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A B S T R A C T

Recent studies highlight the application of deriving the attenuation coefficient from spaceborne photon-counting 
lidar ATLAS/ICESat-2 over open oceans on global scales. However, its performance in the more optically com
plex and variable environments of marginal seas, which are more susceptible to human activity, has not been 
validated yet. In this study, we present an in-depth analysis of the consistency between diffuse attenuation co
efficient (Kd) detection from MODIS and ICESat-2 in China's Marginal Seas. Findings demonstrate that ICESat-2 
possesses strong capabilities for the retrieval of the attenuation coefficient across differing aquatic environments. 
However, discrepancies exist between the lidar system attenuation coefficient obtained from ICESat-2 and the 
diffuse attenuation coefficient determined by MODIS, influenced by factors such as multiple scattering. Imple
mentation of a novel multiple scattering correction model demonstrates a notable ability in significantly reducing 
the inconsistency. Validation with in-situ Biogeochemical Argo float measurements reveals an enhancement in 
the accuracy of lidar-derived diffuse attenuation coefficients upon correction, with the mean absolute percent 
difference between lidar-derived Kd and Argo-Kd decreasing from 26 % to 15.7 %. The multiple scattering model 
developed can bridge the gap between the passive and active remote sensing detection and improve the reli
ability of lidar-derived attenuation coefficients. Fusing these two missions will greatly improve ocean observa
tion capabilities, providing unprecedented opportunities for precise and comprehensive assessment of marine 
light environments. This approach has broad implications for ocean science and the application of satellite 
remote sensing in environmental studies.

1. Introduction

When a light beam enters a water body, its intensity is diminished 
due to absorption and scattering by various materials such as suspended 
particles, phytoplankton, and colored dissolved organic matter. The 
result is a near-exponential decrease in downward irradiance with the 
increase in depth. The rate at which light intensity decreases with depth 
is quantified using the diffuse attenuation coefficient, Kd. As a key metric 

of oceanography, Kd represents the extent of light absorption or scat
tering within the depths of the water. It can be employed to ascertain the 
availability of light for marine organisms at different layers of the water 
column (Yentsch et al., 2002). Critical to oceanographic research, Kd 
provides data relevant to understanding various oceanic physical and 
biochemical processes such as upper ocean heat exchange (Stramska and 
Zuzewicz, 2013; Wu et al., 2007), phytoplankton photosynthesis 
(Loiselle et al., 2009), marine primary productivity (Bergamino et al., 
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2010; Lee et al., 2011), and water turbidity (Kirk, 1981).
Traditional methods of obtaining Kd involve in-situ measurements 

like Secchi depth measurements (Lee et al., 2015) and submarine 
photometry (Koenings and Edmundson, 1991). These methods, 
although known for their high accuracy and often used to validate other 
measurement methods (Dickey et al., 2006), are limited by poor effi
ciency. Advancements in satellite imaging technology, i.e. passive ocean 
color remote sensing, now empower researchers to conduct high- 
frequency observations of oceanic waters on a global scale (Lee et al., 
2013; Rast et al., 1999; Wang et al., 2013; Wang et al., 2009). Currently, 
Kd has evolved into a standard product for passive ocean color satellites, 
having secured wide acceptance and validation (Jamet et al., 2012; 
Jiang et al., 2020; Lee et al., 2005b; Lee et al., 2005c; Morel et al., 2007; 
Tiwari and Shanmugam, 2014; Xing et al., 2020). For instance, in
struments like the Medium Resolution Imaging Spectrometer (MERIS) of 
the European Space Agency, the Moderate Resolution Imaging Spec
troradiometer (MODIS) of NASA, and the Visible Infrared Imaging 
Radiometer Suite (VIIRS) of NOAA, all serve up standard products of the 
diffuse attenuation coefficient Kd at 490 nm for the oceans. However, the 
inherent reliance of passive ocean color remote sensing on sunlight 
presents significant limitations. Issues arise as ocean color satellites 
cannot provide data during nighttime, and for polar high-latitude re
gions that face prolonged periods of sunlight deprivation (Behrenfeld 
et al., 2017). Further complications are introduced by persistent cloudy 
weather in these high-latitude regions, hampering the acquisition of 
ocean color data (Zhang et al., 2024). As an active detection technology, 
lidar can address the inherent limitations of passive remote sensing 
measurement and procure effective ocean observation data even 
through small gaps in the clouds. This technology proves to be an 
excellent addition to passive ocean color remote sensing, enabling 
continuous global ocean observation data, regardless of day or night, as 
well as accurate observational data for polar regions (Behrenfeld et al., 
2017; Luthcke et al., 2021; Sun et al., 2023; Vadakke Chanat and Jamet, 
2023; Zhang et al., 2023d).

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), an 
integral part of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observation (CALIPSO) satellite, has opened up new avenues for ocean 
observation. Initially designed for cloud and aerosol detection, it has 
proven invaluable in recent years for oceanographic studies such as the 

interannual variability in polar phytoplankton biomass (Behrenfeld 
et al., 2022; Behrenfeld et al., 2017; Zhang et al., 2023d) and the global 
reserves of particulate carbon (Behrenfeld et al., 2013; Zhang et al., 
2023c; Zhang et al., 2024). However, the primary shortcoming of 
CALIOP is its relatively coarse vertical resolution, making it challenging 
to use for water column profiling. NASA's latest Ice, Cloud, and land 
Elevation Satellite-2 (ICESat-2), equipped with the Advanced Topo
graphic Laser Altimeter System (ATLAS), further expands the capability 
of passive ocean color satellites and CALIOP lidar satellites in ocean 
detection, making vertical profiling of the ocean possible (Lu et al., 
2020).

