fluores-
cently labeled bacteria (FLB) by algal cells over 50 minutes, in
0.5 mL aliquots taken from the nutrient availability experiment
growth flasks. FLB were prepared by labeling cultures of Pelagibaca
bermudensis HTCC2601 with CellTracker Green CMFDA (Thermo
Fisher Scientific, Waltham, MA), according to Bock et al. ([28];
see Supplementary materials). Supernatant from the final wash
step was filtered on 0.2-um-pore filters and saved for use as
a negative control (called unfed control). To determine feeding
frequencies, a Guava EasyCyte Mini Cytometer (Millipore) and
its custom software guavaSoft were used to evaluate the propor-
tion of algal cells that increased in green fluorescence following
inoculation with FLB. To minimize variability in FLB encounter
rates, FLB were added at a fixed proportion of 20% of the total
bacterial density [43], measured by labeling a subsample with

Gz0z fsenuer g1 uo 1sanb Aq G8ZE69//S808BIA/ | //o[0NE/UNWILIOISWSI/WOD dNo-oIWapeoe.//:sdiy Woll papeojumoq



Phago-mixotrophy in P. cristatum | 3

SYBR Green I (Lonza) and counting with flow cytometry. The
feeding threshold was defined as the maximal green fluorescence
of algal cells immediately following inoculation. The number of
cells exceeding the feeding threshold was then determined at 10-
minute intervals up to 50 minutes. To account for differences in
the number of algal cells between replicates and treatments, the
number of cells exceeding feeding thresholds was then normal-
ized to the total number of algal cells for each time point as perfeq.
To account for any change in fluorescence due to the uptake
of activated dye in the FLB matrix, unfed controls consisted in
separate aliquots of f/20 cultures inoculated with a volume of FLB
supernatant equal to the volume of FLB cell suspension added
to £/20 cultures. Feeding frequency in these unfed controls was
0.01% min~!40.09. Multiple regressions comparing percentage
of algal cells (persq) to the time since inoculation with FLB for
each treatment (persq =time * treatment) explained 97% of vari-
ability in pergq (F-test; F-score=470, df =68, P <2 x 107%¢). More
detailed information on statistics can be found in Supplementary
materials.

Dissolved inorganic nutrients

Dissolved nitrate and nitrite (NOx) and phosphate concentrations
were determined by collecting 10 ml samples on Day 0 and Day
11 of experimental growth, for both f/2 and f/20 treatments,
and additionally at Day 16 for the /20 treatment. The volume
was filtered through acid-washed, pre-combusted GF/F filters
(MilliporeSigma) to collect the filtrate and stored at —20°C until
analysis on an AutoAnalyzer AA3 HR (Software version 6.10; SEAL
Analytical, Mequon, WI), as specified by the manufacturer, using
multitest MT19 methods G-297-03 Rev 4 for phosphates and G-
172-96 Rev 16 for nitrate.

Transcriptome analysis

The total P. cristatum RNA extracts collected from three different
nutrient conditions were sent to GeneWiz for the library prepara-
tions and sequencing on the Illumina HiSeq 4000 platform. The
resulting reads were used to de novo assemble the algal tran-
scriptomes (Supplementary materials Table S1) and to conduct
differential gene expression analyses. For the latter, transcript
counts were imported into R [44] using the tximport package
[45], for subsequent differential gene expression analysis between
the three experimental treatments, with DESeq2 [46] using the
apeglm package for LFC shrinkage [47]. Genes were qualified as
DE when the log-fold change compared to the Replete reference
was >|0.1] and the adjusted P-value < .005. Additional details on
transcriptome assembly and differential gene expression analy-
ses are provided in Supplementary materials.

Probing the gene-based predictive model

To identify P. cristatum genes that correspond to the 474 proteins
identified by Burns et al. [32] as predictive of a phagocytotic
capacity, a hidden Markov model search was performed as per
the author’s instructions on github (burnsajohn/predictTrophic-
Mode). The top 75% of expressed genes were then selected and
annotated with the KEGG ontology, as described in Supplementary
materials.

Results
Distribution of P. cristatum

Pterosperma cristatum was identified from surface waters sampled
during the Malaspina 2010 expedition [48], which collected sam-
ples from globally distributed tropical and subtropical stations

(Supplementary materials Fig. S1). 18S rDNA amplicon sequence
variants related to P. cristatum (>97% identity) were detected in
surface waters at 116 out of the 289 stations. These variants
represented an average of 0.026% (ranging from 0.001 to 0.381%)
of the total 185 rDNA amplicon sequences at these stations.

