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Abstract—Hardware spiking neural networks using memris-
tors as synapses are promising candidates for highly integrated
and low-power event-based computations. However, when using
passive synaptic crossbars, a number of limitations linked to
the high parallelism of the memristive synapses appear. In
this paper, we focus on the detrimental effect of the synaptic
line resistance of passive crossbars made of ferroelectric tunnel
junction memristive devices on learning capabilities. Using a
model of such memristive device that considers the actual voltage
applied on the synapses when updating their weights, we show
how this line resistance impacts the performance of a single layer
all-to-all spiking neural network using unsupervised and reward-
modulated learning, and how these detrimental effects can be
mitigated.

Index Terms—Memristors, passive crossbar, reward-
modulated learning, spiking neural networks, unsupervised
learning.

I. INTRODUCTION

Neuromorphic systems built with Neural Networks (NNs)
is an active research field [1]–[3]. It has emerged as a very
promising solution to overcome the von Neumann bottleneck
in conventional computing architectures, especially for cogni-
tive memory-intensive tasks where the conventional computing
architecture shows limited performances [4]. In particular,
Spiking Neural Networks (SNNs), the third generation of neu-
ral networks [5], use Leaky-Integrate-and-Fire (LIF) neurons
as computational units. With the notion of time incorporated
into the computing model, they are very efficient when com-
bined with event-based sensors compared with feedforward
multi-layer NNs, thanks to their asynchronous (cycle-free)
propagation of information.

For compact and low-power integrated systems, the hard-
ware implementation of SNNs can be built using analog
neurons and passive synaptic arrays that leverage Kirchhoff’s
current law for memory storage and transmission of sig-
nals. Such designs require specific devices to implement the
synapses which is one of the most important element in a NN
as they store the synaptic weights (memory points) and they
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Fig. 1. Passive synaptic crossbar composed of FTJ memristive devices.
The presynaptic (PRE lines) and postsynaptic (POST columns) metallic lines
connect the corresponding memristive devices terminals in parallel.

have to be intrinsically plastic for learning capable systems.
As in other types of NNs, synapses significantly outnumber
neurons in SNNs.

Ferroelectric Tunnel Junction (FTJ) memristors are good
candidates to make fast, low-power and highly integrable
synaptic arrays for hardware implementation of SNNs. FTJ
devices can be around a hundred nanometers wide [6]. They
have a high conductance state around a few microsiemens [7],
which reduces the power consumption during inference, while
allowing a weight update by repetitively applying short square
voltages (a few hundreds of nanoseconds [7] or shorter [8]).

This work focuses on the impact of postsynaptic line resis-
tance in a crossbar as this is where the number of connected
synapses is highest in the system under study (single layer all-
to-all SNN). Section II gives the details of the FTJ memristor
model used in the simulation as a device and in an array.
Section III gives the details of the SNN architecture, the
main parameters and how multiple crossbars can be used in a
mixed-mode SNN, including digital control, analog synapses
and analog neurons. Section IV shows the impact of the
postsynaptic line resistance on the performance of the system
when using different numbers of crossbar arrays to build the
SNN. The results are obtained by simulating a 1156×100
single layer SNN using an in-house Python simulator.

II. FERROELECTRIC TUNNEL JUNCTION MEMRISTORS

A. Single device behavior

To be able to study the impact of the voltage drop on a SNN
using FTJ devices, one needs a synapse model that takes into
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Fig. 2. Model behavior of the FTJ memristor used in simulations. A. An example of the distributions of the RON and ROFF values of the devices. B.
Hysteresis of the device obtained in the simulation by applying voltage pulses of 100 ns. C. Resistance evolution of a simulated device when applying 1000
successive pulses of 1.05V followed by 1000 pulses of −1.05V.

account the actual voltage applied on the devices to compute
the weight change. For this work, we adapted in Python the
Verilog-A behavioral model from Meyer et al. [9] based on
BFO memristors with some slight modifications to match our
application. The variability of the resistance state changes
was removed and the possible RON and ROFF resistance
states were shifted to higher values to have the low resistance
state of the devices higher than 1MΩ and the high resistance
state around 100MΩ, which is among the possible values of
such technology [6]. The purpose of scaling up the resistance
is to reduce power consumption while limiting the voltage
drop along the synaptic lines. Fig. 2.A shows the shifted
distributions used to select the RON and ROFF states for each
memristive device in the simulated architecture.

