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Abstract. Distributed databases provide dierent transaction isolation
levels for higher performance and fault tolerance. However, implement-
ing isolation models is challenging, and database systems can produce
executions that violate their isolation guarantees. In this work, we pro-
pose GRAIL, a new approach that uses graph databases and queries
to detect isolation violations expressed as anti-patterns in transactional
dependency graphs. We implement the approach on top of the popular
ArangoDB and Neo4j graph databases and show its eciency through
an experimental analysis of real executions of ArangoDB as a system
under test.
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1 Introduction

Database isolation levels describe the degree to which the updates of a running
transaction are isolated from other concurrent transactions. At the strongest
level, the transactions are serializable, i.e., they produce an execution that is
equivalent to running them serially in some order. While serializability provides
strong guarantees, implementing it requires strong synchronization in databases
with sharding and replication. To achieve higher performance, many databases
support isolation levels weaker than serializability. However, it is dicult for
them to ensure their claimed guarantees, as witnessed by the many violations
discovered in popular distributed databases [24]. Moreover, checking the cor-
rectness of the executions for a given isolation level is challenging, e.g., checking
serializability or snapshot isolation is NP-complete in general [28, 9].

Database isolation violations can be detected by inspecting the dependency
graph of database executions [28, 7], which models read/write transaction de-
pendencies between transactions. In this setting, violations can appear as anti-
patterns indicating isolation anomalies prohibited in serializable databases. How-
ever, existing methods do not leverage their inherent graph structure.

Graph databases have been increasingly used to analyze interconnected data,
due to their expressive graph models and custom query languages that allow to
directly extract complex graph patterns [10, 30, 8]. As transaction dependencies
and isolation anti-patterns are modeled by graphs, we investigate the feasibility
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and performance of graph queries to capture isolation violations. Such a method
is easily extensible to analyzing a wider set of execution patterns.

We introduce GRAIL [14, 13], a new GRAph-based Isolation Level check-
ing approach that is the rst to use graph queries to detect database isolation
violations. We provide a proof-of-concept implementation of GRAIL through
graph queries in AQL (using ArangoDB) and Cypher [16] (using Neo4j [27]). We
used it to test ArangoDB [20] database executions, checking these for isolation
anomalies. Our evaluation shows that the graph queries are eective and remain
scalable with increasing execution lengths and transaction concurrency.

Related Work. Several methods and tools have been designed to check the strong
consistency and isolation models, linearizability, and serializability of database
transactions using enumerative exploration and/or SMT solvers [31, 23, 22,
34, 12, 2]. Recent works [9, 36, 34, 19] focus on checking snapshot isolation (SI),
which is weaker than serializability but still provides strong guarantees on trans-
action conicts. Dierent from the existing work, GRAIL uses graph queries for
pattern-matching and can check a spectrum of isolation levels, including PSI [11],
PL-2 [1], and PL-1[1].

2 Graph-Based Checking of Isolation Violations

Our approach for checking isolation violations using graph queries requires (i)
collecting the execution histories of databases, (ii) constructing the dependency
graphs from the execution histories, and (iii) checking the graphs for the ex-
istence of cycles with violation patterns. The main novelty of our approach
lies in (iii), the detection of violations using graph database queries on depen-
dency graphs. First, we generate and collect (i) the test executions using the
Jepsen [23] tool. Then, we build the dependency graph (ii), as standard in the
literature. A dependency graph G = {H,WR,WW,RW} is an execution history
with a nite set of transactions H = {T1, . . . , Tn} and read-dependency (WR),
write-dependency (WW), and anti-dependency (RW) relations (edges) between
its transactions (nodes) [7]. We build the graph by creating a node for each trans-
action and placing the dependency edges between them, following the read/write
operations in the execution history and the database write-ahead logs. Finally,
(iii) we run graph database queries on the generated graphs, and we check for
anti-patterns to detect violations.

2.1 Database Isolation Levels

Table 1 illustrates the allowed and disallowed serializability anomalies in the
SER [28], SI [6], PSI [33], PL-2 [1], and PL-1 [1] transaction isolation levels.