Growth and feeding response to nutrient
depletion

Cell abundances were not significantly different between treat-
ments during the first 4 days of growth. At days 9 and 11 abun-
dances were significantly higher in /20 cultures than in /2, and
then at day 18, cell abundances in f/20 dropped significantly
below those in /2 (P-values < .05; Fig. 1A). Bacterial growth in all
culture flasks (Supplementary materials Fig. S2) indicated that
P. cristatum cells were never prey-limited. Feeding experiments
showed a low baseline feeding frequency in cultures grown in
/2. The f/20 cultures tended to have higher feeding frequencies
compared to the /2 treatment, starting at day 8 (Fig. 1B). The
proportion of feeding algae in the /20 treatment was higher at
days 8 and 11 (13%) compared to the /2 replete reference (6%)
and the unfed control (0%), although the feeding frequencies were
not significantly different (Fig. 1B, Supplementary materials Table
S2). By day 16 in {/20, however, when the proportions of feeding
cells reached 60%, feeding frequencies were significantly greater
than in the unfed control, and the f/2 and {/20 treatments on day
11 (Fig. 1B, Supplementary materials Table S2).Fig. Nutrients were
analyzed to confirm the effects of dilutions and growth on nitrate
and phosphate availability. Nitrate and phosphate concentrations
at day O were about 10 times lower in the /20 treatments than in
the f/2 treatments (Fig. 1C, D). After 11 days of growth, nutrient
concentrations remained high in the /2 treatments while in /20
over 90% of both nitrate and phosphate had been removed. At day
16, the cultures in {/20 treatments displayed nitrate concentra-
tions at or below detection limits (except for one replicate with
11 uM) and phosphate concentrations were the same as on day 11.
Therefore, the £/20 cultures grown beyond day 11 were considered
nutrient depleted.

P. cristatum transcriptome and comparative
analyses

RNA was collected from each experimental replicate (n=5) at day
11 from {/2 cultures (Replete reference; hereafter Replete) and
/20 cultures (nutrient Reduced condition; hereafter Reduced),
and at day 16 from {/20 cultures (nutrient depleted condition;
hereafter Depleted), respectively. The Replete (f/2) had relatively
high nutrient concentrations and negligible feeding frequencies.
The Reduced had low nutrient concentrations but growth
rate was similar to the Replete, and feeding frequencies were
higher. The Depleted had undetectable nutrient concentrations
and high feeding frequencies, with maintained P cristatum
growth.

The three physiological states of P. cristatum, corresponding to
the Replete, Reduced and Depleted nutrient conditions, provided
distinct transcriptomes (Supplementary materials Fig. S3). For an
assembly of 72 305 transcripts total, 52 608 (72.7%) were predicted
to bear protein-coding genes (Supplementary materials Table S2),
of which 10543 were annotated with the KEGG database. 7973.8
(£574.5) were found in the Replete, 8018.2 (+586) in the Reduced
and 7608.4 (£777.3) in the Depleted conditions, with a total of 5031
genes shared by all three transcriptomes. A principal component
analysis of the three transcriptomes showed that most of the
variability (PC1, 93%) existed between the Replete and the two
nutrient-restricted conditions (Reduced and Depleted), except for
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Figure 1. Physiological properties of P. cristatum cultures and nutrient concentrations. Cell abundance (n=5; A) and feeding frequency (Afed; n=5; B),
NOx concentrations (NOx; n=3; C), and phosphate concentrations (PO4; n=3; D) of P. cristatum in /2 and f/20 medium over time. Error bars represent
the standard deviation; italic letters indicate significant differences according to a two-way ANOVA followed by a Tuckey’s test (P-adj < .05); “control”,
unfed control for the feeding frequency; “Replete,” nutrient replete reference; “Reduced,” nutrient reduced; “Depleted,” nutrient depleted, and arrows

indicate the samples from which RNA was collected.

Table 1. Results of the differential expression analysis using DESeq2; DE genes in nutrient reduced (‘Reduced”) and nutrient depleted
(“Depleted”) sampling conditions compared to the Replete reference transcriptome; UP, upregulated proportion of DE genes; DOWN,

downregulated proportion of DE genes.

Reduced vs Replete

Depleted vs Replete

Depleted vs Reduced

Total DE UP DOWN Total DE UP DOWN Total DE UP DOWN
Absolute count 7420 3890 3530 14697 6772 7925 7997 3458 4538
Percentage of total transcripts 10.3% 5.4% 4.9% 20.4% 9.4% 11% 11.1% 4.8% 6.3%
one replicate of Reduced (Supplementary materials Fig. S3). This upregulated in Depleted \ Upregulated in Reduced
odd replicgte was nonetheless retained for further analyses as its & acorion | ¢ e Deplated
removal did not alter the results. © Adhesion ‘ .
Differential expression analysis revealed that cultures in the © Signal transduction ‘ ‘
Depleted condition had a stronger upregulation response for a 5 gsggﬂmw,,mmm - 9
greater number of genes than the Reduced condition (Table 1). © Digestion o o P
More specifically, in Reduced transcriptomes 10.3% of genes were A '
significantly DE (5.4% upregulated and 4.9% downregulated) com- s gl £
pared to Replete transcriptomes (Table 1, Supplementary mate- ° S .. C %, A
rials Fig. S4A). In Depleted, 20.4% of genes were significantly DE Reduced vs Replete '#
compared to Replete (9.4% upregulated and 11% downregulated) p ‘ °s &
(Table 1, Supplementary materials Fig. S4B). Between the Depleted 1
and Reduced treatments, 11.1% of the genes were significantly DE i 700
(Table 1, Supplementary materials Fig. S4C). To simultaneously -? é’ * 1000
visualize the differential expression patterns for all three cul- -2 @ 10000
ture conditions, we plotted the log-fold change of significantly 3 .20000
DE genes in the two nutrient-restricted conditions compared to downregulated in Reduced '§
Replete (Figs 2-4). Hereafter, any mention of DE genes pertains to -10 and Depleted = upregulated in Reduced
-10 -5 0 5 10

comparisons to the Replete.

