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Abstract
Genome rearrangements are events in which large blocks of DNA exchange pieces during evolution.
The analysis of such events is a tool for understanding evolutionary genomics, based on finding the
minimum number of rearrangements to transform one genome into another. In a general scenario,
more than two genomes are considered and we have new challenges. The Median problem consists
in finding, given three permutations and a distance metric, a permutation s that minimizes the sum
of the distances between s and each input. We study the median problem over swap distances in
permutations, for which the computational complexity has been open for almost 20 years (Eriksen,
Theor. Compt. Sci., 2007). We consider this problem through some branches. We associate median
solutions and interval convex sets, where the concept of graph convexity inspires the following
investigation: Does a median permutation belong to every shortest path between one of the pairs of
input permutations? We are able to partially answer this question, and as a by-product we solve
a long open problem by proving that the Swap Median problem is NP-hard. Furthermore, using
a similar approach, we show that the Closest problem, which seeks to minimize the maximum
distance between the solution and the input permutations, is NP-hard even considering three input
permutations. This gives a sharp dichotomy into the P vs. NP-hard approaches, since considering two
input permutations the problem is easily solvable and considering any number of input permutations
it is known to be NP-hard since 2007 (Popov, Theor. Compt. Sci., 2007). In addition, we show that
Swap Median and Swap Closest are APX-hard problems.
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1 Introduction

Ancestral reconstruction is a classic problem in comparative genomics. This problem is based
on consensus word analysis with broad applicability [6, 10, 14]. Genome rearrangement
problems study large-scale mutations on a set of DNAs in living organisms, and have been
extensively studied in computational biology and computer science fields for decades. From
a mathematical point of view, a genome can be represented as strings or permutations.
Watterson et al. [22] proposed genome rearrangement problems interpreted as transforming
one permutation into another by a minimum number of operations depending on the possible
allowed rearrangements, i.e. the chosen metric. This model makes the following assumptions:
the order of genes in each genome is known; all genomes we compare share the same gene set;
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all genomes contain a single copy of each gene; and all genomes consist of a single chromosome.
Thus, genomes can be modeled as permutations once each gene encodes an integer.

Permutations are sequences of distinct integers, and a swap operation is an exchange
between two elements on the permutation. Given two permutations with the same number of
elements, the swap distance is the smallest number of swaps that transform one permutation
into the other. The swap distance problem is solved in polynomial time, given by the function
of the number of the algebraic cycles of the permutation [8]. Many other metrics related to
genome rearrangements have been studied and have a variety of applications in computational
biology [5, 7, 9, 18, 20].

For each of these metrics, it is possible to make a correlation between sets of elements, such
as the closest genome problem. This problem consists in finding a genome that minimizes
the maximum distance with respect to the input set based on the chosen metric [5, 17]. It is
well known that the closest string problem over Hamming distance is NP-hard even for
binary strings. When dealing with permutations, Cunha et al. [5] settled NP-hardness results
on closest permutation regarding breakpoints and block-interchanges. Furthermore,
several FPT (fixed parameterized tractable) results were obtained regarding swap and other
metrics for the closest permutation problems [4].

Graph convexity is a field in which different combinatorial problems can be defined
according to the application [13]. In general, we are dealing with sets of vertices that are
to be increased step by step, following some prescribed rule, until the process stabilizes in
a convex set (the “closure”). Cunha and Protti [7] proposed a connection between graph
convexity and genome rearrangements. This concept is viewed as permutations that can be
generated from a given input set, and we relate it to the Median problem, presented next.

Given a set of three genomes and a metric, the goal of the Median problem is to find
a solution genome that minimizes the sum of the distances between the solution and all
elements that belong to the input set. Median solution of a given set is another relevant
way to summarize a set of genomes, which affects many approaches to finding ancestral
genomes [1, 3, 4, 5, 7, 12, 15]. Our study focuses on the swap median problem over
permutations, where the computational complexity was open for almost 20 years [8]. We
present the following contributions:

We settle that the swap median problem is NP-hard, which solves a long open problem [8].
We prove that the swap closest problem is NP-hard even considering three input
permutations, which is a stronger result compared to the well known NP-hardness where
the number of input permutations is arbitrary [17].
We prove that swap median and swap closest are APX-hard problems.

This article is organized as follows: In Section 2, we present preliminaries concerning swap
median, graph convexity and we discuss the relation between median and convexity
problems; In Section 3 we show that Swap median is NP-hard, by showing that it is a
difficult task even to decide whether a solution reaches the lower bound of a given input,
and as a by-product we prove that Swap closest is NP-hard even when considering three
input permutations; In Section 4, we prove that both problems are APX-hard; Finally, in
Section 5 we present a conclusion for further investigation.

