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France

Abstract. Self-learning is a popular machine learning ap-
proach to compensate for the lack of labeled data, in instances
associated with “pseudo-labels” produced by the trained
model are used. Such an approach can degrade the solution
when the provided pseudo-labels are of a scarce quality. A
solution is to take into account the labeling uncertainty. We
advocate the use of rich uncertainty models, which make it
possible to better account for the lack of information or im-
precision attached with pseudo labels. We address the specific
case where the model is obtained via a one-versus-rest decom-
position of the set of classes.

1 Introduction
In machine learning, a critical issue for training a classifica-
tion model is to find sufficient data with high-quality labels.
Producing labels for data is often expensive because it re-
quires time and in some cases specialized work. To minimize
the dependence to such labels, semi-supervised learning aims
at making use of both labeled and unlabeled data at hand to
train the model.

Although this paradigm is far from new, it has recently
gained attention with the popularization of algorithms such as
FixMatch [11]. This algorithm uses a specific strategy called
self-supervised learning, where the model replaces missing la-
bels with its own predictions, called pseudo-labels. Algorithms
such as FixMatch [11] frequently rely on data augmentation
and pseudo-label selection to improve the performances of the
model.

Obviously, this strategy may induce a bias when re-training
the model, even if a selection step is employed. Since pseudo-
labels can be viewed as degenerate probability distributions
(putting a unit probability mass on a single class), Lienen et
al. [7] proposed to replace them with convex probability sets
of a specific kind, i.e., possibility distributions. Possibility dis-
tributions combines the advantages of being more expressive
with simplicity, but still have the downside that their corre-
sponding probability sets include at least a degenerated one.

More recently, Côme et al. [10] generated credal sets using
Inductive Venn-Abers Prediction (IVAP), an approach which
produces probability intervals [4]. However, Venn-Abers Pre-
dictors are limited to binary problems. A way to bypass this
issue was presented by Manokhin [8], who generalized IVAP
to the multi-class case, essentially by transforming a multi-
class problem via a pairwise decomposition. Inspired by this
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work, we propose a self-learning procedure that uses IVAP in
a multi-class setting by using a pairwise approach.

The paper is structured as follows. We present our approach
as well as the required elements to understand it in Section
2. Section 3 than presents experiments on various data sets,
together with a discussion of their results. Section 4 concludes
the paper and provides several future possible research direc-
tions.

2 Proposed approach
2.1 Reminders on standard learning
We start by recalling the basics of standard semi-supervised
learning. Assume an input space X and an output space Y =
{y1, y2, ..., yλ} with a probability space P (Y), where λ is the
number of classes. Paired samples of X and Y, as well as
samples of X only, constitute the dataset D = DL∪DU , where
DL = {z1 = (x1, p1), z2 = (x2, p2), ..., zn = (xn, pn)} and
DU = {(xn+1), ..., (xn+m)}, x ∈ X , p ∈ P(Y). Plainly put, DL

is composed from n labeled samples and DU of m unlabeled
samples, with the usual assumption that m >> n; DL and DU

are assumed to be i.i.d., and independent from each other.
For simplification, we denote pi

j = P (Y = yi|X = xj) and
pi = P (Y = yi). Note that p1, . . . , pn are degenerate, i.e., if
yk

i is the label of xi, pj
i = 1 for j = k, zero else.

The problem of learning a probabilistic classifier is then to
estimate a predictive function hθ : X × Θ → P (Y). Should
we have only DL at our disposal, this is classically done by
finding an optimal empirical risk minimiser

θ∗ = arg min
θ

R = arg min
θ

∑
(xi,pi)∈DL

L(pi, hθ(x)), (1)

where L : [0, 1] × [0, 1] → R is a loss function. In this paper,
we will adopt the Kullback-Leibler divergence

L(p, h(xj)) := DKL(p∥p̂) =
λ∑

i=1

pi
j log

pi
j

p̂i(xj) (2)

as the loss function, with p̂i(xj) the estimated probability
derived from h. Semi-supervised learning then aims at using
the information in DU in different ways. In this paper, we will
explore one of these ways, where the model hθ is iteratively
used to pseudo-label the instances and re-trained using the
resulting set of (pseudo-)labeled data.

