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Abstract—The combined use of Spiking Neural Networks
(SNNs) and neuromorphic data in recent years makes for a
promising solution to the challenges currently raised in computer
vision. Indeed, the natural match between SNNs and event
data leads to improvements in terms of biological inspiration,
energy savings, latency and memory use for dynamic visual data
processing, especially when such networks are implemented on
neuromorphic hardware. We propose to draw advantages from
these technologies to propose, to the best of our knowledge, the
first end-to-end neuromorphic model for straight line detection, a
standard task in robotics and computer vision. Our architecture
relies on SNN intrinsic dynamics and ensures the accurate
detection of moving lines recorded by an event-based camera
with no learning. It reaches an overall performance of over 90 %
with a limited number of neurons and synapses allowing for its
deployment on the neuromorphic board SpiNNaker.

Index Terms—neuromorphic, spiking neural network, event-
based camera, SpiNNaker

I. INTRODUCTION

Recent years witnessed an increasing number of studies
exploring neuromorphic computing and highlighting its sig-
nificant advantages in terms of processing latency, data stor-
age and energy consumption. More and more neuromorphic
sensors are being created to record and process sensory data
in life-like form. A famous example of such a sensor is the
event camera [1], bringing an emerging vision paradigm by
mimicking the biological retina. The data recorded by this
sensor make a particularly good match with spiking neural
networks (SNNs), i.e. the “third generation of neural network
models” [2], due to their event-driven nature.

Many recent works in embedded machine learning tend to
make use of both of those scientific concepts combined [3],
[4]. Indeed, “a suitable spiking neuron model with proper
synaptic plasticity while exploiting event-based, data-driven
updates is a major goal among neuromorphic engineers to
enable computationally efficient intelligent applications” [5].
Two main approaches can be identified to this research
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question: either ANNs-to-SNNs conversion (ANNs: artificial
neural networks) or spike-based learning, both bringing
pros and cons to the table. It is however noteworthy that
the first approach leads to increased latency and decreased
energy efficiency whereas the spike-based approach is
more bio-plausible and easier to deploy on neuromorphic
hardware such as SpiNNaker [6]. Neuromorphic hardware is
specifically adapted to the fast and low-power simulations of
SNNs, using electronic circuits that faithfully reproduce the
dynamics of neurons in real-time. It is a promising technology
which still needs to overcome some challenges, such as the
limitations in the number of implementable neurons and
synapses, the memory consumption in data addressing and the
difficulty of implementing on-board learning. For example,
most works deploying SNNs on SpiNNaker perform a first
“off-board” learning phase, then deploy the final architecture
with the learned hyperparameters on the SpiNN board. Some
researchers bypass this issue by designing architectures
without any learning, specifically for application tasks where
the parameters can be intuited. This methodology has been
successfully applied among others to 3D reconstruction [7]
and visual attention [8] performed on event data.

To the best of the authors’ knowledge, there has been no
prior native SNN model applied to event-based line detection
even though this task is fundamental for the perception and
comprehension of the visual environment [9], for example to
detect the horizon or lanes on a road. Line detection is a
relevant task in robot perception [10], for example in several
aerial manoeuvres (landing, perching, etc). As stated in [11],
“line features contain richer structure and can be more robustly
extracted than punctual features such as corners”.

Some approaches for event-based line detection were per-
formed directly at the camera [12], [13] while others combined
feature-extraction on RGB data with optical flow estimation on
event-data [14] or made use of standard image processing algo-
rithms such as clustering [15], iterative weighted least squares
fitting [16] or an Extended Kalman Filter [11]. Interestingly,
[17], [18] and [19] applied SNN models to line detection
on standard RGB visual images combined with a Hough
transform, while [20] introduces a SNN model combined with
a Hough transform to detect contours in event data.
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Fig. 1: Illustration of the SNN architecture implemented in this work. a) The global organisation of the network, with one input
layer (i.e. the input sensor’s pixels) and one output layer, comprising four parallel populations of neurons known as “detectors”.
b) The pattern of synaptic connections between the input and each detectors, with the specific example of connection pattern
with step k = 4 between the output neuron within the “bottom detector” at index idx (in blue) and the input pixels belonging
to the diagonals spanning from the sensor’s border neuron at index idx (pixels in green). The green arrows correspond to
activating synapses and the red to inhibiting synapses. c) Three examples of lines extrapolated from the network activation: at
different timesteps, the detectors’ neurons spike two by two by colour and the lines of corresponding colours are extrapolated.