2 Preliminaries

An alphabet Σ is a non empty set of letters, and a string over Σ is a finite sequence of letter
of Σ. A permutation of size n is a particular string with a single occurrence of each element
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from 1 to n, considering that the permutation is a bijection of the set {1, 2, . . . , n} with itself.
Hence, we have the permutation πn = [π(1) π(2) · · · π(n)]. A permutation πn can usually be
denoted as π, when the size is implicitly known. Given a metric M and two permutations
π and σ of same size, dM (π, σ) is the distance between π and σ. Since we can relabel σ to
transform it to the identity permutation ιn = [1, 2, · · · , n] by applying σσ−1 = ι, we have
dM (π, σ) = dM (πσ−1, ι). Therefore, we compute the distance between two permutations
where one of them is ι, denoting dM (γ, ι), or simply by dM (γ).

Permutations can also be represented by each element followed by its image. For example,
given a set {1, 2, 3}, the sequence (1 2 3) maps 1 into 2, 2 into 3, and 3 into 1, corresponding to
the permutation [2 3 1]. This representation is not unique; for instance, (2 3 1) and (3 1 2) are
equivalent. Permutations are composed of one or more algebraic cycles, where each algebraic
cycle of a permutation π is a representation of a domain i, followed by its image π(i), followed
by getting the image of π(i) as the next element, i.e., π(π(i)), and so on. We continue this
process until we reach a repeated element. This procedure uniquely defines the permutation.
We denote by c(π) the number of algebraic cycles of π and a k-cycle is the number of elements
of an algebraic cycles of π. For example, given π = [8 5 1 3 2 7 6 4] = (1 8 4 3)(2 5)(6 7),
we have c(π) = 3, with two 2-cycles and one 4-cycle. Those cycles can be described as the
algebraic cycles graph G(π), as described in Figure 1.

1

8

4

3 52 76

Figure 1 Algebraic cycles graph G(π) of the permutation π = [8 5 1 3 2 7 6 4].

A swap involving elements a and b such that a and b are in the same cycle is a swap
that breaks the cycle into two, whereas if a and b belong to different cycles, the swap of
these elements unites the two cycles [10]. Thus, the swap distance of a permutation π is
determined as follows: dswap(π) = n − c(π), where c(π) is the number of algebraic cycles of π.

Median problem by a metric M

The decision version of the median problem by the metric M is formalized as follows:

Instance: Set of permutations {π1, π2, π3}, and a non negative integer f .
Question: Is there a permutation σ such that

∑
i=1,2,3

dM (πi, σ) ≤ f?

Median by the metric M (M–Median)

Note that, similar to distance problems, for the median problem we can consider π1 as
ι = [1 2 · · · n] to make the study easier, and relabel the other two permutations accordingly.
For example, if π1 is [3 1 2], π2 is [2 1 3], and π3 is [1 3 2], we can relabel π1 as [1 2 3],
π2 as [3 2 1], and π3 as [2 1 3]. Moreover, as a consequence of the triangular inequality,
every median f for permutations π1, π2, π3 satisfies f ≥ dM (π1,π2)+dM (π1,π3)+dM (π2,π3)

2 . A
permutation σ that achieves the median is called the median solution (or median permutation).

There are several studies on Median problems with different focuses. Silva et al. [20]
treated this problem under a restricted rearrangement metric called C4-distance and de-
veloped heuristics and linear programming formulations. Shao and Moret [19] considered
the double-cut-and-join metric, and Tannier et al. [21] showed a number of algorithms for

con f 2025
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multichromosomal genomes. Eriksen [8] developed properties concerning solutions on the
reversal median, for which it is known to be NP-complete [3], and also on the swap
median, for which in that paper it was called transposition median, but with the same
meaning as swaps, and its computational complexity has been unknown until now.

Convexity problems

A finite convexity space is a pair (V, C) consisting of a finite set V and a family C of
subsets of V such that ∅ ∈ C, V ∈ C, and C is closed under intersections. Members of C
are called convex sets. Let P be a collection of paths of a graph G, and let IP : 2V (G) →
2V (G) be a function (called interval function) such that: IP (S) = S ∪ {z /∈ S | ∃ u, v ∈
S such that z lies in an uv-path P ∈ P}.