The classifier should return predictions that are both reli-
able and informative. Therefore, it seems desirable to consider



pseudo-labels together with a quantification of their uncer-
tainty rather than hard pseudo-labels with only the appear-
ance of certainty: the former will arguably bias the model way
less than the latter, mitigating the impact of erroneous predic-
tions and thus converging to a better model. In this paper, we
extend an approach devoted to binary classification [10] to the
multi-class setting, where we consider sets of probabilities (or
credal sets) obtained by a calibration step as pseudo-labels.

2.2 Learning from Credal Sets
It has been argued by many authors that probabilities may
be too limited to account for all facets of uncertainty, and in
particular those arising from a lack of knowledge [14]. In this
paper, we therefore propose to replace a precise probability
distribution p with a credal set K ⊆ P (Y). However, classical
loss functions L : P (Y)× P (Y) → R) cannot be applied any
more, since credal sets are convex subsets of P (Y) and not
elements thereof. Consequently, it is imperative to adapt the
definition of loss function so that pseudo-labels can be used.

In this paper, we use an optimistic approach, which con-
sists in selecting the minimum value Lmin of a classical loss
function inside the credal set:

Lmin(K, h(x)) = min
p∈K
L(p, h(x)). (3)

This approach has been largely studied for semi-supervised
learning [1, 9, 2], and has been shown to exhibit good perfor-
mances in a co-learning setting [12], which is similar to the
self-training setting considered here.

Our learning procedure consists in computing the optimal
parameter θ∗ of the model h by plugging-in the minimal
loss (3) into Equation (1) and solving the min-min problem

θ∗
opt = arg min

θ
Ropt :=

∑
(xi,Ki)∈DL

Lmin(Ki, hθ(x)), (4)

where we assume that each label can now be a credal set—
note that this encompasses all previous settings, with degen-
erate or precise probability distributions being special cases
of credal sets.

2.3 Precise one-versus-all decomposition
To extend the binary case mentioned above to a multi-class
setting, we consider the “one-vs-all” approach: each of the
classes yk is in turn opposed to all the others in a binary
classification problem. A direct consequence is that we handle
a set of classifiers {hk

θ : X × Θ → P (Bk), k = 1, . . . , λ}, with
θ ∈ Θ the parameters of the model and Bk = {yk,¬yk}. Since
we have λ classes, we retrieve λ classifiers, each trained over
a binary (and hopefully easier) classification problem. This
approach is appealing since the probability estimated by hk

θ

is the same as a probability estimated for class yk in the multi-
class problem, i.e, P (yk|Bk) can be identified with P (yk). For
the sake of simplicity, we will write hk

θ(x) := p̂(yk|x).
In the precise case, each classifier hk

θ is trained by finding
the optimal parameter θ∗

k minimizing the empirical risk Rk:

θ∗
k = arg min

θ

Rk(pk, hk
θ) = arg min

θ

∑
(x,pk)∈Dk

L

L(pk, hk
θ(x)).

(5)

Note that the estimates hk
θ(x) may not be consistent across

all classifiers, i.e., we may have
∑

yk hk
θ(x) ̸= 1: then, a simple

way to make them consistent is to take the normalized values
as final estimates, that is p̂(yk|x) = hk

θ
(x)/

∑
yk

hk
θ

(x). Figure 1
presents a scheme of the model.

xj
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Figure 1: Prediction for output xj

2.4 Credal one-versus-all decomposition
The credal setting amounts to replace precise estimates pk

by their imprecise counterparts [αk, βk], as illustrated in Fig-
ure 2. Before explaining the IVAP part of this graph in Sec-
tion 2.5, we focus on the interval and combination parts.
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Figure 2: Credal Learning
The set of classifiers issued from the one-vs-all decomposi-

tion generates the credal set

K = {p ∈ P (Y)|∀k = 1, . . . , λ, αk ≤ p(yk) ≤ βk}. (6)

Computing Equation (3) in the case of the KL divergence (2)
then amounts to solve the problem

min
p

λ∑
k=1

pk
j log pk

j/p̂k(xj )

s.t. pk
j ≤ βk

j , pk
j ≥ αk

j ,

λ∑
k=1

pk = 1,

(7)

since αk (resp., βk) is a lower (resp., upper) bound for pk :=
p(yk). Note that K is not guaranteed to be non-empty: if the
credal set is improper (i.e, the condition

∑
αk ≤ 1 ≤

∑
βk is

not satisfied [4]), the problem (7) does not have any solution.



