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How to design buildings: EnergyPlus

Energy+

Energy needed for heater/AC

Cost of construction

Comfort for occupants

Materials

Desired temperature

Heating Units

Occupancy schedule

Manufacturing tolerance

...

Metrics

...

Typical meteorological

year at location

∑

.epw file
Economic data
Comfort formulas

• x ∈ X → Materials (type and quantity), Heating/AC, Rate of air change...

Desirable building:

• Low cost of construction
• Low energy consumption
• High comfort for occupants

Sadly, no design optimizes simultaneously all objectives.
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Back to basics

How to compare if x is better than x′ ?

Order relation on R: ≤
Let a,b ∈ R. a is not worse than b if a ≤ b

f (x′) not worse than f (x) if f (x′) ≤ f (x)

f (x) Worse than f (x)Better than f (x)

min
x∈X

f (x) = y verifies y ≤ f (x), ∀x ∈ X

What if f is very expensive to evaluate ?
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Bayesian Optimization



GP modelling

BO relies on Gaussian Process Regression:

GP modelling in very short
Gaussian Process F: Surrogate model of (the expensive to evaluate) f ,
conditioned on a Design of Experiment

F(x) ∼ N (mF(x)︸ ︷︷ ︸
prediction

, σ2F(x)︸ ︷︷ ︸
uncertainty

)
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GP modelling

BO relies on Gaussian Process Regression:

GP modelling in very short
Gaussian Process F: Surrogate model of (the expensive to evaluate) f ,
conditioned on a Design of Experiment

F(x) ∼ N (mF(x)︸ ︷︷ ︸
prediction

, σ2F(x)︸ ︷︷ ︸
uncertainty

)

Works well for noisy evaluations of the function !
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Bayesian Optimization Loop: Active Learning

Construct F (surrogate)
based on design

Design
of Experiment
{(xi, f(xi)}i≤n

Define α(x)
progress measure

based on F

xn+1 = argmaxα(x)
Evaluate f(xn+1)

and add (xn+1, f(xn+1))
to the DoE

If budget not spent yet

Choose the next point to evaluate

• Different Acquisition methods for different objectives
• EGO, EFI(SUR), LCB, Entropy-based acquisitions...

4



Efficient Global Optimization [JS98]

Improvement
How much does F(x) improves the
current best value fmin?

I(x) =
{

fmin − F(x) if fmin ≥ F(x)
0 elsewhere

r.v.

Progress Measure: Expected
Improvement

α(x) = E [I(x)] = E [(fmin − F(x))+]

xn+1 = argmax
x

α(x)

Analytical expression exists for EI
(and its gradient) since F is a GP !

→ Tradeoff exploration vs exploitation

5
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Multiobjective Optimization



Back to ”Back to basics”

How to compare if x is better than x′ ?

Order relation on R: ≤
Let a,b ∈ R. a is not worse than b if a ≤ b

f (x′) not worse than f (x) if f (x′) ≤ f (x)

f (x) Worse than f (x)Better than f (x)

min
x∈X

f (x) = y verifies y ≤ f (x), ∀x ∈ X
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Pareto Domination relation

Partial order relation on R2: �
Let a,b ∈ R2.

a � b ⇐⇒ ai ≤ bi ∀i: all components of a are not worse than those of b

f1

f2

f(x)

Region dominated by f(x)

Region dominates f(x)

{f(x) � . . . }

{. . . � f(x)}

”Incomparable”

”Incomparable”

”Incomparable”
→ some components
are better, some worse
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Pareto Front, Pareto Set

f

Control Space Objective Space

f1

f2

x1
f(x1)

f(x2)

f(x3)

x2x3

Region dominated
by f (X )

P∗

• Pareto Front P∗: Set of non-dominated point of f(X ). Subset of
objective space

• Pareto set P∗
X : Preimage of Pareto front. Subset of control space

8
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objective space
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Typical Bayesian Optimization Loop

Multidim GP

F ∼ GP (m, k)

F(x,u) ∼ N
([

m1(x,u)
m2(x,u)

]
,

[
σ1(x,u) 0

0 σ2(x,u)

])

Construct F (surrogate)
based on design

Design
of Experiment
{(xi, f(xi)}i≤n

Define α(x)
progress measure

based on F

xn+1 = argmaxα(x)
Evaluate f(xn+1)

and add (xn+1, f(xn+1))
to the DoE

If budget not spent yet

Choose the next point to evaluate
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Multiobjective Bayesian Optimisation

Bayesian Optimisation methods exist to find non dominated points !

EHVI, SUR, ?-ESMO . . . [Pic13, HHSA16]

Hypervolume Improvement

HVI(x1) = Vol
(
∪

)
− Vol

( )
HVI(x2) = Vol

(
∪

)
− Vol

( )
α(x) = E [HVI(x)]

Non-dominated
evaluated points

f1

f2

F(x1)

F(x2)

HV improvement

nadir
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Optimal Conditions today ?