Different choices of P lead to interval functions with quite different behavior. Such func-
tions are naturally associated with special convexity spaces (the so-called path convexities).
For example, if P contains exactly all shortest paths in a graph, then the corresponding
interval function is naturally associated with the well-known geodesic convexity; if P is
the collection of induced paths, then the corresponding interval function is associated with
the monophonic convexity; and there are many other examples in the literature. The
Steiner convexity is the collection of vertices of Steiner trees with three permutations as
input, along the vertices of the shortest paths between the inputs. The Steiner tree with
three input permutations consists in finding a permutation (a vertex in the corresponding
graph) that minimizes the total weight of its edges [2]. In other words, a median solution of
a given set of three permutations belongs to a solution of the Steiner problem [3]. Based on
this, the Steiner convexity gives the collection of all elements that form possible solutions
for the Steiner tree given a metric.

As a consequence of the just presented definitions, if the geodesic interval convex set
(IG(S)) is equal to the monophonic interval convex set (IM(S)), then they are equal to the
Steiner interval convex set (IS(S)). Overall, IG(S) ⊆ IS(S) ⊆ IM(S) [2].

We present two questions below as a first attempt to investigate a median solution.
First question: Does a median permutation always belong to one of the shortest paths
between at least two of the input permutations?
Second question: Can a brute-force approach find a median permutation in feasible time if
the first question is true?

Using the algebraic cycles, we analyze how many sequences there are in which any
operation is performed on two elements of the same cycle. This is important to focus on,
because in all the cases we analyzed, the median solutions belong to the shortest paths of at
least one pair of the inputs. So if we could prove that the number of permutations in optimal
paths is a polynomial function, then it might be a nice approach to analyze the first question.
Proposition 1 shows the opposite with respect to the second question, even if the first is true.

▶ Proposition 1. With respect to an instance of the swap median problem, there is an
exponential number of permutations that belong to all shortest paths.

Proof. Let ι, π and σ be the input permutations of size n. For each pair of such permutations
there is a corresponding algebraic cycle, one from ι to π, one from π to σ, and one from σ

to ι. Notice that the algebraic cycle from ι to π consists only of 2 cycles. So there are n
2

2-cycles. Since the swaps applied in any optimal path break cycles, there are ( n
2 )! sequences

of swaps, i.e. optimal paths, to transform π into ι.
Note that in each of these sequences there is at least one permutation that is not contained

in any other optimal path. In general, there are n
2 operations that can be applied in such
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a way that all cycles become 1-cycles, where (n
2 )! is the number of possible choices of n

2
2-cycles. Each new sequence adds at least one distinct permutation, otherwise two distinct
sequences would have all permutations the same, so these two permutations would not be
distinct. So there is an exponential number of permutations belonging to the shortest paths
from ι to π, which is sufficient to guarantee an exponential number of permutations also
from ι to σ and from π to σ. This concludes the proof. ◀

To answer the first question just presented, we partition all instances into three different
types. Let π1, π2, and π3 be the inputs and f be the median solution: Recall that, as a
consequence of the triangular inequality, f ≥ dM (π1,π2)+dM (π1,π3)+dM (π2,π3)

2 . Then, compared
to such a lower bound, we have the following possible solutions:

1. Type 1) f is equal to the lower bound. In this case, the median permutation belongs to
the shortest path between the inputs.

If f does not match the lower bound, there are two options:

1. Type 2) It may be possible that the solution permutation is on the optimal path of at
least one and at most two pairs between π1 and π2, π1 and π3, and π2 and π3.

2. Type 3) It may be possible that the solution permutation is not on the optimal path
between pi1 and π2, between π1 and π3 nor between π2 and π3. Thus, the permutation
solution will be at least 3 units above the lower bound.

Hence, to give a negative answer for the first question, we need to find an instance that
can be classified as type 3 according to these types.

3 Swap Median and Swap Closest are NP-complete even
considering 3 input permutations

The NP-completeness proof of Swap Median is obtained by dealing with a simpler question,
as follows. Let π1, π2 and π3 be a given input. Hence: Does there exist a solution σ for
which the sum of the distances between σ and all other input permutations is equal to
dswap(π1,π2)+dswap(π1,π3)+dswap(π2,π3)

2 ?
If such a permutation exists, then σ belongs to a shortest path between the three pairs

of input permutations. Therefore, let x and y be integers such that dswap(π1, σ) = β,
dswap(π2, σ) = x, dswap(π2, π3) = x + y. By solving this system, the question above is the
same as to decide if there exists β such that β = dswap(π1,π2)+dswap(π1,π3)−dswap(π2,π3)

2 .
Assume without loss of generality that π1 = ι. Let M be the set of optimal swaps

sequence to transform π1 into the median σ. We consider the two cycles decomposition
c(π1, π2) as the red circles and c(π1, π3) as the blue circles. To achieve the lower bound
for the median, a swap applied over π1 must break cycles with respect to π2 and to π3 at
once. Hence, a possible swap is a swap for which both endpoints are in a same cycle for both
decompositions. Moreover, if σ reaches the lower bound, and if u, v and x, y are two swaps
in a shortest swaps sequence from π1 to σ that belong to the same cycle of either c(π1, π3)
or c(π1, π2), then u, v and x, y should not cross.