In recent years, the field of oceanography has witnessed the advent of 
novel methodologies that involve the retrieval of water Kd and the 
backscattering coefficient of water particles using satellite lidar echo 
signals (Corcoran and Parrish, 2021; Dionisi et al., 2024; Eidam et al., 
2024; Lu et al., 2021a; Zhang et al., 2022a) and linking them to water 
chlorophyll concentration through bio-optical models (Zheng et al., 
2022). The lidar attenuation coefficient Klidar, the primary parameter 
retrieved by lidar, reveals the degree to which the laser beam is absorbed 
or scattered within the water body (Gordon, 1982). ICESat-2 has already 
demonstrated its prowess in detecting ocean Kd at both the global and 
basin scales (Lu et al., 2023; Yang et al., 2023), where the open ocean's 
relative homogeneity allows for broad-scale application of its mea
surements. However, marginal seas present a unique set of challenges 
due to their high productivity and susceptibility to human activities 
(Wang et al., 2024; Yoo et al., 2019; Yu et al., 2019), which can lead to 
more variable and complex optical properties. These characteristics 
necessitate careful validation to ensure the accuracy and relevance of 
ICESat-2 measurements in these distinct environments. Here, we take 
the China's Marginal Sea as an example to explore the consistency of 
measurements between ICESat-2 and MODIS in nearshore waters. This 
study aims to assess the consistency between ICESat-2-derived Klidar and 
MODIS-derived Kd in China's Marginal Seas and develop and validate a 
novel multiple scattering correction model to improve this consistency. 
The remainder of this paper is organized as follows: Section 2 describes 
the study area, data sources and details the methodology, including data 
processing, multiple scattering correction model development, and 
validation approaches. Results are presented in Section 3, followed by a 
discussion of implications and limitations in Section 4. Finally, 

Fig. 1. Location of the study area, where the green lines indicate the ICESat-2 tracks. (a) The location of the study area; (b) (c) (d) are tracks in Yellow Sea, East China 
Sea, and South China Sea, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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conclusions and future research directions are provided in Section 5.

2. Materials and methods

2.1. Study area

The study focuses on the offshore regions of China, specifically the 
Yellow Sea, the East China Sea, and the South China Sea. As shown in 
Fig. 1, these areas sit on the peripheral edge of the western Pacific 
Ocean, with the Yellow Sea lying between China and the Korean 
Peninsula, the East China Sea situated between China and Japan, and the 
South China Sea bordered by China, Vietnam, and the Philippines. The 
diverse ecological make-up of our chosen study area ranges from turbid 
coastal waters to clear, open oceanic waters (Shi and Wang, 2012; Zhang 
et al., 2023a). According to the MODIS entire mission composite product 
AQUA_MODIS.20020704_20230930.L3m.CU.KD.Kd_490.4 km.nc, the 
average Kd at 490 nm (Kd(490)) within the study areas of the Yellow Sea 
and the East China Sea are 0.13 m− 1 and 0.09 m− 1, respectively, indi
cating the prevalence of low turbid waters that are influenced by 
terrestrial sources. In contrast, the South China Sea, with an average 
Kd(490) of 0.034 m− 1, falls under the category of open ocean type I 
waters (Chen et al., 2022), whose optical properties are primarily 
determined by phytoplankton and their associated materials.

2.2. Data

2.2.1. MODIS data
The study employs the MODIS-Aqua and MODIS-Terra Level 3 daily 

products from October 2018 to August 2023 as a reference to compare 

with the ICESat-2 inversion outcomes. To maintain consistency with 
previous research (Lu et al., 2023), two different Kd values derived from 
MODIS were used for comparison with Klidar. Specifically, through a 
semi-analytical model (Eq. 1), the Kd at 531 nm (KM

d (531)) is estimated 
using the absorption coefficient at 531 nm (a(531)) and the backscat
tering coefficient at 531 nm (bb(531)) (Lee et al., 2002; Lee et al., 2013; 
Yang et al., 2023). 

KM
d (531) = (1+ 0.005θs)× a(531)+4.18

(
1 − 0.52e− 10.8a(531) )bb(531)

(1) 

where, θs is the solar zenith angle of the detector.
In contrast, the MODIS KM

d (490) product, a standard distributed 
product calculated by the band ratio method (Eq. 2) (Austin and Petzold, 
1981), is converted to the Kd at 532 nm KM

d (532) using Eq. 3 (Lu et al., 
2016) based on the specific wavelength of the ICESat-2 lidar system, 
which operates at 532 nm. Moreover, with the aid of a bio-optical model 
(Eq. 4), the scattering coefficient at 531 nm (b(531)) is computed based 
on the MODIS chlorophyll product using an empirical relationship (Lu 
et al., 2023; Morel, 1991). MODIS data is obtained from the Ocean Color 
website (https://oceancolor.gsfc.nasa.gov/). Details of the coefficients 
in Eq. 2 are shown on the Ocean Color website (https://oceancolor.gsfc. 
nasa.gov/resources/atbd/kd/). 

KM
d (490) = 10

a0+
∑4

i=1

(

log10

(
Rrs(488)
Rrs(547)

))i

+0.0166 (2) 

KM
d (532) = 0.68

(
KM

d (490) − 0.022
)
+ 0.054 (3) 

Fig. 2. Schematic flowchart of the methodological approach considered in this study.

Z. Zhang et al.                                                                                                                                                                                                                                   Remote Sensing of Environment 318 (2025) 114602 

3 

http://AQUA_MODIS.20020704_20230930.L3m.CU
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/resources/atbd/kd/
https://oceancolor.gsfc.nasa.gov/resources/atbd/kd/


b(531) = 0.00226+0.31×Chl0.62 (4) 

2.2.2. ICESat-2 data
The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), launched 

by NASA in 2018, aims to measure the elevation of Earth's ice sheets, 
clouds, and land surfaces. Its main instrument is the Advanced Topo
graphic Laser Altimeter System (ATLAS), a pioneering lidar system that 
employs single-photon counting technology. The core of this system is a 
laser that emits pulses at a wavelength of 532 nm with a pulse repetition 
frequency that reaches up to 10 kHz. This frequency allows for nearly 
continual along-track measurements with an impressive along-track 
horizontal resolution of close to 0.7 m. The laser beam, when it rea
ches the Earth's surface, has a spot diameter of approximately 11 m. The 
emitted laser pulses are split into six beams and, after reflecting off the 
surface, are detected by a highly sensitive photon-counting receiver, 
allowing for extremely precise measurement of the Earth's surface 
elevation data (Magruder and Brunt, 2018; Magruder et al., 2020). The 
zenith angle of the laser emission is close to 0. ICESat-2 boasts near- 
global surveillance with a repeat period of approximately 91 days, 
extending its coverage from 88◦N to 88◦S. In this study, we use the 
ICESat-2 geolocation L2A (Neumann et al., 2023) data from October 
2018 to August 2023. The data is sourced from the National Snow and 
Ice Data Center (NSIDC, https://nsidc.org/).