Upregulation of genes involved in phagotrophy
under reduced and depleted nutrient conditions
(Fig. 2)

The cellular processes involved in phagocytosis of most eukary-
otes correspond to (i) recognition of prey, (i) adhesion for capture,
and (iii) signal transduction, followed by (iv) engulfment, (v) trans-
port and maturation of the phagosome, and finally (vi) digestion
of its contents [49-51]. Although phagotrophy in prasinophytes
might involve slight deviations from these processes [27], we
looked for corresponding pathways in the KEGG ontology,
including membrane receptors (ko04030, ko04054) and signal
transduction (ko09132), cytoskeleton (ko04812), autophagy

Figure 2. Log-fold changes plots showing DE genes involved in
phagotrophy. The x-axis represents the log-fold change of gene
expression between the nutrient reduced condition and the nutrient
replete reference. The y-axis represents the log-fold change of gene
expression between the nutrient depleted and replete reference. Genes
in the lower right quadrant are upregulated in Reduced and those in the
upper left quadrant are upregulated in Depleted. Genes in the upper
right quadrant are upregulated in both Reduced and Depleted while
those in the lower left quadrant are downregulated in both. The dot size
is proportional to the average expression level of the gene. Asterisks
designate genes that were significantly DE in Depleted but not Reduced.

(ko04140, ko04138, ko04136), endocytosis (ko04144), phago-
some (ko04145), lysosome (ko04142), peroxisome (ko04146)
and ion transporters (ko02000, ko02010) (Table 2, Supplementary
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Figure 3. Log-fold changes plots showing DE genes involved in
photosynthesis. The x-axis represents the log-fold change of gene
expression between the nutrient reduced condition and the nutrient
replete reference. The y-axis represents the log-fold change of gene
expression between the nutrient depleted and replete reference. Relative
regulation of genes per treatment is as described in Fig. 2. The dot size is
proportional to the average expression level of the gene. Asterisks
designate genes that were significantly DE in Depleted but not Reduced.
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Figure 4. Log-fold changes plots showing DE genes involved in central
carbon metabolisms. The x-axis represents the log-fold change of gene
expression between the nutrient reduced condition and the nutrient
replete reference. The y-axis represents the log-fold change of gene
expression between the nutrient depleted and replete reference. Relative
regulation of genes per treatment is as described in Fig. 2. The dot size is
proportional to the average expression level of the gene. Asterisks
designate genes that were significantly DE in Depleted but not Reduced.

materials Table S3). Genes involved in these processes were DE in
either one or both nutrient restriction treatments (Fig. 2).
Recognition of prey requires membrane receptors for chemosen-
sory detection, with signal transduction to stimulate motility
and ingestion [51, 52]. We identified 12 DE surface receptors in
the P. cristatum transcriptome (Supplementary materials. Table
S3), including six G-protein coupled receptors (CASR, FOLR, GCR1,
GPR3, S1PR1, ADIPOR), of which three were upregulated in both
nutrient restriction conditions (GPR3, S1PR1, ADIPOR). Adhesion
molecules were also DE (Supplementary materials Table S3), with

downregulation of two genes (FAT4, LAMC1) and the upregulation
of two other genes (ROBO1, GLG1) in Reduced condition. In the
Depleted condition, we observed the downregulation of five genes
(FAT4, LAMC1, COL1A, THBS2S, RACI) and the upregulation of
seven (ROBO1, GLG1, MAEA, COL4A, CNTNAP2, MEMO1, PTPRF).
Signaling pathways also responded to the lack of nutrients, with
almost twice as many DE genes in Depleted than in Reduced.
These pertained to the calcium, MAPK, and mTOR signaling
pathways, as well as the Wnt, PI3K-Atk, FoxO, HIF-1, TGF-beta,
and sphingolipid signaling pathways, showing a variety of up-
and downregulated genes that intersect with other signaling
pathways. Overall, we observed a tight transcriptional regulation
of signal transduction by P. cristatum under nutrient reduction and
depletion.