To overcome this issue, we may discount the credal set K,
by weakening the lower or upper bounds in order to enlarge it
to K′ = {p ∈ P (Y)|∀k, α′k ≤ pk ≤ β′k}, such that K ⊆ K′. It
is desirable that K′ remains tight: the conditions

∑
i ̸=j

α′i +
β′j ≤ 1 and

∑
i̸=j

β′i + α′j ≥ 1 should be satisfied, while
changing K as little as possible. In this work, two cases are
considered for the discounting.

• Improper by lower bounds: whenever
∑

αi ≥ 1, the reason
for not finding solution to Eq. (7) is that α is too big:
then, we diminish α by a discounting factor δ such that∑λ

i=1 αi − δi = α′i ≤ 1. We also need lower bounds to be
at least 0, thus 0 ≤ αi − δi ≤ 1→ 0 ≤ δj ≤ αj .

min
δ

∑
δi

s.t.
∑
i ̸=j

(αi − δi) + βj ≤ 1

0 ≤ δj ≤ αj

(8)

• Improper by upper bounds: whenever
∑

βi ≤ 1, the reason
for not finding solution to Eq. (7) is that β is too small.
Consequently, we increase β by a discounting factor ϵ such
that

∑λ

i=1 βi + ϵi = β′i ≥ 1. We also need upper bounds to
be smaller than 1, thus βi ≤ βi + ϵi ≤ 1→ 0 ≤ ϵi ≤ 1−βi.

min
ϵ

∑
ϵi

s.t.
∑
i ̸=j

(βi + ϵi) + αj ≥ 1

0 ≤ ϵj ≤ 1− βj

(9)

Example 1. Consider a three-class problem where our im-
precise model has predicted the set K such as

p1 ∈ [α1 = 0, β1 = 0.2],
p2 ∈ [α2 = 0.6, β2 = 0.7],
p3 ∈ [α3 = 0.5, β3 = 0.55].

We can see that K is improper since
∑3

k=1 αk = 1.1 ≥ 1.
We relax the constraints so that a possible solution can be
found, while altering K as few as possible, by solving (8). The
solution of this problem is

δ =

[ 0.0
0.15
0.2

]
(10)

Consequently, the discounted credal set K′ becomes

p1 ∈ [α1 − δ1 = 0, β1 = 0.2],
p2 ∈ [α2 − δ2 = 0.45, β2 = 0.7],
p3 ∈ [α3 − δ3 = 0.4, β3 = 0.55].

■

2.5 Inductive Venn-Abers Predictors
The intervals [αk, βk] used in the previous section are gen-
erated via Inductive Venn-Abers Prediction (IVAP) [13] for

each binary classifier. IVAP is a calibration method suited to
binary problems. It is a special case to Inductive Venn Predic-
tors, with the advantage to be computationally efficient and
simple to implement.

IVAP generates calibrated intervals [αk, βk], interpreted as
lower/upper bounds on the probability P (Y = yk|Bk), based
on the predictions of the binary classifier hk(x). IVAP relies
on the fact that many classifiers produce scores s as outputs,
which can be compared to a threshold c to make a decision—
e.g., we select for instance class y1 iff s ≥ c. The scores may
be “calibrated” based on a non-decreasing function g. IVAP
basically determines this function by fitting an isotonic re-
gressor to the calibration set and the instance to be classified
(see Algorithm 1).

Algorithm 1 Inductive Venn-Abers Predictors
Require: Calibration set DC = {(x1, p1), ..., (xnq, pq)};
Require: jth point to predict xi.
Require: Binary classifier hi,i.e, hi(x) = P̂ (Y = yi|Bi).

Find scores on the set {x1, .., xq, xj},i.e, calculate the set
{s1 = hi(x1), ..., sq = hi(xq), sj = hi(xj)}
For each possible class (0 or 1) fit two isotonic regres-
sors g0 and g1 using sets {(s1, p1), ..., (sq, pq), (sj , 0)} and
{(s1, p1), ..., (sq, pq), (sj , 1)}
Return [p0, p1] := [g0(sj), g1(sj)]

In practice, we use IVAP to build up the intervals in Fig-
ure 2. Note that Algorithm 1 requires a calibration data set
DC of labeled data, usually sampled from the training set.

2.6 Proposed approach
We now describe our self-supervised credal learning approach
in a multi-class setting based on probability intervals. It ini-
tially requires three data sets: a labeled data set DL, typically
of limited size, to learn the first instances of the model; a la-
beled calibration data set DC used in Algorithm 1 to produce
credal self-supervised labels; and an unlabeled data set DU ,
progressively (partially) completed with credal labels. The
procedure is summarized in Algorithm 2.