We introduce in this work an SNN architecture applied
to event-based straight line detection and embedded on a
SpiNNaker board. We extend the “no-learning” strategy pre-
sented above to this task, by relying solely on intrinsic SNN
behaviours. This model is designed with no learning phase
and is light enough to allow for its easy deployment on
SpiNNaker boards. This design allows for the low-latency,
low-power neuromorphic detection of event lines while relying
on a lower-resource architecture than a fully connected ANN
approach.

II. NEUROMORPHIC MODEL

A. Overall concept

The model introduced in this work detects static or moving
lines in the input event data spanning the whole sensor by
outputting the position of their intersections with the sensor’s
borders. This mechanism is implemented using one output
layer comprising four parallel populations of neurons, each
corresponding to one border of the sensor and named accord-
ingly. As pictured in Fig. 1a, each of those populations or
“detector” corresponds to a different half of the sensor: the
“top detector” supervises the top half (in blue in the figure),
the “right” one the right half (in yellow), the ”bottom” one the
bottom half (in red) and the “left” one the left half (in purple).
Each detector supervises its corresponding half and detects
any line within this half-sensor and crossing the corresponding
border, thanks to a specific pattern of connections (detailed in
section II-B and Fig. 1b). When a line crossing the border
at the position (xintersection, yintersection) is detected within a
half-sensor, the neuron at the corresponding index idx in
the corresponding detector spikes as depicted in the example
presented in Fig. 1c. Depending on the detector, idx equals
either xintersection for “top” and “bottom” detectors, or yintersection
for “left” or “right”. For each line in the input event data, two
different detectors activate thanks to this mechanism; from this
activity, one can then extrapolate the line extrema, thus its
position.

B. Architecture

As stated above, each detector supervises its half-sensor
thanks to a specific activation pattern: the Leaky-Integrate-and-
Fire neurons [?] at index idx in a detector are activated by
the input neurons (assimilated to the pixels of a retinomorphic
sensor) belonging to diagonal patterns expanding from the
neurons situated at index idx on the corresponding input
sensor’s border (see Fig. 1b, with the example of the blue
neuron at index idx in the Bottom detector). This is repeated
for each neuron of each detector, with the same interval
between diagonals in the pattern. To increase the selectivity
of each detector, a Winner-Takes-All mechanism is applied
to each of their neurons: the activation of any neuron will
laterally inhibit the other neurons in the population.

It should be noted that the diagonals are computed as lines
spanning from each neuron of one sensor’s border to either
of the three other borders of the half-sensor. In other words, a
pattern of connections spanning from a neuron on the bottom
border would connect it with each neuron on the borders
of the bottom half of the left and right borders as well as
with the neurons on the horizontal line cutting the sensor
in half (in black in Fig. 1b). The proposed model allows to
implement a pattern of connections which selects a diagonal
for every k potential diagonals, with k = 1 for a pattern
encompassing all potential diagonals (k = 4 in Fig. 1b). The
higher the value k is set to, the lower the number of synapses
to implement and the lighter the architecture becomes.