Engulfment was represented by twice as many upregulated
genes in Depleted compared to Reduced (Supplementary mate-
rials Table S3). These were involved in food vacuole formation [53,
54], such as clathrin (CLTC) and ADP-ribosylation factor GTPase
(ARF1_2). The concurrent differential expression of regulators of
Arfl, namely Arf-GAP (ACAP, ARFGAP1) and Arf-GEF (ARFGEF),
suggests that P cristatum was regulating engulfment [55]. This
was further supported by upregulation of PIPS5K, which codes
for an enzyme that produces a phosphoinositide that modulates
actin polymerization [56, 57]. The transport of food vacuoles
was indicated by the upregulation of Rab GTPases (RAB11FIP3_4,
RAB5C and RAB1A), which are cargo markers [58], as well as
microtubule assembly (TUBA, TUBB, TTLL, TBCB) and molecular
motors belonging to the kinesin (KIF5, KIFC1, KIFC2_3), dynein
(DNAH, DNAAF1, DYNLL) and myosin (MYO1, MYOS5, MYO18, MYLK,
MYH1s, MYH9s, MYH6_7) families. Maturation of food vacuoles
was indicated by upregulation of CHMP genes (CHMP1, CHMP4A_B,
CHMPS5), belonging to the ESCRT-III complex [59, 60], and homologs
of autophagy proteins (ATG8, RablA, MON1, NAPA, VPS8 and
ZFYVE1), likely shared with phagosome processing steps [61].

Revealing increasingly active phagocytic digestion as nutrients
became more limiting, the P. cristatum lysosome pathway was 8%
and 16% upregulated in Reduced and Depleted, respectively. Lyso-
somal hydrolases, for the degradation of lipids, sugars, and pro-
teins, showed variable differential expression. A sulfatase, arylsul-
fatase B (ARSB), and two cysteine proteases, cathepsins F and X, as
well as a serine/threonine-protein kinase and endoribonuclease
(ERN1) were upregulated in both nutrient restrictions, as well as
lysosomal membrane transporters (MCOLN1, ABCA?2). Additional
cathepsins (CTSB, CTSD), a peptidase (TPP1), and a lipidase (ACOX1)
were also upregulated in Depleted, but other hydrolases (CTSB,
CTSC, LYPLA3, MANBA) were downregulated. Proton transporters
(SLC36A), metal ion transporters (copA), and enzymes involved
in the production or transport of reactive oxygen species (NOS2,
DAO, DUOX, PEX13, SOD) were DE under nutrient restriction, with
more consistent upregulation in Depleted. These transporters
were likely involved in the acidification of the food vacuole and
the transport of heavy metals (Zn, Cu) and reactive oxygen species
for the digestion of prey [49]. Overall, the phagotrophic processes
were more profoundly impacted in Depleted, with 77% of upreg-
ulated genes being more strongly DE in Depleted than Reduced
(Supplementary materials. Table S3).

To further highlight key genes in the transcriptome whose
expression levels affect bacterivory, we carried out an analysis of
the transcriptomes against the predictive protein set identified by
Burns et al. [32]. Of the 474 phagocytic predictive protein-coding
genes shared among free-living phagocytes, 67 were present
in the P cristatum transcriptome, and this was sufficient for
phago-mixotroph predictions for all three conditions. Thirteen of
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Table 2. Overview of metabolic pathways and their representation among the DE genes in nutrient reduced (“Reduced”) and nutrient
depleted (“Depleted”) sampling conditions compared to the replete reference transcriptome. UP, upregulated proportion of DE genes;

DOWN, downregulated proportion of DE genes.

%DE in Reduced %DE in Depleted

Category Pathway Total Total UP DOWN Total UP DOWN
genes DE DE

Central carbon metabolism Resp. electron transp. chain 135 8.89 4.44 4.44 19.26 13.33 5.93
TCA cycle 66 15.15 3.03 12.12 25.76 19.70 7.58
Glycolysis/gluconeogenesis 124 16.94 4.84 12.10 27.42 10.48 16.94
Pentose and glucuron. interconv. 42 7.14 0.00 7.14 23.81 11.90 11.90
Pentose phosphate pathway 69 23.19 4.35 18.84 24.64 4.35 20.29

Phagotrophy Autophagy 67 19.40 14.93 4.48 52.24 44.78 7.46
Lysosome 75 20.00 8.00 12.00 26.67 16.00 10.67
Phagosome 66 7.58 4.55 3.03 21.21 9.09 12.12
Endocytosis 83 15.66 10.84 4.82 31.33 21.69 9.64
Cytoskeleton proteins 316 10.44 6.33 4.11 23.42 14.24 9.18

Photosynthesis photophosphorylation 68 29.41 1.47 27.94 58.82 1.47 57.35
Antenna 34 23.53 2.94 20.59 32.35 0.00 32.35
Chlorophyll biosynthesis 105 19.05 4.76 14.29 30.48 5.71 24.76
Carotenoid biosynthesis 14 35.71 7.14 28.57 50.00 7.14 42.86
Carbon fixation 76 27.63 1.32 26.32 59.21 17.11 42.11
Starch and sucrose metabolism 144 13.89 5.56 8.33 21.53 5.56 15.97

Other Lipid metabolism 464 18.75 9.48 9.27 30.60 15.09 15.52
Amino acid metabolism 744 22.45 9.54 12.90 31.72 16.26 15.46

these genes were annotated with the KEGG ontology, 5 of which
were DE (Supplementary materials. Fig. S5). These involved a
calcium channel (CACNA1D), a homolog of purine permease (pbuG
copA), cytoskeleton-associated proteins and hydrolases, as well as
a Bardet-Beidl Syndrome complex subunit (BBS2). The expression
levels for these DE phagocytosis prediction genes increased in the
Reduced compared to the Replete, and even more in the Depleted
treatments.