Note that Algorithm 2 solves the global optimization prob-
lem 7 once, and then uses the obtained probability distri-
bution as a soft label then fed to every pairwise classifier–
pending on some class receiving a high enough probability
mass. The probability distribution is obtained in Line 19,
while Line 20 builds the set of retained instances for the cur-
rent loop, and the ensuing loop creates the corresponding bi-
nary labels. Finally, we end the loop whenever we cannot add
instances with high enough probabilities to the data set.

3 Experiments
3.1 Strategies
For each binary problem, we trained a neural network with
a hidden layer of m neurons with learning rate τ (depending
on the dataset) on Di

T , and then applied our method over 50
iterations for all datasets. We chose a neural network since it
is often poorly calibrated [6]. The optimizer was SGD with
no momentum nor weight decay. Batch size was set to 10.
We split each dataset into four new sets: DL with 15% of the



Algorithm 2 Credal labeling strategy
Require: Labeled set DL = {(x1, p1), ..., (xn, pn)}, Unla-

beled set DU = {(xn+1), ..., (xn+m)}, Calibration data set
DC ;

Require: Threshold δ;
1: for i from 1 to λ do
2: Initialize model hi;
3: Build set Di

L = {(x1, pi
1), ..., (xn, pi

n)};
4: Fit model hi on Di

L;
5: end for
6: repeat
7: for i from 1 to λ do
8: p̂i

k = hi(xk);
9: Using Algorithm 1 with DC to get [αi

k, βi
k];

10: end for
11: Build set Kxk= {p ∈ P (Y)|∀i∈ [1, λ]; αi

k ≤ pi
k ≤ βi

k};
12: Check if Kxk is proper, i.e,

∑
i
αi ≤ 1 ≤

∑
i
βi;

13: if
∑

i
αi ≥ 1 then

14: Solve problem (8);
15: end if
16: if

∑
i
βi ≤ 1 then

17: Solve problem (9);
18: end if
19: Solve problem (7) to obtain p̃k ;
20: Build set D = {xk ∈ DU |∃j s.t. p̃j

k ≥ δ};
21: for i from 1 to λ do
22: Build set Di

U = {(xk, p̃i
k)|xk ∈ D);

23: Di
T = Di

L ∪ Di
U ;

24: Fit model hi on Di
T ;

25: end for
26: DU = DU \ D;
27: until DU is not empty

samples, DU with 65% of the samples, DC with 7 samples per
class (Iris and Wine only have 2 samples per class because
they are too small) and Dt with 20% of the samples. We
compare three different strategies:

• Hard labels: a standard, classical self-learning (SL) proce-
dure consisting of adding a batch of new labeled data at
each iteration (the batch of data for which the prediction
probabilities are the highest). That strategy is similar to the
one used by Fixmatch [11]. However, in our case, we don’t
use data augmentation (contrary to FixMatch) because it
is not well defined for tabular datasets. The algorithm of
this strategy is described in Algorithm 3.

• Credal Labels: We start by learning a first classifier hθ0

on the fully labeled set DT , through standard loss mini-
mization (Eq. (1)). We then apply IVAP on each binary
problem to produce intervals that are combined to gener-
ate credal labels on the instances in DU . We denote by K0

xk

the credal set {p|∀i = 1, 2, ..., λ; αi
k ≤ pi

k ≤ βi
k} obtained

for observation xj . If K is not proper, we solve problems (8)
or (9). For all xk we solve problem (7) and obtain p̃k. We
thus rebuild DU into set {(xn+1, p̃n+1), ..., (xn+m, p̃n+m)}.
Samples whose max p̃ are bigger than a certain threshold
δ are selected on the set D0

U , which is then added to the
labeled set: D0

L ← DL ∪ D0
U . We then fit our model into

D0
L to obtain a new model hθ1 , and so on. This iterative

procedure is repeated until until no new unlabeled sample

Algorithm 3 Hard label strategy
Require: Labeled set DL = {(x1, p1), ..., (xn, pn)}, Unla-

beled set DU = {(xn+1, ), ..., (xn+m, )};
Require: Threshold δ

for i from 1 to λ do
Initialize model hi;
Build set Di

L = {(x1, pi
1), ..., (xn, pi

n)};
Fit model hi on Di

L;
end for
j=0;
while DU is not empty do

For each xk ∈ DU , p̂k = (h1(xk),...,hλ(xk))/(
∑

j
hj (xk));

Build set Dj = {xk ∈ DU |∃j s.t. pj
k ≥ δ};

for i from 1 to λ do
Build set Di

U = {xk|xk ∈ Dj);
One-hot encode all pseudo-labels on Di

U,j ;
Di

T = Di
L ∪ Di

U ;
Fit model hi on Di

T ;
end for
DU,j = DU,j−1 \ Dj ;
j = j +1;

end while

can be added to the labeled set (see Algorithm 2).
• Soft labels: at each iteration k, we label DU with hθk (x).