Example 1. Consider an LDBC benchmark [15, 35] schema example representing
Persons who communicate through Forum posts. The forums are managed by
moderators who can update their titles. The schema supports read and write
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Level
Write
skew

Long
fork

Lost
update

Dirty
read

Anti-Pattern

SER 7 7 7 7 any cycle

SI 3 7 7 7 cycle without two consecutive RW edges

PSI 3 3 7 7 cycle with less than two RW edges

PL-2 3 3 3 7 cycle without RW edges

PL-1 3 3 3 3 cycle with only WW edges

Table 1: Anomalies allowed/disallowed by the isolation levels

operations to view and update forum titles and the list of moderators. We assume
that the initial titles of the two forums f1 and f2 are A1 and B1.

In Figure 1, we present the isolation level anti-patterns as follows. Figure 1a
illustrates a long fork, as the concurrent transactions T1 and T2 write to dierent
objects (the titles of the two forums f1 and f2 ) and commit, while subsequent
transactions T3 and T4 only see the eects of one transaction. The WR edges
capture that T1 writes A2 to f1 ’s title, read by T3, and that T2 writes a value to
another object, read by T4. The RW edges mark that T3 and T4 read values A1
and B1, overwritten by T1 and T2. Figure 1b represents a lost update anomaly.
T1 and T2 concurrently write to the forum moderators, adding a new one to the
list (we overload the + operation as append). T1 writes to the variable read by
T2 (the RW edge), and T2 overwrites the value written by T1 (the WW edge).
The subsequent transaction T3 only sees the eect of T2, T1’s update being lost.

We consider the dirty read anomaly without restriction to reading from un-
committed transactions, but including aborted reads, intermediate reads, and
circular information ow [1]. An aborted read anomaly occurs when a trans-
action reads a value written by an aborted transaction. An intermediate read
anomaly occurs when a transaction reads any intermediate, uncommitted value
from another transaction. These two anomalies can be identied by checking
whether the values read by the transactions are committed. Circular informa-
tion ow occurs when transactions have a circular dependency on the values
read. Figure 1c shows an example of a circular information ow. For concurrent
transactions T1 and T2, T2 reads the value A2 written by T1 and, at the same
time, T1 reads the value B2 written by T2 (the WR edges).

The existence of anomalies in transaction executions can be analyzed using
their dependency graph. As in early database systems works for conict seri-
alizability [28], isolation level violations can be detected by searching for anti-
patterns in the dependency graph. Table 1 lists the anti-patterns that indicate
violations to levels SER, SI, PSI, PL-2, and PL-1.

2.2 History Dependency Property Graph Model

Our methodology consists of relying on graph databases for isolation level check-
ing. Graph databases are NoSQL data stores that provide custom support for
processing interconnected data, leveraging expressive graph models. Among these,
the most prominent one is the property graph model [3], i.e., a multi-labeled
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T1: write(f1.title, "A2")
T2: write(f2.title, "B2")
T3: read(f1.title, "A2")

read(f2.title, "B1")
T4: read(f1.title, "A1")

read(f2.title, "B2")

(a) A long fork

T1: read(f1.mods, list)
newList = list + Alice
write(f1.mods, newList)

T2: read(f1.mods, list)
newList = list + Bob
write(f1.mods, newList)

T3: read(f1.mods, list + Bob)

(b) A lost update

T1: write(f1.title, "A2")
read(f2.title, "B2")

T2: write(f2.title, "B2")
read(f1.title, "A2")

(c) Cyclic info ow

Fig. 1: Isolation anomalies and their graph patterns

multi-graph, whose nodes and edges can be additionally enriched by sets of key-
value properties. We model the history dependency graph as a property graph
and depict its corresponding schema [4] in Figure 2a. Each node represents an
event (WriteEvent or ReadEvent) or a Transaction. Event nodes are associated
with the transactions that contain them through BELONG TO edges and store their
order within the transaction (evt order) and their corresponding object (var).
Event values are stored on WriteEvent nodes using the atomic val property,
as these are written individually. For ReadEvent nodes, we store val list and
val register properties, to account for list and register operations. Event nodes
are interrelated by dependency edges (EvtDepWW, EvtDepWR, and EvtDepRW). We
proceed analogously for Transaction nodes, explicitly storing, for ease of query-
ing, the identiers of the events they relate. Identiers (id) for nodes and edges
are automatically generated by the graph database.

As a standard graph query language has only just recently been published [18],
graph databases have supported the extraction of expressive graph patterns
through custom query languages. A leading one [32] is Neo4j’s [27] Cypher [16],
also used in numerous other databases, e.g., SAP HANA [29], Amazon Nep-
tune [5], Memgraph [26], RedisGraph [25], and AgensGraph [21].