2.2.3. BGC-Argo data
The significant advancements in buoy technology allow us to access 

the extensive in-situ dataset for global ocean optical and biogeochemical 
observations provided by Biogeochemical Argo (BGC-Argo) (Claustre 
et al., 2020; Johnson and Claustre, 2016; Wong et al., 2020; Xing et al., 
2020). The onboard multispectral downwelling irradiance radiometer is 
able to measure downwelling irradiance (Ed) across multiple wave
lengths, including 380, 412, and 490 nm (Begouen Demeaux and Boss, 
2022). For the purpose of evaluating and validating satellite products, 
this study utilizes the Ed data specifically at 490 nm. The BGC-Argo data 
employed in this research includes the Argo float profiles incorporating 
downwelling irradiance collected over the period extending from 2018 
to 2023. This data is accessible via the Argo Global Data Assembly 
Center (GDACs) at Ifremer (ftp://ftp.ifremer.fr/ifremer/argo/).

2.3. Kd estimation from ICESat-2 and BGC-Argo

2.3.1. ICESat-2 data processing
The processing of ICESat-2 is illustrated in Fig. 2. First, a data 

filtering process is applied, which utilizes only nighttime data with a 
range of 1–12 sea surface return photons for each laser pulse and an 
atmospheric aerosol optical thickness that is less than 0.2 (Lu et al., 
2023). Following the identification of the sea surface position, a 
refraction range correction is applied to the underwater photons by 
subtracting the mean sea level from the heights and then multiplying by 
0.75 (Zheng et al., 2022). These photons are subsequently accumulated 
along the track considering a sliding distance of 4 km and a cumulative 
distance of 20 km, to result in the pseudo-waveforms of the water col
umn profile. The bin size of 20 km along-track distance is to ensure a 
sufficient number of photons are collected, thereby enhancing the 
signal-to-noise ratio (Yang et al., 2023). This step length of 4 km enables 
us to match the lidar-derived profiles with MODIS data more effectively, 
as it corresponds to the resolution of MODIS pixels. After removing 
background noise, the next step involves the deconvolution of these 
profile waveforms in order to eliminate the effect of the detector's 
afterpulses (Lu et al., 2021b). The background photon noise rate is 
calculated from the signal phonons in the atmospheric region above the 
sea surface (Eidam et al., 2024). Finally, the lidar system attenuation 
coefficient Klidar is computed. This calculation is based on the expo
nential decay of the lidar return signal observed through the water 
column (Lu et al., 2023): 

Klidar = − 0.5
d ln(S(z) )

dz
(5) 

where, S(z) is the lidar pseudo-waveform signal at depth z after transient 
response correction. The calculation is obtained by a linear fit on the 
logarithmic return signal within 14 m (Lu et al., 2023).

2.3.2. BGC-Argo data processing
Before any calculation is performed, the buoy profile data undergoes 

a quality control process in line with Organelli's standards established in 
2017 (Organelli et al., 2017). This preparatory step is crucial to remove 
the influence of dark current and cloud/spikes. The subsequent 
computation of the diffuse attenuation coefficient at a specific depth z 
proceeds as follows (Begouen Demeaux and Boss, 2022): 

Kfloat
d (490, z) =

1
z
ln
(

Ed(490,0− )

Ed(490, z)

)

(6) 

Here, Ed(490,0− ) is defined as the downwelling irradiance just 
beneath the sea surface. Given that BGC-Argo does not provide irradi
ance at z = 0− , a binomial fit of the data, applied within a 10-m range, is 
employed to extrapolate and thereby calculate Ed(490,0− ) (Xing et al., 
2020).

The subsequent step determines the penetration depth at 490 nm 
(zpd) as follows: 

Ed
(
490, zpd

)
=

Ed(490,0− )

e
(7) 

where zpd is obtained using linear interpolation on the ln(Ed(490) )
profile.

Finally, the average diffuse attenuation coefficient within the first 
optical depth, denoted as Kfloat

d
(
490, zpd

)
, is calculated from the Argo 

data as follows (Begouen Demeaux and Boss, 2022; Xing et al., 2020): 

Kfloat
d (490) = Kfloat

d

(
490, zpd

)
=

1
Zpd

(8) 

2.4. Statistical parameters to evaluate ICESat-2 Kd estimates

To evaluate the accuracy and consistency of Kd estimates derived 
from ICESat-2, several statistical metrics are employed. These metrics 
allow for a quantitative comparison between ICESat-2 Kd estimates and 
reference data from MODIS and BGC-Argo, helping to assess the per
formance of ICESat-2 across different aquatic environments. This 
assessment makes use of several key statistical metrics: the Pearson 
Correlation Coefficient (R), the bias, the Root Mean Square Difference 
(RMSD), and the Mean Absolute Percentage Difference (MAPD):

Pearson Correlation Coefficient (R): The Pearson Correlation Coef
ficient measures the strength of the linear relationship between ICESat-2 
Kd estimates and the reference data, which is calculated as: 

R =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

√ (9) 

Bias: Bias measures the average difference between the ICESat-2 Kd 

estimates and the reference data, indicating whether ICESat-2 tends to 
overestimate or underestimate Kd, which is calculated as: 

bias =
∑n

i=1(xi − yi)

n
(10) 

Root Mean Square Difference (RMSD): RMSD quantifies the overall 
error in the Kd estimates by calculating the square root of the mean of 
squared differences between the ICESat-2 estimates and the reference 
data. Lower RMSD values indicate better performance: 
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Fig. 3. The principle of the semi-analytical lidar radiative transfer model. (a) The complete procedure of this model encompasses laser emission, scattering, ab
sorption, and reception. (b) The system optics for analytically estimating the probability of photon at point i collected by a remote receiver. n→t

i is the current photon 
travel direction at the layer index i; n→r

i is the photon receiving direction; and θ is the angle between the photon travel and receiving directions.