Buildings have a lifespan > 20 years.

If the building is ”optimal” today, how about in 5 years, 10 years or 20+ years ?

⇒ Many uncertainties can be taken into account for this modelling !

11



Multiobjective Optimization under
uncertainties



Introducing uncertainties

Energy+

Energy needed for heater/AC

Cost of construction

Comfort for occupants

Materials

Desired temperature

Heating Units

Occupancy schedule

Manufacturing tolerance

...

Metrics

...

Typical meteorological

year at location

∑

.epw file
Economic data
Comfort formulas

Let u ∼ U with support U which models

• Nominal vs real physical properties
• Energy prices / Environmental impact
• Climate Change
• Time variability of materials properties
• Occupancy schedules...

f(x,U): Multivariate random variable to optimize ?

12



Comparing sets ?

f(x,U): Multivariate random variable

f(·, U)

Control Space Objective Space

f1

f2

x1

x3 x2

f(x1, U)

f(x2, U)

f(x3, U)

What does it mean to be better/not worse in this context ?

How to deal with U ?

13



Comparing sets ?

f(x1,U) vs f(x2,U)

What does it mean to be better/not worse in this context ?

How to deal with U ?
13



Mean Objective Optimization

We can look for statistics of f(x,U).

Mean Objective Optimization

Non dominated points of EU[f(x,U)] = (EU[f1(x,U)], . . . ,EU[fm(x,U)])

⇒ We can construct an acquisition function (like in EFISUR, or Noisy EHVI)

14



Robustify or Solve first ?

MOO on risk measure
Pr : pareto-min

x∈X
rU[f(x,U)]

Robust solutions

MOOUU
”min ” f(x,U)

MOO conditioned on u
u 7→

(
P(u) : pareto-min

x∈X
f(x,U)

)

”Robustify then Solve”

rU[f(x,U)] =


EU [f(x,U)] [QCD23, DG05]
Multivariate VaR [TKLS24, DCB+22]
Bounding boxes approaches [RC22]

”Solve then Robustify”

• For a given u, MOO problem→ Conditional Pareto front P∗(u)
• Do some things using P∗(U) and P∗

X (U) ?

15
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Conditional Pareto Front/Set – Contextual Optimization

Given u ∈ U , we have a deterministic MOO problem:

Conditional Pareto Front/Set

P∗(u) = non-dom {f(x,u) for x ∈ X}

P∗
X (u) = {x ∈ X s.t. f(x,u) non-dominated}

• Can we improve the estimation of u 7→ P∗(u), u 7→ P∗
X (u) using GP ?
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Probability of being non-dominated

→ PU [x ∈ P∗
X (U)] the probability of being ”Pareto-optimal”

• maxPU [x ∈ P∗
X (U)]

• Get subset of X which corresponds to the top k% of values

How to estimate u 7→ P∗
X (u) ?

17
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GP framework

f(x,u) is expensive to evaluate once, it is even worse when taking into
account the random nature of u ∼ U

We consider the joint input space X × U :

F(x,u) ∼ N (m(x,u),Σ(x,u)) (1)

Since F is a GP, it works well with linear operators, ie Z(x) = E[F(x,U)] still a
GP !

18



Modify the EHVI for CPF estimation

We want to estimate u 7→ P∗(u),P∗
X (u) using the GP

Profile-EHVI
Similar to the PEI defined in [GBC+14], acquisition defined on X × U

PEHVI(x,u) = EF

HV(P∗
m(u) ∪ F(x,u))−HV(P∗

m(u))︸ ︷︷ ︸
HVI of P∗

m(u)


Estimation of P∗

m(u) based on GP means

f1

f2

F(x2,u2)

nadir
P∗
m(u2)

F(x1,u2)

f1

f2

F(x1,u1)

F(x2,u1)

HV improvement

nadir
P∗
m(u1)

19



Design of Experiment using PEHVI

• PEHVI relies on a single optimization in the joint space X × U
• This acquisition function leads to an intensification around the diagonal
on X , while exploring U .

• Depending on the estimation of P∗
m(u), we can tend toward more

exploration⇒ Better quality metrics

Use the metamodel to estimate PU [x ∈ P∗
X (U)] 20
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on X , while exploring U .

• Depending on the estimation of P∗
m(u), we can tend toward more

exploration⇒ Better quality metrics

Use the metamodel to estimate PU [x ∈ P∗
X (U)]
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Limitations of CPF

But

• No control on the probability of optimality: what if no x has a ”high”
probability of being optimal

• If x /∈ P∗
X (u), is it still a reasonable solution or not ?