Fig. 2.B shows the kind of behavior (hysteresis in blue) that
can be obtained with the model using voltage pulses of 100 ns
for different maximum amplitudes, showing the ability of the
model to reach different non-volatile states depending on the
voltage used. The two writing thresholds Vthdep (dashed red)
and Vthpot (dashed green) that need to be surpassed to cause a
weight change are also shown. The inference pulse amplitude
Vstim (dashed grey) used to charge the postsynaptic neurons in
an inference phase must be contained between the two writing
thresholds.

Fig 2.C. represents the resistance evolution of a simulated
device when successive fixed amplitude pulses greater than the
writing thresholds are applied. We can see that the application
of successive pulses enables the progressive change of the
synapse weight, a phenomenon observed with real FTJ devices
[7], [10]. This progressive programming through repetitive
pulses is used to enable the SNN to learn progressively with
each training sample.

B. Driving a crossbar

When building a single all-to-all layer of a SNN with FTJ
devices, crossbar arrays are the standard structure chosen for
their integrability. In the case of passive crossbars (see Fig.
1), the connection between each synaptic terminal connected
to the same neuron is made by a single metallic line. Thus,
a small resistance rx exists on a synaptic line between each
pair of connected devices and it causes the apparition of a
voltage drop between successively connected devices. Fig. 3.A
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Fig. 3. Examples of results obtained by the voltage solver and by the fitted
inference current approximation in the worst scenario (all synaptic memristive
devices at Gmax = 1 µS) for different numbers of connected devices (nodes)
and different resistance values rx. A. Equivalent circuit of a postsynaptic
line of “nodes” elements. B, C. Computed voltage on the postsynaptic
memristive device nodes xi for different small rx values and a postsynaptic
line connecting 1156 inputs (nxbar = 1 crossbar), 578 inputs or 289 inputs.
D, E. Postsynaptic current computed with the solver (solid lines) and the
adjusted estimator (dashed lines) for different [rx , nxbar] configurations
when an inference voltage Vstim= 0.95V is applied at Npre i. The grey
dashed line represents the ideal case when rx and rpost are negligible. For
simplicity, rpost= 1Ω.

shows the electrical model of a postsynaptic line including this
rx resistance. As the number of presynaptic inputs is higher
than the number of postsynaptic neurons in our simulations
(1156 inputs versus 100 outputs), we assume that the voltage
drop along the presynaptic lines is negligible as they are
connected to only 100 postsynaptics. This allows us to simplify
the mathematical equations and reduce the computation time
of SNN simulations. Figs. 3.B and 3.C show the voltage
applied on the postsynaptic terminal along the line, assuming
that the presynaptic inputs are at 0V, the postsynaptic voltage
of this line is at 1V, and all the synapses are at 1MΩ (the
worst-case scenario). The xi voltages at each device terminal
are obtained by solving a linear algebraic equation. This
method is used to determine the actual voltage on each device
for the training phase.
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Fig. 4. Architecture of the system and weight modification protocol. A. General architecture of the system. All-to-all single layer analog SNN controlled by
a Digital Controlled Block (DCB) that triggers the presynaptic and postsynaptic waveforms according to the dataset and learning rules. B. An overview of a
postsynaptic neuron made of a LIF neuron and multiple CCII+ to combine the synaptic currents issued by the synapses of different crossbars if there is more
than a single crossbar. C. Example of the weight modification protocol of one memristor (orange dashed box) in a small 3× 3 crossbar of the device if the
second postsynaptic line (red dashed box) needs to be updated.