Fig. 4. Scatterplots of ICESat-2-derived Klidar versus MODIS-derived Kd(531) under different sea areas. Red solid lines denote the best-fit function, and blue solid lines 
denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − yi)
2

n − 1

√

(11) 

Mean Absolute Percentage Difference (MAPD): MAPD measures the 
relative difference between the ICESat-2 estimates and the reference 
data as a percentage, providing insight into the proportional difference 
in the estimates: 

MAPD =

∑n
i=1

⃒
⃒
⃒
⃒
xi − yi

yi
× 100%

⃒
⃒
⃒
⃒

n
(12) 

where, x represents the ICESat-2 inversion results, and y represents the 
reference data.

2.5. Development of multiple scattering correction models

For lidar, multiple scattering refers to the phenomenon where the 
laser beam is scattered multiple times before being detected by the 
sensor. This can distort the measurements of Kd, particularly in turbid 
waters. To correct for this effect and improve the accuracy of ICESat-2 
Kd estimates, two Multiple Scattering Correction Models (MSCM-531 
and MSCM-532) are developed to accurately quantify the relationship 
between seawater Kd, Klidar, and the other relevant lidar system pa
rameters. The steps described below are repeated for both Kd(531) and 
Kd(532), as the two models aim to address the differences in their 
derivation methods and applications. These models are designed to 
correct for the effects of multiple scattering in the retrieval of Klidar from 
ICESat-2 data, thereby enhancing the consistency with the diffuse 
attenuation coefficient. As illustrated in Fig. 2, the process of con
structing the MSCMs ensues as follows:

1. Start with the construction of the lidar radiative transfer model 
(Wu et al., 2024). As shown in Fig. 3, the complete procedure of this 
model encompasses laser emission, scattering, and absorption. The lidar 
radiative transfer model used is a semi-analytical approach that effi
ciently simulates the multiple scattering of LiDAR signals in oceanic 
environments. This method integrates improved stochastic processes 
with analytical techniques to address the mathematical intricacies of 
light scattering, which conventional Monte Carlo models find chal
lenging. The model uses the radiation transfer equation to simulate the 

Fig. 5. Scatterplots of ICESat-2-derived Klidar versus MODIS-derived Kd(532) under different sea areas. Red solid lines denote the best-fit function, and blue solid lines 
denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Effect of multiple scattering on lidar echo signal. (a) Lidar echo signal 
simulation in different types of water. (b) The ratio of the multiple scattering 
signal to the total signal.
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interaction of laser light with the water, considering the light's propa
gation velocity, radiance, direction, position, and optical properties of 
the water. It incorporates a semi-analytical module that divides photon 
clusters into parts that either continue scattering or return to the 
receiver, enhancing computational efficiency by reducing the number of 
simulated photons. This approach not only offers significant time sav
ings but also provides a more accurate representation of the laser's 
behavior in various underwater conditions. The semi-analytical Monte 
Carlo simulation is only briefly recalled here for completeness.

The simulation starts by setting parameters for the emitter, receiver, 
environment, and Monte Carlo model (e.g., photon count, weight 
threshold). A photon is emitted, with its initial angle and Stokes vector. 
In the Move phase, the photon's step length is calculated, and its new 
position is updated. If it exits the water, it's processed by the receiver. If 
still in water, scattering angles are randomly assigned based on the 
phase function. For polarized light, Stokes vector adjustments are made 
post-scattering. In semi-analytical mode, the photon is checked against 
the receiver's range for scattering properties and weight updates. In the 
Absorb phase, photon energy decays as it moves. Threshold screening 
and stochastic photon termination process decide if it “lives” for the next 

move. This cycle repeats for all photons until the simulation is 
completed. More details can be found in (Chen et al., 2021; Wu et al., 
2024).

2. Perform simulations of echo signals under various conditions such 
as different seawater types and parameter configurations.

3. Retrieve Klidar from the simulated signals.
4. Proceed with the creation of a matched dataset. This dataset is 

based on the retrieved Klidar-Kd data and the measured ICESat-2 Klidar and 
MODIS Kd data. For ICESat-2 Klidar and MODIS Kd, the data are matched 
as they occur within the same day and fall within 4 km. MODIS Kd is 
utilized as a reference to correct Klidar values, capitalizing on the 
extensive use in oceanographic research. By doing so, we aim to enhance 
the accuracy of Klidar data and maintain consistency between the active 
lidar measurements and the well-established passive ocean color remote 
sensing data. Statistically, the matched dataset consisted of approxi
mately 50,000 match points for ICESat-2 Klidar and MODIS Kd data. To 
maintain consistency and ensure that our simulations reflect the actual 
data distribution, we used a quantity of simulated data that closely 
matches the actual number of matched points. This approach guarantees 
that the simulation data and the actual measured data have equal weight 

Fig. 7. Multiple scattering correction model MSCM-531 developed with MODIS-derived KM
d (531). Red solid lines denote the best-fit function, and blue solid lines 

denote the 1:1 line. The Y-axis represents the data after the correction. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 8. Multiple scattering correction model MSCM-532 developed with MODIS-derived KM
d (532). Red solid lines denote the best-fit function, and blue solid lines 

denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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in our analysis, providing a balanced and representative dataset for the 
development and validation of our multiple scattering correction model.