Downregulation of genes involved in
photosynthetic metabolic pathways under
nutrient restrictions (Fig. 3)

The cellular processes that support photosynthesis include
photophosphorylation (photosynthetic electron transfer chain,
PETC; ko00195), pigment biosynthesis (ko00860, ko00906) and
supporting antenna proteins (ko00196), carbon fixation (ko00710)
and starch production (ko00500). The genes coding for the
thylakoid-bound proteins involved in the PETC were 29.4% and
58.8% DE in Reduced and Depleted respectively, and 95-97%
of these genes were downregulated (Table 2, Supplementary
materials Table S4). This included subunits of photosystems I
(psaD, psaF, psaH, psal, psaO) and II (psbO, psbP, psbQ, psbR, psbY),
as well as the electron acceptors, plastocyanin (petE), ferredoxin
(petF), and the cytochrome bé6f complex subunit Rieske Fe-S
protein (petC). The downregulated genes for antenna proteins
corresponded to subunits of light-harvesting complexes I and II
(LHCA1,2,4,5, and LHCB1 to LHCBY). In addition, the metabolism
of terpenoids and porphyrins, involved in the biosynthesis
of carotenoids and chlorophylls, respectively, also exhibited
downregulation under both nutrient restrictions.

Genes involved in carbon fixation were 27.6% and 59.2% DE in
Reduced and Depleted, respectively (Fig. 3, Table 2). Genes from
the Calvin cycle were all downregulated under nutrient restric-
tions (ALDO, SBPase, FBP, GAPA, glpX, GPT, PGK, rbcS, rpiA, TPI)
and two out of five genes from the C4-dicarboxylic acid cycle
were downregulated (pckA, GPT). In addition, starch and sucrose

metabolism were 13.9% and 21.5% DE in Reduced and Depleted,
respectively (Supplementary materials Table S4). Four genes were
downregulated (scrK, BAM, SPP, TPS) and three genes were upregu-
lated (cd, PYG, BAM) in both nutrient restrictions. In the Depleted,
an amylase (AMY) had increased expression while starch syn-
thase was downregulated. These expression patterns suggest the
degradation of storage sugars and the downregulation of their
synthesis pathways. Overall, the photosynthetic pathways were
more profoundly impacted in Depleted, with 93% of downregu-
lated genes being more strongly DE in Depleted than in Reduced
(Supplementary materials Table S4).

Differential expression of genes involved in
respiration and central carbon metabolism

(Fig. 4)

To further investigate the alga’s potential metabolic shift, due to
the apparent downregulation of photosynthetic carbon fixation,
we further focused on the respiratory electron transport chain
(RETC) and central carbon metabolism. Both pathways revealed
differential expression among the P. cristatum transcriptomes. For
the RETC, 4.4% and 13.3% of the genes found in the assembly
were significantly upregulated in Reduced and Depleted, respec-
tively (Table 2, Supplementary materials Table S5). Interestingly,
each complex of the RETC was represented by a gene that was
significantly DE in Depleted but not Reduced, illustrating a more
profound change in Depleted. The central carbon metabolism of
P. cristatum contained complete pathways for the tricarboxylic
acid (TCA) cycle and glycolytic pathways. Among the transcripts
involved in the TCA cycle, 15.2% and 25.8% were DE in Reduced
and Depleted, respectively (Table 2). The genes of four of the
five key enzymes controlling the TCA cycle—citrate synthase,
aconitate hydratase, oxoglutarate dehydrogenase, and succinate
dehydrogenase [62]—were upregulated under nutrient restric-
tions, particularly in the Depleted treatment. The pentose phos-
phate pathway was similarly DE in both Reduced and Depleted
with 23.2% and 24.6% of the pathway, respectively, 80% of which
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were downregulated. For glycolysis, 16.9% and 27.4% of the genes
were DE in Reduced and Depleted, respectively, with most genes
downregulated. However, the few upregulated transcripts (pfkA,
PK, frmA, ALDH) corresponded to key enzymes whose activity
affects the rate of glycolysis, or the conversion of pyruvate to
acetate for entry into the TCA cycle as acetyl-CoA, a rate-limiting
substrate [63].

Differential expression of genes involved in
nutrient uptake and assimilation

Nitrogen metabolism was represented by the downregulation of
genes encoding transporters (NRT, pstN) and enzymes involved in
the assimilation of NOx (nirA, norB), but the upregulation of genes
involved in amino acid cycling (fmdS, GDH2, GLT1; Supplementary
materials Table S6). In contrast, 20% of phosphate-associated
transporters had increased expression levels in both nutrient
restrictions, including a sodium-dependent phosphate cotrans-
porter (SLC34A), known to be upregulated in phosphate-deprived
diatom cells [64] and a substrate-binding subunit of the high-
affinity phosphate transport system (pstS). Furthermore, alkaline
phosphatase D (phoD), involved in the hydrolysis of dissolved
organic phosphate, was upregulated in both nutrient restrictions
(Supplementary materials Table S6).