Thus, there exists a median solution σ that reaches the lower bound, if and only if there ex-
ists a sequence M of possible swaps from π1 to σ of size |M| = β = dswap(π1,π2)+dswap(π1,π3)−dswap(π2,π3)

2
such that both endpoints of each swap of M are both in a same red circle and in a same
blue circle and such that every pair of swaps of M contained in a same circle do not cross in
that circle.

con f 2025
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Hence, those β possible swaps form an independent set of size β in the graph we call
2-circles-intersection graph, defined as follows: the vertices are possible swaps, i.e. each
arc where the endpoints are in both red and blue circles; two vertices are adjacent if their
corresponding arcs cross in any circle of the blue or the red model (see Figure 2 for an
example).

1

6

3 4

5

2 7

8

1

2

5 6

7

8

1,6

7,8

2,5

3,4

3 4

Figure 2 In the left: Two circle decomposition, one in red and another in blue. Each arc is a
possible swap it can be applied to break a cycle. In the right: 2-circles-intersection graph, where
each arc (possible swap) is a vertex and two crossing arcs are adjacent in the graph.

Let Subd2(G) be the graph obtained from a graph G where for each edge vu ∈ E(G), add
two vertices xvu and xuv, and replace the edge vu to a path v, xvu, xuv, u. The Subd2(G)
graph is also refereed as a 2 subdivision graph.

▶ Theorem 2. The 2-circles-intersection graph class contains the 2 subdivision graph class.

Proof. Given a 2 subdivision graph, we formulate it as the circle decomposition, described
in Construction 1, below.

▶ Construction 1. Given a graph G and its 2 subdivision graph Subd2(G), where for each
edge vu of G there is a path v, vu, uv, u in Subd2(G), obtain two circular models as follows
(also illustrated in Figure 3). The first model is given as:
1. For each vertex v ∈ V (G), define a circular model C1

v with the arc sv, ev;
2. For each vertex vu adjacent to v in Subd2(G), add an arc svu, evu intersecting only sv, ev

in C1
v . This means that if there are more than one neighbor of v, the corresponding arcs

will be parallel between them, but all of them will intersect sv, ev in Cv.

Thus, the first model C1 is defined as the union of C1
v , for each v ∈ V (G). These circles

are called as the red circles.
The second model is given as:

1. For each vertex v ∈ V (G), define a circular model C2
v with the arc sv, ev;

2. For each edge vu ∈ G, define a distinct model C2
vu with two intersecting arcs, which are

svu, evu and suv, euv.

Thus, the second model C2 is defined as the union of C2
v , for each v ∈ V (G) and the

union of C2
vu for each edge vu ∈ E(G). These circles are called as the blue circles.

Since any 2 subdivision graph Subd2(G) can be seen as two circles decomposition, hence
Subd2(G) can formulated as a 2-circles-intersection graph H, by setting the set of arcs of
the model to correspond to the set of vertices of H and two arcs that cross in the model
correspond to adjacent vertices in H. ◀

Since the 2-circles-intersection graphs contain the 2 subdivisions graphs (Theorem 2), and
Maximum Independent Set problem (MIS) is known to be NP-hard even for 2 subdivisions
graphs [16], next we prove that determining a median solution that achieves the lower bound
is equivalent to find an independent set in those graphs.
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Figure 3 In the left: A 2 subdivision of a graph with red and blue dashed ellipses corresponding
to the two circular models we obtain the two algebraic cycles graphs. In the right: Parts of two
circular models. In top are the red circles C1

v and C1
u of C1, and in bottom are the blue circles C2

v

and C2
v,u of C2.

▶ Construction 2. Let Subd2(G) be the 2 subdivision of a graph G with its two circular models
C1 and C2, as described in the proof of Theorem 2 (Construction 1). We obtain an instance
of the median problem π1, π2, π3, where each permutation has size 2|V (Subd2(G))|, and:

π1 = ι;
The algebraic cycles graph of π2 (of π3) with respect to π1 is C1 (is C2). Hence, an
algebraic cycle of π2 (of π3) is formed by the elements reading following the clockwise
direction in a cycle of C1 (of C2).