5. Utilizing the matched dataset, formulate a data-driven empirical 
multiple scattering model where Klidar and lidar system parameters are 
used as inputs and MODIS-derived Kd is considered as the reference 
value. The empirical multiple scattering model leverages the power of 
machine learning algorithms to identify patterns and relationships 
within the data. This process is accomplished using eXtreme Gradient 
Boosting (XGBoost), an efficient machine learning algorithm based on 
the Gradient Boosting framework (Chen and Guestrin, 2016). XGBoost 
optimizes conventional gradient boosting algorithms, leading to signif
icant improvements in decision tree training speed and model perfor
mance. Importantly, it adds a regularization term to the loss function 
(Song et al., 2023), which is a key mechanism for preventing overfitting. 
Notably, XGBoost has found extensive application in fields like ocean 
color remote sensing, assisting with tasks like atmospheric correction, 
POC concentration retrieval (Liu et al., 2021), and phytoplankton pop
ulation retrieval (Zhang et al., 2023b).

To ascertain the accuracy of the model, the data are initially divided 
into training and testing subsets through a random partitioning process, 
with 70 % allocated to the training set and the remaining 30 % desig
nated for the testing set. This ratio ensures comprehensive training while 
still providing a substantial dataset for validation purposes. We start by 
building the model using the training data, and then apply it to the 
testing data for evaluation. The equation for this process is as follows: 

Kd = f(Klidar, FOV,DIV,H, θ, a, b, bb) (13) 

where FOV is the field of view, DIV is the angle of divergence, H is the 
height of lidar and θ is the nadir angle of the laser beam. The selection of 
these features is based on the contribution to multiple scattering ac
counting for both system parameters and water body parameters. (Wu 

et al., 2024). In the common matched dataset, the FOV ranges from 0.01 
to 200 mrad, the DIV is between 0.001 and 0.1 mrad, the H is between 
200 m and 600 km, and the θ is between 0 and 30 degrees, suitable for 
various types of platform-based LiDAR systems. This exploration is 
intentional, as it allows us to assess the model's robustness and gener
alizability under various potential sensor configurations. By testing the 
model's performance across this parameter space, we can ensure its 
applicability and accuracy in diverse real-world conditions and future 
sensor developments. Specifically, the ICESat-2 system parameters serve 
as a set of inputs to simulate the echo signals in various aquatic envi
ronments. The absorption coefficient a ranges from 0.05 and 0.4 m− 1, 
the scattering coefficient b is between 0.03 and 2 m− 1, and the back
scattering coefficient bb is between 0.001 and 0.05 m− 1. These ranges 
are informed by MODIS-detected data and are slightly broader than 
those typically reported in the previous studies (Chen et al., 2021; 
Gabriel et al., 2013) to ensure the inclusion of a typical variety of marine 
environments. To address the differences in performance and applica
bility of Kd(531) and Kd(532), we have developed two separate Multiple 
Scattering Correction Models (MSCM-531 and MSCM-532).

Lastly, we validate the accuracy of the MSCM model. This is achieved 
by processing ICESat-2 data using the MSCM and subsequently 
comparing the results with BGC-Argo data. Validation of the model was 
performed using BGC-Argo data collected from 2018 to 2023. The data 
are matched as they fall within 25 km2 and 24 h. The matchup criteria of 
24 h/25 km2 is a deliberate attempt to synthesize the matching criteria 
used in studies involving MODIS and Argo (Werdell and Bailey, 2005), 
as well as the spaceborne lidar CALIOP and Argo data (Vadakke Chanat 
and Jamet, 2023). This criterion provides reasonable temporal prox
imity and accounts for the spatial extent of the lidar footprint, offering a 
balance that ensures a sufficient number of matchups for our analysis.

Fig. 9. Scatterplots of ICESat-2-derived KL
d corrected by MSCM-531 developed with KM

d (531) versus MODIS-derived KM
d (531) under different sea areas. Red solid 

lines denote the best-fit function, and blue solid lines denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
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3. Results

3.1. Kd difference between MODIS and ICESat-2

Figs. 4 and 5 illustrate the comparative results of Klidar, derived from 
ICESat-2 along China's coastal regions, with MODIS-derived KM

d (531)
and KM

d (532) respectively. Fig. 4 presents the regression analysis results 
for Klidar versus KM

d (531), focusing on the East China Sea, South China 
Sea, and Yellow Sea areas. Minor variations are observed across 
different water bodies when considering the ICESat-2 inversion results. 
Regarding correlation coefficients, the Yellow Sea, which is notably 
turbid, displays the highest correlation at a coefficient of 0.74. The co
efficient for the clearer water in the South China Sea slightly drops to 
0.59. For the MAPD, the East China Sea presents the lowest at 23.8 %, 
followed by the Yellow Sea at 26.6 %, while the South China Sea ranks 
the highest at 28.6 %. The RMSD reaches its minimum in the South 
China Sea at 0.024 m− 1, while it stands at 0.026 m− 1 and 0.031 m− 1 for 
the East China Sea and Yellow Sea, respectively. The overall results are 
depicted in Fig. 4(d), where Klidar generally exceeds KM

d (531) (bias =
0.01 m− 1), and the correlation coefficient indicates a certain degree of 
correlation at 0.69. The RMSD registers at 0.026 m− 1 and the MAPD at 
26 %, signifying a discernible correlation amidst substantial differences. 
Fig. 5 presents the regression analysis for Klidar and KM

d (532), displaying 
a higher disparity between Klidar and KM

d (532) when compared to 
KM

d (531). The regression analysis for all data suggests a bias between 
Klidar and KM

d (532) of − 0.007 m− 1, an RMSD of 0.035 m− 1, and a cor
relation coefficient of 0.53 which, though indicative of some degree of 
correlation, is lower than that of KM

d (531). Contrarily, the MAPD at 23.4 
% is slightly lower than that of KM

d (531).