Discussion

Our study showed that the increased bacterivory by the prasino-
phyte P. cristatum under nutrient depletion coincided with the
upregulation of pathways involved in ingestion and digestion,
as well as a concurrent downregulation of genes involved in
photophosphorylation, carbon fixation and the biosynthesis of
pigments and starch (Fig. 5). These results suggest a potential
reduction in photosynthetic activity while bacterivory increased
as the cultures experienced nutrient depletion. Hence our tran-
scriptomic data do not support our initial hypothesis that P.
cristatum would use bacterial prey as an alternative source of
nutrients to maintain photosynthetic carbon fixation as found in
other obligate phototroph mixoplankton [13, 39, 40].

As the nutrient restriction treatments were exposed to decreas-
ing concentrations of nutrients over time, feeding frequency
increased, allowing cultures to grow at rates similar to the
nutrient replete treatment for 16 days. These results corroborate
previous findings suggestive of inducible phagotrophy [17] in
members of the pyramimonadales [27, 65]. Furthermore, the
transcriptional responses reflected the physiological changes
observed in the growth and feeding experiments. Cultures in
/20 showed progressively stronger gene expression changes
in response to decreasing nutrient concentrations, as growth
persisted in Depleted beyond Day 11. The greater differential
expression of photosynthetic and phagotrophic pathways in
Depleted reflected the drastic increase in feeding frequency
observed at Day 16 compared to Day 11. Our comparative
transcriptomic study therefore captured the shift in gene
expression as P. cristatum adjusted the relative contribution of
phototrophy and phagotrophy to its metabolism.

Comparing the transcriptomic behavior of P.
cristatum to other constitutive mixoplankton

The transcriptional response of P. cristatum to low nutrient concen-
trations is distinct from that of other constitutive mixoplankton
taxa that have been characterized to date. The downregulation
of genes involved in photosynthetic metabolic pathways that
occurred during increased feeding frequency seems comparable

to that of the chrysophyte Ochromonas BG-1 [21]. However, the
latter is a primarily phagotrophic algae and only relies on photo-
synthesis for carbon assimilation when prey are limiting growth
[16]. Ochromonas BG-1 grows in the dark [21], which P. cristatum and
other prasinophytes are not capable of [12, 27, 28, 66].

Even compared to other obligately photosynthetic taxa, P. crista-
tum’s transcriptional response to low nutrient concentrations is
distinct. For example, the dinoflagellate Prorocentrum shikokuense
upregulates genes involved in the Calvin-Benson cycle, which
physiologically transpires as an increase in autotrophic carbon
fixation, despite increased bacterivory to compensate for nitrogen
limitation [39]. The haptophyte P. parvum also uses bacterivory
to obtain nitrogen but relies on photosynthetic carbon fixation
for growth [13] and likely only assimilates prey carbon for cell
maintenance [20]. While one prior study investigated the tran-
scriptomic responses of two prasinophyte species—Micromonas
polaris and Pyramimonas tychotreta—to reduced nutrient concen-
trations [33], comparing their results with ours regarding changes
in gene expression is problematic for multiple reasons. Firstly,
the authors used the fold-change differences instead of our more
conservative p-value approach in identifying DE genes and might
therefore have overestimated their number. In addition, incon-
sistencies among the replicate P. tychotreta transcriptomes under
the same condition suggest an unreported data quality issue,
such as contamination. Adding to the complexity, a recent study
[35] shed doubt on the capacity of M. polaris to feed on bacteria.
Consequently, further investigations of prasinophyte bacterivores
are necessary to reconcile these disparities and uncertainties
before comparisons can reliably be made with our data. To sum
up, the transcriptional downregulation of photosynthetic path-
ways in P. cristatum when nutrient restricted, despite persistent
growth, was distinct from that of any other primarily phototrophic
mixoplankton reported to date. Such a unique transcriptional
response categorizes this prasinophyte as a separate group of
constitutive mixoplankton.

Use of organic carbohydrates and nutrients from
prey under low inorganic nutrients

The unexpected downregulation of photosynthetic genes dis-
played by P. cristatum as bacterivory increased could be attributed
to the availability of organic carbohydrates from ingested prey.
Indeed, the reduction of photosynthetic processes has been
attributed to glucose assimilation in non-phagotrophic green
algae. For example, a decline in photosynthetic efficiency and
alterations to thylakoid structures, accompanied by decreasing
expression levels of genes involved in photosynthesis, were
observed for Chromochloris zofingiensis during osmotrophic
mixotrophy on glucose [67]. In our study, the P. cristatum TCA
cycle was enhanced in Depleted, in parallel to the continued
downregulation of the Calvin-Benson cycle. The concurrent
upregulation of key regulatory glycolytic enzymes to stimulate
glycolysis, occurring in parallel to the suppression of gluconeoge-
nesis and the pentose phosphate pathway, indicates the activation
of catabolic processes in P. cristatum.