Using this method, the postsynaptic current (going through
rpost) can also be determined by knowing the value of
xnodes−1. However, as the computation of the postsynaptic
current of each postsynaptic neuron is one of the most called
operations in the simulation, the computation time increases
drastically. To alleviate this problem, we define an estimator
using a simpler generic equation that is empirically fitted to
each postsynaptic line length used. Figs 3.D and 3.E show the
computed synaptic current obtained when a presynaptic Npre i

is active while all other terminals are at 0V. We can see that
the best fitted curve (dashed lines) produced by the estimator
follows the trajectory of the synaptic current obtained with the
solver based on Kirchhoff’s and Ohm’s laws (solid lines).

III. SPIKING NEURAL NETWORK ARCHITECTURE

A. General architecture

To study the effect of this voltage drop, we consider an
all-to-all single layer SNN with 1156 inputs and 100 outputs
(architecture and most parameters taken from Lewden et al.
[11], [12]) as shown in Fig. 4.A. The SNN is composed of
analog neurons with presynaptic neurons applying a 10 µs wide
negative voltage (Vstim = 0.95V) each time a presynaptic
event happens. The postsynaptic neurons illustrated in Fig.
4.B collect the postsynaptic current coming from a number of
postsynaptic lines through a positive second generation current
conveyor (CCII+). The latter copies the synaptic current (only
the positive current in our system) with a factor K = 0.01
while maintaining the postsynaptic voltage Vpost on the con-
nected postsynaptic line. If the synaptic array is made using
only one crossbar, only one CCII+ is used. If more crossbars
are used, by splitting the crossbar along the postsynatpic lines
into smaller ones, one CCII+ per crossbar is used to combine
the currents.

To test the SNN, we use a subset of the N-MNIST dataset
from G. Orchard et al. [13] (handwritten digits from 0 to
9 filmed by a DVS), by using only the first 100ms (first
saccadic movement) and only the ON events similar to the
setting of Lewden et al. [12]. When a postsynaptic neuron fires
upon reaching the membrane threshold (Vthreshold = 1V), the

sample presentation is stopped. If the network is in testing
mode, the neurons are reset and the next sample is presented.
If the SNN is in training mode, a weight update protocol is
executed in two steps before presenting the next sample. This
weight update protocol is illustrated in Fig. 4.C. It potentiates
(increase, step 1) or depreciates (decrease, step 2) the weights
(conductances) of interest depending on the learning rule for
a postsynaptic line. During those weight updates, the devices
that are not updated will see a residual voltage (±Vpot/3 or
±Vdep/3) that should be lower than the writing thresholds,
while the devices being updated should see the writing voltage
Vpot = −1.05V or Vdep = 1.05V.

B. Learning rules, labeling and performances

We consider two learning rules taken from Lewden et al.
[12] in this work. The first one is the 1P1D unsupervised
learning rule. It potentiates synapses connected to inputs that
have fired at least once and depreciates the others when a
postsynaptic neuron is updating its weights. The second rule
is called R∅1P1D. It is a weak supervision rule or reward-
modulated rule that applies the 1P1D rule if a postsynaptic
neuron fires on a correct class in the training phase or do
not update any weights at all if the class of the sample does
not match the desired label for the neuron. The supervision
labels are organized by the index of the neurons. The first 10
postsynaptic neurons are dedicated to the digit 0, the next 10
to 1, etc. To attribute the labels after the learning phase for
both the unsupervised and weakly supervised learning rules,
we use a heuristic method based on the most recent samples
upon which a postsynaptic neuron fired.

Lastly, in our results, the performance we consider is the
recognition rate of the neural network defined by how many
times the output given by the network (label of the firing
neuron) matches the sample class, divided by the number of
test samples.

IV. RESULTS

To see the impact of the resistance rx on the performance of
the system, we simulated the SNN for multiple configurations



using 5 different initial random weight distributions (uniform
law) and synapses parameters (random RON and ROFF picked
according to the distributions given in Fig. 2.A). The different
simulated configurations studied were related to the crossbar
structure: different values of rx while rpost fixed at 1Ω for
every simulations (see figure Fig 3.A) when using only 1
crossbar of 1156×100, 2 crossbars of 578×100 or 4 crossbars
of 289× 100.