A first iteration of this work used an equal activation weight
ω for all input neurons. However, it was immediately made
clear that such connectivity quickly led to an unwanted lateral
activation, the saturation of detectors not concerned by the
input and the false detection of lines where there are none.
Indeed, if all connections activate strongly the detectors, then
in the example depicted in Fig. 1b, a hypothetical horizontal
line in the upper part of the bottom half of the sensor would
saturate the bottom detector’s neurons. To overcome this



issue, the weights of each diagonal connection are inversely
proportional to the Euclidian distance (in pixels) between the
input sensor’s neurons and the detectors’ neurons: the further
away the input neuron is from the sensor’s border, the lower
the weight of the corresponding synaptic connection. The
weights ω are calculated under Eq. 1 so that their sum ωsum,
i.e. the total activation received by the input neuron when a
line is recorded at the pixels belonging to the corresponding
diagonal, is known and can be adjusted:

ω = max(ωsmallest × (ldiago − d), ωmin)
with ωsmallest = 2× ωsum/(ldiago × (ldiago + 1))

(1)

where ωsmallest is the smallest weight a connection can have,
calculated using the formula for the sum of increasing integers;
ldiago is the length of the diagonal of interest; d the distance
between the input neuron of interest and the point of intersec-
tion between the diagonal and the border of the sensor; ωmin
the lower bound applied to the activation weight.

C. Implementation

The main objective of this work is the implementation
of event-based line detection on the neuromorphic hardware
SpiNNaker [6], as a first step for an embedded, low-latency
and low-energy application. This objective dictated both our
choices of implementing such a mechanism with no learning as
well as using such a light architecture. Indeed, any SpiNNaker
platform is limited in terms of synapses (at most 1000 synapses
per output neurons) and neurons, depending on the board
(SpiNN-3 can simulate at most 18,000 neurons, and SpiNN-5
at most 195,000). As SpiNNaker does not require input neu-
rons to be simulated, the deployment of our architecture on this
board requires only 4S neurons (with S × S the sensor size)
and, in the heavier case scenario (i.e. k = 1), S2

2 incoming
synapses per output neuron. Comparing this to a theoretical
fully connected approach, which would require 6S2−19S+20
neurons and S2 synapses per output neuron, this SNN archi-
tecture allows for an efficient embedded application and could
more easily be applied to high-resolution event cameras, such
as the Prophesee One Megapixel Camera [21], [22], than a
fully connected “dense” approach (see Fig. 2).

The results below were obtained on CPU using the NEST
simulator [23] interfaced with PyNN [24], then deployed on
the publicly available online SpiNNaker platform [25].

III. EXPERIMENTAL RESULTS

A. Input data

In this section, the model introduced in section II is vali-
dated by simulation means on a synthetic event dataset. To the
best of the authors’ knowledge, there are no real-life event-
based datasets with line recording and labelling. A custom-
made dataset was thus designed where events are generated
belonging to input diagonal lines, randomly spanning the
sensor. Each line shifts by one pixel for each timestep, over
tpattern timesteps. To ease the calculation of the model’s
performance, each line apparition is followed by an empty
screen for tpattern timesteps. The results presented below are

Parameters Values
Width & height 28

tpattern 10 timesteps
Membrane potential vrest and vreset −60 mV

Neuronal threshold vthresh −30 mV
Membrane time constant τm 0.1 ms

Refractory period τr 1 ms
Activation weight (diagonal connections) ω 4
Lower bound of the activation weight ωmin 0.01

Inhibition weight (WTA) ωWTA 1
Step k between diagonal connections 9

TABLE I: Neuronal and synaptic parameters of our model

(a)

(b)

Fig. 2: Comparison between the number of neurons (a) and
number of incoming synapses per neuron (b) required by a
fully connected model (in red) and our model with a varying
step k between neurons (in blue). The upper bounds on
SpiNN-3 and SpiNN-5 boards are illustrated in black.

obtained from a dataset of 100 diagonal lines, spanning a
synthetic sensor of size 28 × 28 pixels with tpattern = 10
timesteps. The sensor size is similar to the active area recorded
in N-MNIST, a benchmark neuromorphic dataset [26].

B. Performance of moving line detection

Fig. 3a presents the results obtained for different hyperpa-
rameters on the input dataset described above. On the x- and
y-axis respectively, the parameters “step k between diagonal
connections” and “weight ωsum” correspond to the parameter
k and ωsum introduced in section II-B.