In addition, the transformation of key TCA cycle intermediates
such as oxaloacetate and a-ketoglutarate may be accelerated, due
to the upregulation of citrate synthase and a-ketoglutarate dehy-
drogenase, respectively. Anaplerotic steps of the TCA cycle, lead-
ing to the biosynthesis of the amino acids aspartate, glutamate,
and their derivatives were therefore likely being bypassed. Such
a skewing of the metabolic balance toward catabolic processes
and away from anabolism suggests that P. cristatum was incorpo-
rating organic carbohydrates derived from prey into its carbon
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Figure 5. Summary diagram of the pathways affected by differential gene expression patterns in P. cristatum under reduced nutrient and depleted
nutrient conditions. Squares display the level of up- or downregulation compared to the replete reference transcriptome. The color scale reflects the
log2 fold-change values obtained with DESeq2. Under gene groups lysosome, phagosome, endocytosis, and receptors, squares represent the average
log2 fold-change value of all up-regulated genes in that category. For gene groups PS-1, PS-1I, LHCA, and LHCB, squares represent the average log2
fold-change value of all DE genes. Data represent the means of five biological replicates. Fold-change values, gene IDs and acronyms for the
enzyme/protein names are referenced in Supplementary Table S5. “Red”, nutrient reduced condition; “Dep”, nutrient depleted condition.

metabolism, which could explain the downregulation of genes
involved in carbon fixation [68]. Phago-mixotrophic prasinophyte
lineages probably retain such regulation shared with their osmo-
mixotrophic relatives among the chlorophyta to control the use
of photosynthesis when organic carbohydrates from prey are
present inside the cell and to balance energy expenditure.

In Reduced and Depleted, phosphate and nitrate concentra-
tions were at detection thresholds confirming that P. cristatum cul-
tures were exposed to nutrient restrictions. Previously observed
autotrophic responses to similar nutrient restrictions indicate
that algae tend to decrease carbon fixation and chlorophyll
biosynthesis while increasing the production of lipids and
scavenging for limiting nutrients [67, 68]. By contrast, lipid
metabolism in P. cristatum seemed to shift to lipid degradation
(Supplementary materials), another catabolic process. Consid-
ering that the N:P ratios to which P. cristatum was exposed in
Reduced (1.75+2.06) and Depleted (5.95=+10.2) were below the
Redfield ratio (16:1), it was expected that inorganic nitrogen
would be the limiting nutrient. However, the downregulation of
genes involved in nitrate uptake and assimilation during nutrient
restrictions (Supplementary materials Table S6), contrasts with
reactions of non-phagotrophic phytoplankton such as the
diatom Phaeodactylum tricornutum and the chlorophyte green
alga Chlamydomonas reinhardtii, which tend to upregulate NOx
transporters as soon as nitrogen becomes limiting [67, 69].

This opposite response in P. cristatum could be because the
mixoplankton was getting amino acids from its prey [70, 71]. The
capacity to obtain organic forms of nitrogen through bacterivory,
allowing it to maintain growth rates in /20 similar to those of /2
despite this stark decrease in available nitrate, could have miti-
gated a stress response affecting the expression of genes involved

in nitrogen transport. In contrast, phosphate transporter genes
were significantly upregulated in both Reduced and Depleted con-
ditions, illustrating increased efforts to take up inorganic phos-
phate as the resource was depleted. Additionally, the upregulation
of alkaline phosphatase indicates that P. cristatum was scavenging
phosphorus from dissolved organic matter, further suggesting
that the alga was phosphate limited [72], despite feeding. P. crista-
tum might have been compensating for a lower bioavailability of
bacterial phosphorous compared to nitrogen, perhaps due to a
lower assimilation efficiency by the algae’s metabolism. While we
did not quantify the uptake of nutrients from prey and inorganic
and organic nutrients, our results suggest that in low-nutrient
environments, P. cristatum relies on all forms of phosphorous for
growth.

Characterizing phagotrophy in P. cristatum

Although the process of photosynthesis has been extensively
studied at the molecular level, the understanding of phagocytosis
remains limited. This is because the proteins involved are not
conserved, are not specific to phagocytosis, and are often involved
in other cellular processes [32, 50, 73]. Most of the knowledge
on phagocytosis comes from what is known about the immune
system of mammals and insects [74, 75]. However, recent studies
on phagocytosis in unicellular eukaryotes [32, 50, 71, 76, 77]
have provided new information, showing that not all phago-
cytic lineages share the same proteins involved in the process
[32]. Our study contributes to the growing knowledge on genes
involved in phagotrophy that could serve as quantifiable markers
for mixotrophic activity, providing complementary approaches to
the study of mixoplankton in their natural environments [78].
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The predictive model [32] highlighted key phagocytotic genes
in P. cristatum. In particular, BBS2, upregulated in actively feed-
ing P cristatum cultures, codes for a subunit of the Bardet-Beidl
Syndrome complex (BBSome) involved in the transport of cilia
membrane proteins, affecting the motility and sensory func-
tions of cilia and possibly flagella [79]. Hence, the BBSome might
have a key role in flagellar movements necessary for prey cap-
ture in prasinophytes. Cathepsins, cysteine proteases, have also
been reported as essential to phagotrophic activity in small-sized
planktonic eukaryotes, making up the most diverse and abundant
transcripts found in marine stramenopile environmental tran-
scriptomes [50]. Our study reveals a more complex dynamic in
P. cristatum, with the downregulation of certain cathepsins along-
side the upregulation of others, likely related to their respective
function in prey digestion and substrate specificity [80], compared
to other specialized processes such as autophagy [81] or pro-
tein processing [82]. Future investigations into these few pivotal
“phagocytotic” genes would help refine the description of this
process in prasinophytes, and likely in other mixoplankton.