Fig. 5 shows the average, maximum and minimum results
obtained for the 5 different initial random weight distributions.
According to our results, when using a single crossbar (blue
line), a sharp drop in the average performance is observed
for both rules when rx only increases from 0.1Ω to 0.2Ω
despite synaptic weights that are all higher than 1MΩ. The
variability in performance is also high depending on the
synaptic parameters (RON, ROFF and starting weights) before
plateauing at a lower recognition rate.

Splitting the crossbar can mitigate the loss in performance.
Indeed, if the resistance between devices is higher, the per-
formances can be conserved by dividing again the crossbar
as shown by the results obtained for a system with 2 or
4 crossbars when rx≥ 1Ω. Thus, from our results, we can
conclude that the higher rx is, the more the crossbar should
be cut into smaller ones to mitigate the voltage drop. To
corroborate this, we can observe from our results Fig. 5 that
the performance starts to drop when rx = 3Ω even with 4
crossbars (green line). This indicates that the crossbar needs
to be split again if rx is even higher.

If we compare the performance of the unsupervised learning
rule 1P1D (top panel of Fig. 5) with the performance of the
weakly supervised rule R∅1P1D (bottom panel of Fig. 5), we
can see that as expected the recognition rate is higher when
using the weakly supervised rule while having apparently
better performance with the same increase in rx.

To complement those results, Fig. 6 shows an example of
the conductance (sensitivity) maps of the same postsynaptic
neuron for different rx and nxbar values. When rx is too high
for the size of the crossbar, we can clearly observe from our
results the delimitation in the sensitivity maps from where
the writing voltages are not enough to modify the weights.
This delimitation is indicated on Fig. 6 by a red arrow on the
right side of the sensitivity maps when it is relevant. If we
consider the case of a single crossbar, when rx is too high
(rx≥ 0.3Ω), we can see that the top of the sensitivity map
that corresponds to the farthest devices on the postsynaptic
line are still in their random initial value while the bottom
has been modified mostly towards lower weights as almost no
part of the digit is located there. This is symptomatic of the
voltage drop as the farther a device is from the postsysnaptic
voltage terminal, the less voltage it will see during a writing
phase. Thus, if the voltage drop is too high, the farthest
devices will not see a voltage important enough (above the
writing thresholds) to be modified. In case of the use of two
crossbars, for example, when rx= 2Ω, nxbar= 2, we can
see two demarcations (for two crossbars) where only the last
third of the synapses close to the postsynaptic of a crossbar

connection have been modified (decreased).
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Fig. 5. Performance of the system for different numbers of crossbars and
values of the resistance between connected memrisors rx, and the two learning
rules of interest obtained after one epoch of training for 5 simulations. Each
point (+) represents the average recognition rate. The tinted area around
each point represents the minimum and maximum recognition rates at that
resistance.

Fig. 6. Example of conductance (sensitivity) maps of the first postsynaptic
neuron obtained with different numbers of crossbars and values of rx for the
two learning rules of interest. Red arrows show the observable delimitation
where the voltage is not enough to modify the weights.

V. CONCLUSION

The results presented here showed how detrimental the
resistance line of the postsynaptic neurons can be. The results
were obtained by assuming negligible voltage drop along the
presynaptic line as there is often in practice more inputs than
outputs. Thus, the demonstrated detrimental effects can only
be more pronounced in an actual implementation, leading to
the necessity to use smaller passive crossbars when there are a
lot of parallel synaptic connections. However, splitting a single
crossbar into smaller ones can also lead to more surface used
as more electronic circuits would be needed (especially the
CCII+). Using a passive crossbar shows potential in terms
of simplification of the design as long as their conception
takes into account the limitations on the synaptic lines connec-
tions. Lastly, while both unsupervised and weakly supervised
learning rules show similar behavior, R∅1P1D (the weakly
supervised) shows better overall results confirming results
from Lewden et al. [12]. R∅1P1D also demonstrates slightly
less adverse voltage drop effect while using potentially lower
energy during training as it skips the weights modification if
an output neuron fires on a wrong class.
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