Pseudo-labels that are bigger than a threshold δ are se-
lected and added into the labeled set, giving the new set
Dk

L ← DL ∪ Dk
U . We then fit our model on Dk

L. We retrain
the model using this new set until all unlabeled samples
are added to the labeled set. The procedure is presented in
Algorithm 4.

Algorithm 4 Soft label strategy
Require: Labeled set DL = {(x1, p1), ..., (xn, pn)}, Unla-

beled set DU = {(xn+1), ..., (xn+m)};
Require: Threshold δ.

for i from 1 to λ do
Initialize model hi;
Build set Di

L = {(x1, pi
1), ..., (xn, pi

n)};
Fit model hi on Di

L;
end for
j=0;
while DU is not empty do

For each xk ∈ DU , p̂k = (h1(xk),...,hλ(xk))/(
∑

j
hj (xk));

Build set Dj = {(xk ∈ DU |∃j s.t. pj
k ≥ δ};

for i from 1 to λ do
Build set Di

U = {(xk, p̂i
k|xk ∈ Dj);

Di
T = Di

L ∪ Di
U ;

Fit model hi on Di
T ;

end for
DU,j = DU,j−1 \ Dj ;
j = j +1;

end while

3.2 Results

Experiments were realized on the Wine, Ecoli, Digits, Poem
and Iris datasets with 5 different seeds. We took into account



two metrics in order to compare the strategies: the classical
accuracy and Expected Calibration Error (ECE). While the
former is common, the latter is less used but it is interest-
ing for our case since this metric measures how good is our
calibration. ECE is computed by using the formula:

ECE =
n∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)|, (11)

where we have M bins Bm, each with size 1/M. Each Bm is
the set of indices of samples whose prediction confidence falls
into the interval Im = ((m− 1)/M, m/M ] and

acc(Bm) =
∑

i∈Bm
1ŷi=yi

|Bm|
, conf(Bm) =

∑
i∈Bm

p̂i

|Bm|
.

The ECE corresponds to an error, and should therefore be as
low as possible [5].

The results are presented in Figure 3. Our credal strategy
has comparable performances with respect to other methods,
especially in the asymptotic regime. It takes more iterations
to reach good performances, but it should be noted that we
must save some data to perform the calibration: this means
among other things that we start with less available labeled
examples than other strategies. Thus, for smaller datasets,
the calibration set DC represents a higher percentage of all
labeled data DL, which consequently decreases the percentage
available for training.

With respect to ECE, we can notice a consistent low value
in comparison to other strategies. This is expected as our
strategy is the only one with calibration guarantees. Thus,
our method is capable of having a comparable performance
while obtaining a better calibration, hence giving similar per-
formances but being trustworthier. Such a better calibration
with respect to uncertainty quantification is also a key com-
ponent if we want to adapt our strategy to other loss func-
tions, as calibrated outputs are essential to compute reliable
expected losses.

4 Conclusions and perspectives
In this paper, we investigated the use of credal labels in a self-
learning procedure using Venn-Abers predictors and pairwise
decomposition, in order to deal with the multi-class setting,
while having fast, efficient and calibrated uncertainty esti-
mates that could also model precise probabilities as a special
case (other methods either consider possibility distributions
or the binary case).

Our strategy is on par with other methods accuracy-wise,
but exhibits a much better calibration in general. This seems
of significant importance if we are concerned with training
classifiers that deliver trustworhty uncertainty quantification.
A possible way to improve our learning strategy would be,
rather than using a fixed calibration data set, to slowly in-
crease it with items from the initial DL as we perform self-
labeling. We could also imagine adding self-labels in the cali-
bration data set, in the work of weakly supervised labels (such
as considered in [3]).
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Figure 3: Accuracy and ECE for all datasets in order of dataset size, i.e, Iris being the smallest and Wall being the largest.