Members of the Pyramimonadales, such as P. cristatum and
Cymbomonas tetramitiformis, possess a feeding apparatus, located
near the flagellar pit and consisting of a mouth-like opening
connected by a tubular channel to a large vacuole [27, 83-85].
It has been suggested that these structures are utilized by the
cell to internalize and digest bacterial prey [27]. As such, these
organisms might not use the same cellular processes as amoe-
boid or mammalian cells to engulf bacterial prey. Nonetheless,
we found upregulation of genes involved in digestion processes
as well as vesicle formation and trafficking. Ciliates, who also
have a defined mouth-like structure for feeding, use a form of
vesicular trafficking to deliver vacuolar ATPases and digestive
enzymes to the food vacuole at the base of the oral apparatus
[86]. Pyramimonadales might have a similar process to support
the prey digestion taking place in the permanent food vacuole.
Furthermore, recognition mechanisms might be shared with the
amoebozoan and opisthokont species, as indicated by the pres-
ence of a folate receptor involved in predation in Dictyostelium [76,
87] as well as other G-protein coupled receptors that were tightly
regulated in P cristatum. Similarly, the increasing upregulation
of adhesion proteins between the Reduced and the Depleted
conditions, suggests that P. cristatum required different surface
adhesive molecules as nutrients became more limiting and that
it relied more heavily on bacterivory.

Conclusion

Our results suggest that obligate phototroph constitutive mixo-
plankton like P. cristatum are likely to be more heterotrophic
than suspected, particularly in high-light/low-nutrient waters,
such as the subtropical gyres that constitute the largest oceanic
biome. Subtropical gyres have been correlated with elevated pro-
portions of mixoplankton exhibiting high ingestion rates [4, 88,
89]. This has potential consequences on net CO, fixation, as
well as carbon transfer through the food chain and its export
to the deep ocean [7]. The ratio of bacteria to phytoplankton
cell abundance tends to increase along gradients of nutrients
from coastal waters to oligotrophic open-oceans, for instance
reaching values of 1300 to 2289 in the subtropical and tropical
North Atlantic [34]. This provides an abundant alternative source
of nutrients for mixoplankton, most likely greater than that in
our P. cristatum cultures characterized by average ratios of 13:1. A
recent metatranscriptomic study of mixoplankton communities
from a nutrient-limited subtropical gyre revealed their capacity

to modulate photosynthesis against bacterivory as a function of
nutrient availability [90], suggesting that the nutritional strategy
used by P cristatum might be more widespread than previously
expected. These results caution us against modeling constitutive
mixoplankton as a monolithic group; the physiological dynamics
of mixoplankton in natural environments might vary based on
the dominant taxa present, affecting our capacity to predict their
impact on local conditions, such as pH [91].

In summary, our study provides novel insights into a new
category of phago-mixotrophy. We found that under nutrient
depletion, distinct from other primarily phototrophic constitutive
mixoplankton, P. cristatum downregulates the expression of genes
involved in photosynthesis, likely reducing its photosynthetic
activity, while increasing its bacterivory. This dynamic physiol-
ogy reflects the delicate balance of energetic tradeoffs between
phototrophy and heterotrophy inherent to mixoplankton [19].
When low inorganic nutrient concentrations trigger phagotrophy,
P. cristatum likely redirects cellular resources toward a diges-
tive machinery and the energetic tradeoff dictates a halting of
autotrophic processes and a new reliance on prey as a source of
carbon in addition to the limiting nutrient. The downregulation
of photosynthesis, concurrent with the observed increase of bac-
terivory under optimal light conditions, carries important impli-
cations for mixoplankton ecology and oceanic carbon cycling [34,
89, 92]. Hence, our findings warrant further validation through
complementary approaches, including quantitative reverse tran-
scription polymerase chain reaction assays of key genes iden-
tified in this study across a wide range of physiological condi-
tions, quantitative proteomics experiments, and measurement of
carbon fixation rates with isotopes to substantiate changes in
the metabolic activity suggested by our results. Moreover, to be
able to generalize, future investigations should explore whether
other members of the Pyramimonadales exhibit comparable or
different metabolic adaptations.
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