How to quantify the proximity to the CPF, while keeping some notion of
”incommensurability” (don’t compare apples to oranges) ?

21



Non-dominated Sorting

Let u ∈ U , let us say that we evaluated f(X,u). At the heart of NSGA-II
([DPAM02])

f1

f2 P∗(u)

rank = 0

rank = 1

rank = 2

rank = 3

• r(x,u) = rank of f(x,u) among f(X ∪ {x},u)
• r(x,u) = 0 ⇐⇒ x ∈ P∗

X (u)
• Look for points which have low EU[r(x,U)] ?

22



Proximity indicator ρ

Let us assume that ∀x,u, f(x,u) > 0, and that 0 is a ”nice” ideal point

Definition of ρ
Let x ∈ X ,u ∈ U

largest ρ such that ρ · f(x,u) � P∗(u)
• 0 < ρ ≤ 1

• ρ = 1 means f(x,u) not dominated thus x ∈ P∗
X (u)

• Invariant to linear scaling of one or more objectives

f1

f2

f1

f2

f(x,u2)

P∗(u2)

f(x,u1)

ρ · f(x,u1)

P∗(u1)

ρ · f(x,u2)

We can define (x,u) 7→ ρ(x,u).

→ Maximize average proximity ?
23



ρ-based designs

Definition of ρ

ρ(x,u) = sup
ρ
{ρ · f(x,u) � P∗(u)} = `(f(x,u),P∗(u))

We are interested in high values of EU [ρ(x,U)]

• maxEU [ρ(x,U)]
• get top k% of values 24



Estimation of ρ using GP

Definition of ρ

ρ(x,u) = sup
ρ
{ρ · f(x,u) � P∗(u)} = `(f(x,u),P∗(u))

ρ can not be modelled directly as a GP using F.

Estimation of ρ(x,u) using GP samples:

• Samples of the GP at Fω(x,u)︸ ︷︷ ︸
for f(x,u)

, Fω(ξ1,u), . . . , Fω(ξN,u)︸ ︷︷ ︸
for P∗

ω(u)

to get ρω(x,u)

Estimation of EU[ρ(x,U)] using GP samples and samples of U

• Using a finite set of samples {u(i)}i, we can approach EU [ρω(x,U)] as
ρ̂ω(x)

⇒ using enough GP samples, and doing this (hopefully) in parallel, we can
have a prediction + measure of uncertainty→ Bayesian Optimization

25



Optimization of ρ ?

Definition of ρ

ρ(x,u) = sup
ρ
{ρ · f(x,u) � P∗(u)} = `(f(x,u), P∗(u)︸ ︷︷ ︸

does not depend on x

)

Uncertainty on U 6= Uncertainty ω from the GP

To optimize EU [ρ(x,U)] using GP: we decouple choice of x and u

• Construct and optimize UCB acquisition function using GP samples, to
get xtarget (where we aim at reducing the uncertainty)

• ... but lookahead methods in the joint space on Varω [EU[ρω(x,U)]] is
too expensive

• ... reducing uncertainty at xtarget does not necessarily means evaluating
at some f(xtarget, ũ)

→ uncertainty might come from the estimation of P∗(u).
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Comparison between MOOUU methods

EU [f(x,U)]

• Mean performances

• Ease of implementation

• Information on marginals, not on
dependence

PU [x ∈ P∗
X (u)]

• Probability of being
non-dominated

• PEHVI

• No control on performance
outside of this optimality

EU [ρ(x,U)] / Average NDS Rank

• Average ”proximity” with P∗(u)

• More expensive to estimate

• Tricky acquisition procedure
27



Wrapping-up/Take-Home messages

What does it mean to be robust in a MO setting ?

• What does it mean to be robust in my problem ?

• Comparing multivariate random variables is not trivial

• Conditional Pareto Front: Solve then Robustify strategy

• Profile-EHVI helps improve the estimation of u 7→ P∗(u)

• ρ is more challenging, and acquisition function is not easy to construct

What is next ?

• Continue numerical experiments

• Metrics to compare acquisitions functions

• Application to EnergyPlus
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Three steps optimization

• Identify the xtarget where we want to reduce the variance of the
estimation (UCB)

xtarget = argmax
x∈X

ρ̂(x) + βv̂(x)1/2

• Identify the env. var. which brings the most uncertainty at xtarget

utarget = argmax
u∈U

Varω [ρω(xtarget,u)]

Find which MOO problem (dependent on u) carries the most uncertainty on
the estimation of ρ̂(xtarget)

• Minimize lookahead variance

xn+1 = argmin
x∈X

Varω
[
ρ
(n+1)
ω,(x,utarget)

(xtarget,utarget)
]

• Finally, the next point to evaluate is (xn+1,un+1)← (xn+1,utarget)
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