3.2. Lidar multiple scattering analysis under different water types

The lidar echo signal simulation is conducted to analyze the effects of 
multiple scattering in various types of water including clear ocean, 
coastal water, and turbid harbor water. The simulation shown in Fig. 6
specifically utilizes the lidar system parameters of ICESat-2 (Martino 
et al., 2019; Zhang et al., 2022b). For the clear ocean water, the pa
rameters are a = 0.1140 m− 1, b = 0.0370 m− 1, and Kd = 0.1152 m− 1, 
with the echo signal depicted by the red line in the Fig. 6, and the Klidar 

derived from the echo signal is 0.1410 m− 1. For the coastal water, the 
parameters are a = 0.1790 m− 1, b = 0.2190 m− 1, Kd = 0.1925 m− 1, 
and Klidar = 0.2355 m− 1; for the highly turbid water, the parameters are 
a = 0.3660 m− 1, b = 1.8240 m− 1, Kd = 0.4954 m− 1, and Klidar =

0.6655 m− 1. As observed from Fig. 6, at the initial entry of the laser into 
the water body, the echo signal is primarily dominated by single scat
tering, whereas as the laser propagates through the water, multiple 
scattering gradually increases. The impact of multiple scattering in
creases with the turbidity of the water body. In highly turbid water, the 
echo signal is mainly characterized by multiple scattering. Due to the 
effect of multiple scattering, the lidar system's attenuation coefficient 
lies between Kd and c (Montes et al., 2011). Thus, when inverting water 
body parameters, it is necessary to eliminate the impact of multiple 
scattering to obtain more accurate water body parameters.

3.3. Kd multiple scattering correction model construction

Utilizing XGBoost, Klidar and system parameters are employed as 
inputs, with MODIS data serving as the reference values. The multiple 
scattering correction model is constructed using the gbtree algorithm, 
which is a gradient-boosting decision tree algorithm used within the 
XGBoost library (Chen and Guestrin, 2016). The early stopping 

Fig. 10. Scatterplots of ICESat-2-derived KL
d corrected by MSCM-532 developed with KM

d (532) versus MODIS-derived Kd(532) under different sea areas. Red solid 
lines denote the best-fit function, and blue solid lines denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
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parameter is implemented to prevent overfitting. Through cross- 
validation, the optimal max_depth is determined. Subsequently, all 
data are randomly divided into a training set and a test set in a 7:3 ratio. 
Fig. 7 illustrates the training with KM

d (531) as the reference value, where 
the left and right plots represent the model's performance on the training 
and test sets, respectively. The model performs better on the training set 
than on the test set, indicating a slight tendency towards overfitting. 
However, the bias of the model on both the training and test sets is zero, 
suggesting that the model does not exhibit systematic bias. The corre
lation coefficients (R) are 0.97 and 0.95, respectively, indicating a 
strong correlation between MODIS-derived KM

d (531) and the ICESat-2- 
derived KL

d processed by the MSCM-531 model. The RMSDs of training 
and testing data are 0.004 m− 1 and 0.007 m− 1, respectively, indicating 
that the model's predictive error is relatively small, and the predicted 
results are very close to the reference values. The MAPDs are 2.9 % and 
3.5 %, respectively, indicating that although the model's predictive ac
curacy on the test set is slightly lower than on the training set, it remains 
within a low error range. Overall, the multiple scattering correction 
model demonstrates good predictive performance and consistency on 
both training and test data. Furthermore, through the correction of the 
multiple scattering model, the discrepancy between Klidar and KM

d (531) is 
significantly reduced.

The multiple scattering model MSCM-532 established based on 
MODIS-derived KM

d (532) is depicted in Fig. 8. The predictive model 
presented in Fig. 8 is applied across all regions, allowing us to assess the 
consistency and accuracy of predictions derived from our model in 
different marine settings. The accuracy and consistency of the model's 
performance on both the training and test sets are highlighted. In 
particular, the model boasts a correlation coefficient of 0.97 on the 
training set and 0.93 on the test set. The RMSDs are 0.007 m− 1 and 0.009 
m− 1, respectively, echoing the model's impressive predictive accuracy. 

The model's MAPD reveals a low deviation of 7.3 % in the training set 
and 9.4 % in the test set. These results suggest that, despite a certain 
amount of overfitting, the test set error manages to stay within a rela
tively low range. Overall, the application of the multiple scattering 
model substantially minimizes the discrepancy between Klidar and 
KM

d (532).

3.4. Model performance in different areas

Figs. 9 and 10 showcase the regression analysis of the lidar-derived 
KL

d, following a multiple scattering correction, versus the MODIS- 
derived KM

d . Notably, when contrasted with Fig. 4, it's apparent that 
the discrepancy between the corrected Klidar

d and Kd(531) is markedly 
reduced. Specifically, the correlation coefficient in the East China Sea 
has seen an increase from 0.65 to 0.97. Similarly, the RMSD has dropped 
from 0.026 m− 1 to 0.01 m− 1, while the MAPD has minimized from 23.8 
% to 5.7 %. In regard to the South China Sea, the correlation coefficient 
has observed a rise from 0.59 to 0.96, while the RMSD has declined from 
0.024 m− 1 to 0.001 m− 1. As for the MAPD in the same region, it has 
decreased from 28.6 % to 1.2 %. Looking at the Yellow Sea, the corre
lation coefficient is seen to improve from 0.74 to 0.98. Concurrently, the 
RMSD is reduced from 0.031 m− 1 to 0.008 m− 1, and the MAPD cut down 
from 26.6 % to 5.9 %. Taking into account the regions overall, the 
correlation coefficient is boosted from 0.69 to 0.98. Additionally, the 
RMSD is minimized from 0.026 m− 1 to 0.006 m− 1, and the MAPD from 
26 % shrinks to 3.4 %. The bias across different regions evens out at zero, 
indicating that the data corrected by the multiple scattering correction 
model does not possess bias.