The performance is measured using three standard
metrics [27]. The precision evaluates whether the actual spike
activity matches with what it should have been, and the recall
evaluates whether all the spikes that should have happened
did happen. The F1-score measures the overall performance
of the network, therefore evaluated by comparing the expected
activity (i.e. the input spikes) to the obtained activity (i.e. the
output spikes) for each line detector.



(a) (b)

Fig. 3: Network performance of line detection. a) Performance according to the weight ωsum and the step k between diagonal
connections. b) Input lines’ extrema (in red) and output activity of the network (in grey) to allow for qualitative assessment.

These results clearly indicate an inversely proportional
relation between the number of diagonal connections (i.e. the
inverse of k) and the total activation weight required. Indeed,
the bigger the gap between the diagonal connections, the
bigger the total weight necessary to apply the input activity to
the output detector layers. Additionally, the “recall” plot shows
a steep boundary between the hyperparameters sets which do
or do not allow for the correct activity in the output detectors:
when the recall is close to 0, the output layers did not activate
since the total activation weight is not high enough compared
to the number of diagonal connections. However, once the
minimum weight is reached, the recall is always perfect.
Depending on the parameters, these correct activations can
quickly be accompanied by a significant number of incorrect
activations: this is either due to the activation of neurons
at an incorrect index or to the activation of detectors not
corresponding to the intersection of the input line with the
sensor’s borders. This last case is a residue of the lateral
saturation phenomenon described in section II-B and mostly
overcome using varying weights in the diagonal connections;
it can take place when the weight is too high compared to the
number of diagonal connections and affect the precision of the
model, for example at the bottom left of the “precision” plot
in Fig. 3a. Thanks to the F1-scores, one can easily pick the
most appropriate parameters for the ideal neuromorphic line
detection using this model.

Fig. 3b presents the results obtained on a sample of 10
moving lines, over a sensor of size 28 × 28 pixels. Each red
dot corresponds to the extrema of the input lines, i.e. their
intersection with the sensor’s border, moving over time over
10 timesteps. Grey dots illustrate the detectors’ spikes output
by the model deployed on SpiNNaker using the parameters
defined in Tab. I, according to the results presented in Fig. 3a,
and allows to visually assess the quality of line detection.

The deployment of our model on SpiNNaker consumes only
187.3 mJ per timestep of processed input data according to the
platform’s reports.

C. Resistance to noise and event-drop

As presented in the previous section, our model achieves
good performance in detecting lines in event data. However, to
assess its potential application with real-life data, we compare

Fig. 4: Evolution of performance according to the probability
of added noise or dropped events.

its performance on input event data subject to noise and
event-drop, using functions implemented within the Tonic
framework [28]. Fig. 4 illustrates the evolution of the model
performance according to an increasing noise (figure on the
left) and increasing probability of dropping events (figure on
the right). Our architecture is tolerant to noise up to a certain
point: up until a probability of noise of 1 % per timestamp per
pixel, it maintains a good performance; once this threshold is
crossed, the precision drops significantly (probably due to an
increased lateral saturation behaviour). Concerning the event
drop, our model conserves a similar performance up until a
probability of dropping events of 10 % (i.e. an event does not
take place when it should in the input sensor one time out
of 10); once this threshold is crossed, the precision quickly
decreases due to the limited amount of input activity.

IV. CONCLUSION

To the best of the authors’ knowledge, this work introduces
the first end-to-end neuromorphic model for line detection,
applied to event data. We ensure the accurate detection of line
reaching an overall performance of over 90 % with a limited
number of neurons and synapses. Our model shows a good
robustness to noise (up to 1 %) and event drop (up to 10 %).
Its deployment on SpiNNaker leads to a power consumption
of 187.3 mJ per timestep of incoming data.

In future works, the model could be made more flexible by
applying a weight adaptation rule on ω similarly to [8]; to be
noted that such a strategy has the downside of higher latency
and lesser ease to deploy on SpiNNaker. Another avenue of
research would be to validate our model on real-life event data,
for example using the DET dataset [29].
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