One of our checkers relies on Cypher queries to catch isolation level violations,
e.g., the write skew anomaly in Figure 2b. The reported violation exposes rele-
vant information to the user, e.g., transaction IDs and dependency edge labels,
helping with both understandability and explainability.

2.3 Graph Query-Based Anti-Pattern Detection

We formulate multiple queries that will serve as checkers for isolation anti-
pattern detection to investigate and compare their relative performances.



Checking Transaction Isolation Violations using Graph Queries 5

(a) Execution history

(b) Reported write skew anomaly

Fig. 2: Property graph schema of execution histories and example violation

Denition-based Checkers In ArangoDB, the ArangoDB-Cycle checker detects
directed cycles using their denition: non-empty paths where only the rst and
the last vertices are equal. The corresponding AQL query performs a graph
traversal on each transaction vertex. A cycle is detected when the traversal
reaches the start vertex again, with a minimum depth of 2. We use ArangoDB’s
graph traversal, setting the minimum depth to 2 and the maximum one to 4 (see
Listing 1.1). The maximum depth limits the number of vertices in a detected
cycle and, therefore, becomes an important factor in the eectiveness of the
checker. For example, setting the maximum depth to 4 means that the checker
can only detect cycles with up to four transactions. The execution histories we
collected do not contain any cycles with more than four transactions. As such,
we set the maximum depth to 4, and it was sucient for detecting the isolation
anti-patterns (e.g., a cycle of length four in a long fork anomaly).
FOR start IN txn FOR vertex, edge, path IN 2..4 OUTBOUND start._id GRAPH txn_g
FILTER LAST(path.edges[*]._to) == start._id AND NOT REGEX_TEST(CONCAT_SEPARATOR(" ",path.

edges[*].type),"(^rw.*rw$|rw rw)") LIMIT 1 RETURN path.edges

Listing 1.1: Checking SI: ArangoDB-Cycle Checker

Shortest-path-based Checkers In ArangoDB, the ArangoDB-SP checker (List-
ing 1.2) uses the shortest path algorithm to detect cycles. It iterates over depen-
dency edges, using K SHORTEST PATH to nd all the so-called back paths, from its
end vertex to its starting one. It then detects cycles, by trying to connect each
edge to its back paths. Cycles that match the anti-pattern can be ltered us-
ing ArangoDB functionalities. In Neo4j, the Neo4j-APOC checker runs a Cypher
query to detect all the cycles on the set of vertices in the dependency graph. As
ArangoDB-SP, its strategy is based on the shortest path algorithm, nding back
paths and forming cycles. After the query returns all cycles, these are ltered to
nd anti-patterns for a certain isolation level (e.g., SI).
LET cycles = ( FOR edge IN dep
FOR p IN OUTBOUND K_SHORTEST_PATHS edge._to TO edge._from GRAPH txn_g
RETURN {edges: UNSHIFT(p.edges, edge),

vertices: UNSHIFT(p.vertices, p.vertices[LENGTH(p.vertices) - 1])})

FOR cycle IN cycles
FILTER NOT REGEX_TEST(CONCAT_SEPARATOR(" ", cycle.edges[*].type), "(^rw.*rw$|rw rw)")
LIMIT 1 RETURN cycle

Listing 1.2: Checking SI: ArangoDB-SP
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SCC-based Checkers In ArangoDB, the ArangoDB-Pregel checker uses the Pregel
SCC algorithm to search for all strongly connected components (SCCs) within
a dependency graph and lter those with at least two vertices. This ensures the
existence of at least one cycle. In Neo4j, the Neo4j-GDS-SCC checker (Listing 1.3)
runs a query to nd all SCCs with Gabow’s path-based SCC algorithm [17] and
lters those with at least two vertices. For SER, PL-2, and PL-1, it rst lters
the graph to remove unwanted edges, as then any SCC will directly lead to an
anti-pattern. For SI and PSI, it nds the SCCs and determines whether the
subgraph with vertices only from an SCC can form a cycle.
CALL gds.alpha.scc.stream('g', {}) YIELD nodeId, componentId WITH componentId,
COLLECT(nodeId) AS ns, COUNT(nodeId) AS num WHERE num > 1 RETURN ns

CALL gds.graph.project.cypher('g','MATCH (n:txn) RETURN id(n) AS id',
'MATCH (n:txn)-->(n2:txn) RETURN id(n) AS source, id(n2) AS target')