Fig. 10 concisely illustrates the effectiveness of the multiple scat
tering correction model formulated using KM

d (532). When contrasted 
with Fig. 5, considerable enhancements are observed. In the East China 

Fig. 11. Matched data between measured in-situ KF
d and those derived from ICESat-2 and MODIS. (a) Distribution of matched data; (b) Scatterplots of Argo-derived 

KF
d versus MODIS-derived KM

d (531); (c) Scatterplots of Argo-derived KF
d versus MODIS-derived KM

d (532); (d) Scatterplots of Argo-derived KF
d versus ICESat-2-derived 

Klidar ; (e) Scatterplots of Argo-derived KF
d versus ICESat-2-derived KL

d(531) corrected by MSCM-531 developed with MODIS-derived KM
d (531); (f) Scatterplots of Argo- 

derived KF
d versus ICESat-2-derived KL

d(532) corrected by MSCM-532 developed with MODIS-derived KM
d (532). Green solid lines denote the best-fit function, and pink 

dashed lines denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Sea, the correlation coefficient is seen to have risen from 0.42 to 0.96, 
indicating a strong linear relationship. Concurrently, the RMSD has 
decreased from 0.059 m− 1 to 0.014 m− 1, while the MAPD has also 
witnessed a reduction from 21.9 % to 6.7 %. A similar trend is observed 
in the South China Sea, where the correlation coefficient has advanced 
from 0.58 to 0.91. The RMSD has dropped from 0.022 m− 1 down to 
0.001 m− 1, and the MAPD has been lowered from 24.5 % down to 1.4 %. 
Likewise, in the Yellow Sea, notable improvements are seen with the 
correlation coefficient climbing from 0.61 to 0.94, the RMSD reduced 
from 0.042 m− 1 to 0.01 m− 1, and the MAPD diminished from 24.1 % to 
7 %. The overall enhancements across all regions are significant, with 
the correlation coefficient improving from 0.53 to 0.94, RMSD seeing a 
reduction from 0.035 m− 1 to 0.01 m− 1, and the MAPD witnessing a 
decrease from 23.4 % to 5.7 %. Crucially, across all regions, the model 
bias remains zero, indicating the model is unbiased.

3.5. Validation with in-situ measurement

The corresponding Argo float data that was successfully matched is 
depicted in Fig. 11(a). Across diverse global sea areas, we found 80 valid 
match-ups. Fig. 11(d) presents the Klidar derived directly from the lidar 
inversion and the float KF

d, with an RMSD of 0.036 m− 1, a MAPD of 26 %, 
and a correlation coefficient indicating a low correlation, only 0.39. The 
results following the application of the multiple scattering correction 
model are displayed in Figs. 11(e) and (f). Fig. 11(e) showcases the re
sults of the multiple scattering model developed with KM

d (531), where 
the correlation coefficient R has increased to 0.68, indicating a higher 
correlation. The RMSD and MAPD have decreased to 0.032 m− 1 and 
24.9 %, respectively, and are consistent with the regression analysis 
results of the same position float data and MODIS-derived KM

d (531) (as 

shown in Fig. 11(b)). A comparison between MODIS-derived KM
d (532)

and Argo data is presented in Fig. 11(c). with a correlation coefficient of 
0.73, an RMSD of 0.021, and a MAPD of 15.2 %, revealing a high degree 
of consistency. These results indicate that the discrepancy between 
MODIS-derived KM

d (532) and Argo data is significantly smaller than that 
between MODIS-derived KM

d (531) and the same Argo data since MODIS- 
derived KM

d (532) and Argo data are both converted from Kd(490), while 
KM

d (531) is calculated based on another method. Accordingly, the 
correction effect of the multiple scattering model established with 
MODIS-derived KM

d (532) as the reference data (as shown in Fig. 11(f)) is 
better than the model established with KM

d (531). The validation carried 
out with actual measurements reveals that the accuracy of the water 
body attenuation coefficient derived from the lidar, after model 
correction, improved significantly. Furthermore, MODIS-derived 
KM

d (532) exhibited a much smaller discrepancy than MODIS-derived 
KM

d (531).

4. Discussion

4.1. Influence of horizontal binning sizes

Horizontal binning sizes refer to the spatial distance along the sat
ellite track over which lidar photons are accumulated to form a pseudo- 
waveform signal. These accumulation distances are crucial for 
improving the signal-to-noise ratio (SNR) (Zheng et al., 2022) in photon- 
counting lidar data and directly impact the accuracy of Kd estimates. To 
explore the impact of varying cumulative distances on the retrieval of 
the Kd by spaceborne photon-counting lidar, multiple scattering 
correction models were developed for 9 km and 4 km along-track 
accumulation distances. Using KM

d (531) as the reference, Figs. 12 and 

Fig. 12. Scatterplots of ICESat-2-derived KL
d corrected by MSCM-531 versus MODIS-derived KM

d (531) with a cumulative distance of 9 km under different sea areas. 
Red solid lines denote the best-fit function, and blue solid lines denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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13 respectively illustrate the correction results for the 9 km and 4 km 
models. When compared to the 20 km model (as depicted in Fig. 9), 
those statistical parameters exhibit minimal changes. This suggests that 
when utilizing KM

d (531) as the reference value, the multiple scattering 
correction model demonstrates strong robustness and consistency across 
varying cumulative distances. Using KM

d (532) as the reference, similar 
small changes of the correction results for the 9 km and 4 km models can 
be observed in Figs. 14 and 15. The consistency of the model remains 
largely unaffected, indicating that changes in cumulative distance have 
minimal bearing on the model's output and general performance.