Based on Construction 2, we have that each arc of a circle model indeed corresponds to
a possible swap to be applied over the associated permutation in order to approach to the
median solution.

▶ Theorem 3. Let G be a graph with n vertices and m edges. There is an independent set of
size α in Subd2(G) if and only if there is a sequence of α = 3m+k

2 swaps, for 1 ≤ k ≤ 2n+4m,
in the resulted instance of Construction 2 from π1 to σ such that σ achieves the lower bound
for the median problem.

Proof. Assume π1, π2, π3 are permutations from Construction 2 where they come from a
2 subdivision graph Subd2(G), where |V (G)| = n and |E(G)| = m. Since each permuta-
tion has size 2|V (Subd2(G))|, it implies that such a size is 2(n + 2m). Hence, in order
to decide the existence of a permutation σ that reaches the lower bound for the median
problem, we must check the existence of α such that α = dswap(π1,π2)+dswap(π1,π2)−dswap(π2,π3)

2 =
2n+4m−|C1|+2n+4m−|C2|−(2n+4m−|c(C1,C2)|)

2 , where c(C1, C2) is the algebraic cycles decompos-
itions between π2 and π3. Since for each vertex in G we created a red circle in Construction 1,
we have that |C1| = n. Similarly, for each vertex and for each edge in G we created a blue
circle in Construction 1, then we have that |C2| = n+m. This implies that α = 3m+|c(C1,C2)|

2 ,
where c(C1, C2) can be obtained by starting at an element u of cycle at C1, take the element
v that has an directed edge to u in C1, i.e. the element in the backwards position, and then
take the element w that v has an edge from v in a cycle at C2. Hence, the cycle will be
described as u followed by w, and the process continue until all elements have been settled.
Since the number of algebraic cycles is between 1 and the size of the permutation, which is
2n + 4m, hence we conclude the proof. ◀

It has been shown in [16] that deciding whether the 2-subdivision of a graph G has an
independent set of size k is NP-complete. We show here that it remains true even for large k.

▶ Theorem 4. Given a graph G with n vertices and m edges and k ≥ 3m
2 , it is NP-complete

to decide whether Subd2(G) has an independent larger than k.

con f 2025
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Proof. It has been shown in [16] that α(Subd2(G)) = α(G) + m and so that the Maximum
independent set problem is NP-hard in 2-subdivision graphs. Observe that the maximum
independent set problem is also NP-hard on graphs having more than 2n edges.

Given k ≥ 3m
2 and given a graph G we claim that G has an independent set of size k′ if and

only if Subd2(G ∪ Ik−k′−m) has an independent set of size k where G ∪ Ik−k′−m is the graph
obtained from G by adding k−k′ −m isolated vertices. Observe first since we can assume that
k′ ≤ n ≤ m

2 , we have k−k′−m ≥ 3m
2 − m

2 −m ≥ 0 and so the graph G∪Ik−k′−m is well defined.
Now we have α(Subd2(G ∪ Ik−k′−m)) = α(G ∪ Ik−k′−m) + m = α(G) + k − k′ − m + m =
α(G) + k − k′. So α(G) ≥ k′ if and only if α(Subd2(G ∪ Ik−k′−m)) ≥ k′ + k − k′ ≥ k. ◀

▶ Corollary 5. Given three permutations π1, π2, π3 it is NP-complete if there is a per-
mutation σ that achieves the lower bound α for the swap median problem, where α =
dswap(π1,π2)+dswap(π1,π3)−dswap(π2,π3)

2 .

Reducing median to closest

The polynomial reduction presented in Corollary 5 allows us to show that not only the
Swap Closest problem is NP-hard for three input permutations, but also that the closest
problem with a constant number of input permutations is NP-hard, as obtained next.

▶ Definition 6. Given π1 with p elements and π2 with q elements, the union of π1 and π2 is
a permutation π1 ⊎ π2 with p + q elements such that π1 ⊎ π2 = [π1

1 , π1
2 , . . . , π1

p, (π2
1 + p), (π2

2 +
p), . . . , (π2

q + p)]. Permutations π1 and π2 are called parts of the union.

▶ Lemma 7. Given permutations π1 and π2, we have that dswap(π1,2) = dswap(π1)+dswap(π2).