Listing 1.3: Neo4j GDS SCC Checker

Challenges. A major challenge of implementing the checkers in graph databases
is that each provides dierent functionalities. For example, ArangoDB does
not support local SCC algorithms, except for the Pregel-based SCC one, while
Neo4j supports Gabow’s path-based algorithm, which can be directly called from
Cypher queries. While this restricts implementations within a graph database,
as GRAIL is intended to be system-agnostic, users can choose their framework.
Second, database query languages are often not fully-edged programming lan-
guages and their built-in data structures are not always suitable to particular
user needs. For example, ArangoDB does not support stacks or hash sets, which
makes it dicult to further accelerate the graph queries. As such, we cannot
record previous values in a hash set to ensure O(1) access; arrays are the only op-
tion. Also, user optimizations are further limited by missing stack structures and
by the diculty of implementing linear-time SCC algorithms, such as Tarjan’s.
Finally, the query functions of the same algorithm may take dierent arguments
across graph databases and, thus, exhibit performance changes. For example,
ArangoDB’s shortest path algorithm traverses the whole graph and does not
support additional ltering. However, Neo4j can lter a subgraph based on la-
bels provided by users and then execute the traversal on a reduced edge space.

3 Experimental Analysis

We compare the performance of the graph queries presented in Section 2.3 for
checking anti-patterns and evaluate their performance, eectiveness, and scala-
bility compared to the state-of-the-art isolation checkers. We use execution his-
tories collected on the cluster setting of ArangoDB with an increasing collection
time of execution histories (with/without network partitions) and an increasing
rate of submitted client transactions. More information about the datasets and
their dependency graph characteristics can be found in our repository [14].

Conguration. We ran all experiments on Linux Mint 21 with AMD Ryzen
7 5800H CPU, Radeon Graphics × 8 GPU, and 15.5GB RAM, using Neo4j
Community Ed. 4.4.5, APOC 4.4.0.15, GDS 2.1.13, and ArangoDB 3.9.10.
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(a) Checking SER (b) Checking SI (c) Checking PSI

(d) Checking PL-2 (e) Checking PL-1
(f) History Length vs.
Collection time

Fig. 3: Checking anomalies with increasing collection time of list histories

Experiments on histories with increasing collection time. Figure 3 shows the
performance trends of dierent queries for checking SER, SI, PSI, PL-2, and
PL-1 on increasing length of history collection. For ArangoDB-Cycle, we used
the cycle-length bound d = 4, which suces to detect all violating anti-patterns
to all isolation levels in our experiments. Figures 3b-3e omit ArangoDB-Pregel,
since it can only check for serializability.

Figure 3a shows the evolution of the checking time (ms) for SER with in-
creasing collection time. ArangoDB-Cycle has the highest increase in analysis
time because it traverses the graph to nd all cycles with a polynomial complex-
ity in the graph size. ArangoDB-Pregel exhibits similar polynomial behavior, as
it runs BSP super step computations to search for SCCs with a linear cost for
each step. However, ArangoDB-SP, Neo4j-APOC and Neo4j-GDS-SCC, have low
analysis times with insignicant history length increases, as they search for the
shortest paths and return as soon as they nd a cycle.

For SI and PSI (Figures 3b and 3c), the trends of ArangoDB-Cycle and
Neo4j-GDS-SCC are similar to those for SER. ArangoDB-SP and Neo4j-APOC take
longer to check SI and PSI than SER, as these are more complex and require
more graph traversals. For PL-1 and PL-2, ArangoDB-SP shows a signicant
performance degradation, but Neo4j-APOC remains ecient and scalable as it
combines shortest-path detection with ltering.

We observed that network partitions in the test executions do not result in
more anti-patterns. With network faults, history length is reduced without other-
wise aecting the dependency graphs. This can be dierent for other databases.
Since ArangoDB does not guarantee serializability in the cluster setting, its ex-
ecutions exhibit isolation anomalies without introducing faults.

Experiments on histories with increasing transaction rate. Figure 4 shows the
checkers’ scalability for SER, SI, PSI, PL-2, and PL-1 when increasing the trans-
action generation rate. Overall, the relative performances of the checkers are
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(a) Checking SER (b) Checking SI (c) Checking PSI

(d) Checking PL-2 (e) Checking PL-1 (f) History Length vs. Rate

Fig. 4: Runtime for checking anomalies in the increasing rate of transactions

similar to those of increasing history length. That is, when there are violations
in the execution history, ArangoDB-Cycle requires more analysis time than the
shortest-path and SCC-based checkers since it traverses the graph for each ver-
tex. The performances of ArangoDB-SP and Neo4j-APOC degrade for execution
histories without violations since they analyze the shortest paths between all
vertices. Neo4j-GDS-SCC remains ecient for all isolation levels.

A signicant dierence from the scalability analysis in Figure 3 is that in-
creasing the transaction generation rate to 80 txns/s or higher decreases the
analysis time for the graph-based checkers. Our analysis shows that this is caused
by the decreasing density of dependency graphs. As we generate a higher num-
ber of concurrent transactions, more transactions conict and abort. The graph
density of datasets can be found in the online documentation [14].

(a) Checking SER (b) Checking SI (c) Detected #cycles

Fig. 5: (a - b) Checking register histories (c) Cycle detection

Comparison to the State-of-the-art Checkers We compare the graph query-
based checkers with state-of-the-art isolation checkers, i.e., Elle [2] for SER,
and PolySI [19] for SI, which has been shown to outperform other SI checkers.

Figures 3a, 4a, 5a present the analysis time of checking SER with Elle and,
Figures 3b, 4b 5b presents for checking SI with Elle and PolySI. In the gures,
we report the analysis time of the checkers that detect violations. Figure 5 shows
the performance of checking SER and SI on register variables with increasing



Checking Transaction Isolation Violations using Graph Queries 9

history length. We only present the plots for SER and SI for space reasons, the
performance trends of the checkers for other isolation levels are similar to those
in Figure 3. These trends are also similar to those in Figure 5, except for check-
ing serializability with ArangoDB-SP and Neo4j-APOC. They need more time to
check register histories without violations, since checking them requires a full ex-
ploration of the shortest paths. Graph query-based checkers are faster than Elle
for histories with lists (Figure 3a), except for ArangoDB-Cycle, due to the cost
of its cycle detection by graph traversal on each vertex. For the histories with
registers (Figure 5a), Elle’s performance stays more stable, while ArangoDB-SP

and Neo4j-APOC have degraded performance, especially for executions without
violations. Similarly, for SI (Figures 3b and 5b), Elle outperforms ArangoDB-SP
and Neo4j-APOC, has comparable performance with ArangoDB-Cycle, and per-
forms worse than Neo4j-GDS-SCC. When increasing the transaction generation
rate (Figure 4a), Elle’s performance signicantly declines. Our results show that
Neo4j-GDS-SCC signicantly outperforms Elle in all cases. Figure 5c compares
the number of cycles detected on the execution histories with registers. Elle
can detect the isolation anomalies in the histories with list variables using their
traceability and recoverability. We also use the database’s write-ahead logs to
infer dependencies on register variables, and thus can detect more violations.

Figures 3b, 5b, and 4b show that PolySI’s performance degrades with in-
creasing history length or transaction generation rate. PolySI introduces and
uses the novel polygraph data structure, designed to characterize SI violations.
PolySI generates polygraphs, recovering WR edges based on the unique-writes
assumption, adds the RW edges based on the inferred version order, and then
enumerates and prunes possible WW edges to recover the orders among trans-
actions. This however largely expands the number of graphs to analyze.

4 Conclusion and Perspectives

We explore the feasibility and benets of using graph databases to check iso-
lation violations. As such, we introduce the GRAIL approach, which is the
rst, to the best of our knowledge, to propose a generic methodology for isola-
tion violation detection with graph queries. We implement GRAIL through ve
checkers, using AQL and Cypher, and evaluate these against the state-of-the-art
Elle and PolySI tools. Our results show that the graph query-based checkers
provide comparative performance and remain scalable when increasing execu-
tion history length and transaction generation rates. The performance of the
ArangoDB-Cycle denition-based checker highly depends on the characteristics
of the analyzed execution, while SCC-based checkers exhibit less performance
degradation than shortest-path-based ones, especially for executions without vi-
olations. Among these, Neo4j-GDS-SCC outperforms all other baselines.

Our empirical analysis also helps distill insights into the challenges of re-
purposing graph databases and queries as isolation checkers. Future work can
analyze a more extensive set of patterns, including other consistency and iso-
lation models. Other perspectives include extending our approach to runtime
analyses of database executions and evolving graph processing systems.
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