Proof. Assuming that π1 has p elements and π2 has q elements, since p + 1 is greater than
all elements of π1, the algebraic cycles of π1 ⊎ π2 is obtained by the union of the cycles
of π1 and of π2 and shifting each element of π2 by p. Therefore, we have dswap(π1,2) =
p + q − c(π1) − c(π2) = dswap(π1) + dswap(π2). ◀

Now, we develop a polynomial transformation from a general instance π1, π2, π3 to a
special one π′′1, π′′2, π′′3 in order to have all of these three pairs with a same distance. Based
on this, we are able to guarantee that a closest solution of the new instance π′′1, π′′2, π′′3

reaches the lower bound if and only if there is a sequence of swaps from π1 that reaches this
same lower bound. Furthermore, since it is NP-complete to decide if there is a sequence of
swaps from π1 that approaches to π2 and π3 to achieve to lower bound (Corollary 5), we
conclude from Corollary 12 that the swap closest problem is NP-complete even if there
are three input permutations.

▶ Construction 3. Let π1, π2, π3 be permutations of size n where dswap(π1, π2) = β, dswap(π1, π3) =
δ, and dswap(π2, π3) = α. We transform π1, π2, π3 into π′′1, π′′2, π′′3, resp. by the following
unions:

π′′1 = π1 ⊎ ιβ−α+1 ⊎ [2, 3, 4, · · · , δ − α + 1, 1];
π′′2 = π2 ⊎ ιβ−α+1 ⊎ ιδ−α+1;
π′′3 = π3 ⊎ [2, 3, 4, · · · , β − α + 1, 1] ⊎ [2, 3, 4, · · · , δ − α + 1, 1].

▶ Lemma 8. Let π1, π2, π3 be permutations of size n where dswap(π1, π2) = β, dswap(π1, π3) =
δ and dswap(π2, π3) = α. The permutations π′′1, π′′2, π′′3 obtained from Construction 3 satisfy
dswap(π′′1, π′′2) = dswap(π′′1, π′′3) = dswap(π′′2, π′′3) = β + δ − α.
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Proof. The algebraic cycle of the permutation [2, 3, 4, · · · , n, 1] is (1, 2, 3, · · · , n), which
implies the swap distance of such a permutation equal to n − 1. From Lemma 7, the distance
between each pairwise between π′′1, π′′2, π′′3 can be obtained by summing the distances
between each part separately of the unions. Therefore: dswap(π′′1, π′′2) = dswap(π1, π2) +
dswap(ιβ−α+1) + dswap([2, 3, 4, · · · , δ − α + 1, 1]) = β + 0 + δ − α + 1 − 1 = β + δ − α;
dswap(π′′1, π′′3) = dswap(π1, π3) + dswap([2, 3, 4, · · · , β − α + 1, 1]) + dswap([2, 3, 4, · · · , δ − α +
1, 1], [2, 3, 4, · · · , δ − α + 1, 1]) = δ + β − α + 1 − 1 + 0 = β + δ − α; and dswap(π′′2, π′′3) =
dswap(π2, π3) + dswap([2, 3, 4, · · · , β − α + 1, 1]) + d([2, 3, 4, · · · , δ − α + 1, 1]) = α + β − α +
1 − 1 + δ − α + 1 − 1 = β + δ − α. ◀

▶ Lemma 9. Let π′′1, π′′2, π′′3 be permutations obtained from Construction 3 where each
pairwise has distance equal to c. Thus, there exists a sequence of c

2 swaps from π′′1 where
each swap breaks cycle with respect to π′′2 and to π′′3 if and only if the closest solution of
π′′1, π′′2, π′′3 is equal to c

2 .

Proof. Assume that there exists a closest solution of value c
2 , which achieves the lower bound

for that problem, because the lower bound is maxi<j dswap(π′′i,π′′j)
2 by the triangular inequality.

Since the closest solution σ gives an upper bound on the distance it and each pair of input,
therefore the median solution of π′′1, π′′2, π′′3 is at most 3c

2 . Moreover, a median solution

is at least 3c
2 , because this bound is given by

∑
i<j

dswap(π′′i,π′′j)
2 , then we have achieved the

median solution to be equal to 3c
2 . Hence, since this solution achieves the lower bound, there

is a sequence of independent swaps, which is a sequence of swaps that each of them breaks
cycles from π′′1 to the solution in an optimum path to π′′2 and to π′′3 of size c − c

2 = c
2 .

Assume that there exists a sequence of c
2 swaps from π′′1 where each swap breaks cycle

with respect to π′′2 and to π′′3. Suppose that σ is the permutation obtained after those swaps.
Now, we prove that maxi≤3 dswap(π′′i, σ) ≤ c

2 . Since each one of those swaps approaches π′′1

to π′′2 and to π′′3, we have that dswap(σ, π′′i) = dswap(π′′i, π′′j) − c
2 = c

2 . Hence, it achieves
the lower bound of the closest problem, and so, we have that the closest solution is equal to
c
2 , as we desired. ◀

As a consequence of Construction 3, any swap involving elements after the n-th position
will join cycles in either π′′2 or π′′3. Thus it proves Lemma 10 below.

▶ Lemma 10. Let π1, π2, π3 be permutations of size n and π′′1, π′′2, π′′3 be permutations
obtained by Construction 3. Any sequence of swaps that approach π′′1 to σ, where σ is a
closest solution, only contains swaps between elements from the position 1 to the position n.

▶ Corollary 11. The closest solution of π′′1, π′′2, π′′3 is equal to c
2 , where c is the distance

between any pairwise permutation, if and only if there is a sequence of swaps that approach
π′′1 to π′′2 and π′′3 of size c

2 .

▶ Corollary 12. It is NP-complete to decide if an input instance of the Swap closest
problem with three input permutations is equal to the lower bound of maxi<j dswap(πi,πj)

2 .

4 APX-hardness

Now, we deal with the problem to decide if it is possible to approximate a solution for the
closest problem to be by a function of 1 + ϵ of the lower bound, for any ϵ > 0, and we
prove that it is NP-complete. Hence, it implies that deciding if an instance has a solution
closest solution that achieves the lower bound is APX-hard, as well for the swap median, as
consequence of the proof of Theorem 13.
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Instance: Set of permutations {π1, π2, π3}.
Question: Is there permutation σ whose value achieves the lower bound of

maxi<j dswap(πi,πj)
2 or assert that it is smaller than maxi<j dswap(πi,πj)

2 (1 +
ϵ), for any ϵ > 0?

Approximating swap closest solution

▶ Theorem 13. Approximating swap closest solution is NP-complete.

Proof. Consider an instance π1, π2, π3 whose the distance between each pairwise is the same
value. Moreover, let us assume it is possible to approximate the closest solution to be on the
ratio 1+ϵ of the lower bound, for which the value is opt. Hence, it implies that from π1 there
is a sequence of opt(1+ϵ) swaps at approximates to π2 and π3. Since the closest solution gives
a maximum distance between a solution and each input permutation, we have that the median
solution can be upper bounded by:

∑
i<j dswap(πi, πj) ≤ 3 maxi dswap(πi, πj) ≤ 3opt(1 + ϵ)2,

because by the triangular inequality dswap(πi, πj) ≤ dswap(πi, σ) + dswap(σ, πj) = opt(1 +

ϵ)2. Thus, it implies that
∑

i<j dswap(πi, πj) ≤ 6opt(1 + ϵ) and opt≥
∑

i<j
dswap(πi,πj)

6(1+ϵ) =∑
i<j

d(πi,πj)
2 . 1

(3+ϵ) . Now, considering the swap median problem, in order to decide if there
is a permutation that achieves the lower bound, we have that such a value is equal to

β =
∑

i<j
dswap(πi,πj)−2dswap(π2,π3)

2 =
∑

i<j
dswap(πi,πj)

2 − dswap(π2, π3). Hence, in order to know

when opt= β, it occurs when dswap(π2, π3) =
∑

i<j
dswap(πi,πj)

3 , which is exactly the case we
are considering, once we have assumed dswap(π1, π2) = dswap(π1, π3) = dswap(π2, π3). Thus,
since the lower bound for the median β is achieved when a sequence of β swaps approach π1

to π2 and to π3 per each operation, it also occurs for the swap closest problem when it
achieves its lower bound. Hence it implies that there is a sequence of opt(1 + ϵ) swaps from
π1 to π2 and to π3 where each of such operation breaks cycle on the two cycles decomposition
(c(π1, π2) and c(π1, π3)). Hence, those swaps form an independent set on the graph structure
defined in Construction 2 obtained from the instance π1, π2, π3. As proved in Theorem 2,
the 2-subdivision graph class is contained on the graph class we defined in Construction 2.
Moreover, it is well known that the Maximum independent set problem is APX-hard
on 2-subdivisions graphs [11]. Therefore, the opt(1 + ϵ) swaps would imply a PTAS for
Maximum independent set on those graphs, which is a contradiction. ◀

▶ Corollary 14. There is no (1 + ϵ)-approximation for the Swap closest problem and for
the Swap median problem, for any ϵ > 0 even considering three input permutations.

5 Conclusion

This paper solves a long open problem by proving that the Swap Median problem is NP-hard
even considering three input permutations. In addition, we show that the Swap Closest
problem is NP-hard also considering three input permutations, which is a stronger result
than those already known. We also show that both problems are APX-hard. For further
work, we intend to prove (or find a counterexample) that for any three input permutations,
there exists a median solution that belongs to a shortest path of at least one input pair,
which implies that a median solution always belongs (or does not belong) to the geodesic
Steiner convexity.



Cunha, Lopes and Mary XX:11

References
1 Martin Bader. The transposition median problem is NP-complete. Theor. Comput. Sci.,

412(12-14):1099–1110, 2011.
2 José Cáceres, Alberto Márquez, and María Luz Puertas. Steiner distance and convexity in

graphs. European Journal of Combinatorics, 29(3):726–736, 2008.
3 Alberto Caprara. The reversal median problem. INFORMS J. Comput., 15(1):93–113, 2003.
4 Luís Cunha, Ignasi Sau, and Uéverton Souza. On the Complexity of the Median and Closest

Permutation Problems. In 24th International Workshop on Algorithms in Bioinformatics
(WABI 2024), volume 312 of Leibniz International Proceedings in Informatics (LIPIcs), pages
2:1–2:23, 2024.

5 Luís Felipe I Cunha, Pedro Feijão, Vinícius F dos Santos, Luis Antonio B Kowada, and
Celina MH de Figueiredo. On the computational complexity of closest genome problems.
Discret. Appl. Math., 274:26–34, 2020.

6 Luís Felipe I Cunha, Luis Antonio B Kowada, Rodrigo de A. Hausen, and Celina MH
de Figueiredo. Advancing the transposition distance and diameter through lonely permutations.
SIAM J. Discret. Math., 27(4):1682–1709, 2013.

7 Luís Felipe I Cunha and Fábio Protti. Genome rearrangements on multigenomic models:
Applications of graph convexity problems. J. Comput. Biol., 26(11):1214–1222, 2019.

8 Niklas Eriksen. Reversal and transposition medians. Theoretical Computer Science, 374(1-
3):111–126, 2007.

9 Pedro Feijao and Joao Meidanis. Scj: a breakpoint-like distance that simplifies several
rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform., 8(5):1318–1329, 2011.

10 Guillaume Fertin, Anthony Labarre, Irena Rusu, Stéphane Vialette, and Eric Tannier. Com-
binatorics of genome rearrangements. MIT press, 2009.

11 Mathew C Francis, Daniel Gonçalves, and Pascal Ochem. The maximum clique problem in
multiple interval graphs. Algorithmica, 71:812–836, 2015.

12 Maryam Haghighi and David Sankoff. Medians seek the corners, and other conjectures. In
BMC bioinformatics, volume 13, pages 1–7. Springer, 2012.

13 L. D. Penso, F. Protti, D. Rautenbach, and U. Souza. Complexity analysis of P3-convexity
problems on bounded-degree and planar graphs. Theor. Comput. Sci., 607:83–95, 2015.

14 Pavel Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT press, 2000.
15 Itsik Pe’er and Ron Shamir. The median problems for breakpoints are NP-complete. In Elec.

Colloq. on Comput. Complexity, volume 71, 1998.
16 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentat. Math. Univ.

Carol., 15:307–309, 1974.
17 V Yu Popov. Multiple genome rearrangement by swaps and by element duplications. Theor.

Comput. Sci., 385(1-3):115–126, 2007.
18 David Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–917,

1999.
19 Mingfu Shao and Bernard ME Moret. On the DCJ median problem. In Combinatorial

Pattern Matching: 25th Annual Symposium, CPM 2014, Moscow, Russia, June 16-18, 2014.
Proceedings 25, pages 273–282. Springer, 2014.

20 Helmuth Silva, Diego Rubert, Eloi Araujo, Eckhard Steffen, Daniel Doerr, and Fábio Martinez.
Algorithms for the genome median under a restricted measure of rearrangement. RAIRO-Oper.
Res., 57(3):1045–1058, 2023.

21 Eric Tannier, Chunfang Zheng, and David Sankoff. Multichromosomal median and halving
problems under different genomic distances. BMC Bioinformatics, 10(1):1–15, 2009.

22 Geoffrey A Watterson, Warren J Ewens, Thomas Eric Hall, and Alexander Morgan. The
chromosome inversion problem. J. Theor. Biol., 99(1):1–7, 1982.

con f 2025


	1 Introduction
	2 Preliminaries
	3 Swap Median and Swap Closest are NP-complete even considering 3 input permutations
	4 APX-hardness
	5 Conclusion