4.2. Comparison with in-situ measurements and model validation

The multiple scattering correction model established with MODIS 
KM

d (532) as the reference value has the best effect. One critical factor in 
the discrepancies between the satellite-derived Kd (i.e. ICESat-2-derived 
KL

d and MODIS-derived KM
d ) and in-situ KF

d is the difference in the tem
poral sampling interval between the satellite-derived products and in- 
situ measurements. Another aspect to consider is the spatial scales of 
the measurements, with satellites capturing integrated conditions over 
time and area, while in-situ data reflects localized, instantaneous con
ditions. Additionally, the conversion from Kd(490) to Kd(532) in
troduces uncertainties due to wavelength-specific bio-optical variations 
estimated in the range of 10 % to 20 % (Lee et al., 2005a; Werdell and 
Bailey, 2005). In terms of different water bodies, as shown in Fig. 11e 
and f, when the Kd value is low, the matching points are concentrated 
near the 1:1 line. As the Kd value increases, indicating more turbid 
waters, the matching points gradually deviate from the 1:1 line. This 
suggests that the model performs very well in oligotrophic waters but 
experiences a certain degree of accuracy decline in turbid water bodies. 
In the future, with the expansion of the measured dataset, establishing 

models based on measured values as references will further enhance the 
model's accuracy. The ultimate goal is to develop a global model with 
extensive in-situ measurements. This global model will aim to provide a 
more comprehensive tool for understanding and predicting the optical 
properties of marine environments worldwide.

4.3. Kd inconsistencies between ICESat-2 and MODIS

The results clearly indicate that while ICESat-2 exhibits a strong 
ability to retrieve water diffuse attenuation coefficient, there is a sig
nificant inconsistency between the Kd estimated by ICESat-2 and that 
calculated value using MODIS data. In addition to the impact of multiple 
scattering, the inconsistency could also be due to several other factors: 
(1) The difference in the nature of measurements taken by MODIS and 
ICESat-2. Specifically, MODIS measures the average within a 4 km × 4 
km pixel grid, which provides a broad overview of the water properties 
within that area. In contrast, ICESat-2 measures the water Kd within a 
more elongated area, specifically a 20 km × 11 m rectangular zone along 
its track. (2) The intricate nature of ICESat-2 data, particularly its 
nonlinear and recursive system response, can occasionally lead to 
divergent deconvolution effects for natural signals as highlighted by 
(Eidam et al., 2024). (3) Temporal resolution difference influences the 
comparison result as well, as ICESat-2 measurements may not fully align 
with the daily averages provided by MODIS. (4) Different zenith angles 
also contribute to the observed discrepancy. The solar zenith angles of 
the MODIS mainly range from 10◦ to 70◦, whereas lidar operates at a 
nadir angle close to 0◦. While a correction factor of 1.2 has been pro
posed in previous studies with an average zenith angle of 40◦ (Yang 
et al., 2023), it does not account for the effects of multiple scattering. 
Consequently, while differences in Kd values estimated by MODIS and 
ICESat-2 exist, the established multiple scattering model is crucial for 

Fig. 13. Scatterplots of ICESat-2-derived KL
d corrected by MSCM-531 versus MODIS-derived KM

d (531) with a cumulative distance of 4 km under different sea areas. 
Red solid lines denote the best-fit function, and blue solid lines denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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eliminating or reducing this discrepancy. Besides, the disparity between 
Klidar versus KM

d (531) and Klidar versus KM
d (532) is mainly due to the 

distinct methodologies employed in deriving these values, (i.e., Eq. (1)
versus Eq. (3)). Validation with in-situ measurement indicates MSCM- 
532 derived from KM

d (532) have a higher accuracy.

4.4. Uncertainty of MSCM

The uncertainty in the lidar Kd derived from the multiple scattering 
correction model predominantly originates from three principal sources: 
measurement (M), representation (R), and prediction (P) errors. The 
total uncertainty can be expressed as the square root of the sum of 
squares of these errors (Gregor and Gruber, 2021): 

E =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
M2 + R2 + P2

√
(14) 

The uncertainty in Eq. (14) is derived from three principal error 
sources: measurement, representation, and prediction. While these error 
sources have both random and systematic components, for the purpose 
of this study, we have made the simplifying assumption that the sys
tematic errors are negligible due to the rigorous calibration processes of 
both the ICESat-2 (Luthcke et al., 2021) and MODIS (Xiong and Butler, 
2020) instruments. This assumption allows us to treat the measurement 
errors as normally distributed with a mean bias of zero. Specifically, the 
measurement error (M) reflects potential biases (systematic errors) from 
sampling and measurement, as well as the random errors associated 
with these processes. Given the high level of calibration of the ICESat-2 
and MODIS measurements, we consider it reasonable to assume that any 
systematic errors are effectively zeroed out, leading to an error distri
bution that is purely random in nature. The measurement errors pri
marily result from a combination of potential data deviations arising 
from the MODIS and ICESat-2 datasets. Since the construction of the 

MSCM is reliant on MODIS data, similar types of errors in this dataset 
can propagate through the model and influence the final output. 
Moreover, errors inherent in Klidar also contribute to model uncertainty. 
Therefore, M is calculated as follows: 

Δ2Kd(lidar)
K2

d(lidar)
=

Δ2Klidar

K2
lidar

+
Δ2Kd(MODIS)

K2
d(MODIS)

(15) 

In this equation, the uncertainty of Klidar is less than 1 % (Lu et al., 
2020), and the uncertainty of the MODIS-derived Kd product is 21.61 % 
(Zhao et al., 2018), hence, M is approximately bounded by 21.63 %.

Representation error R arises from gridded matching and is typically 
assumed to be normally distributed, with no bias at the global scale 
(Gregor and Gruber, 2021). The prediction error P, determined using 
validation data, is approximately around 10 %. Therefore, the total 
uncertainty of the MSCM is approximately estimated at 23.8 % by 
combining these components.

It is important to recognize that the MODIS KM
d (490) product and the 

scattering coefficient retrieval, which serves as the basis for our 
comparative analysis, are known to perform more effectively in oligo
trophic type I waters as those models are derived for the clear open 
ocean. MODIS product has large uncertainty in the turbid water (Wang 
et al., 2009). This limitation could potentially impact the accuracy of our 
model, especially in more turbid waters. In the future, as more mea
surements become available, more coastal in-situ data will be used to 
improve the model's accuracy.

5. Summary and conclusion

This study aims to explore the potential of ICESat-2 in detecting the 
diffuse attenuation coefficient of waters in marginal seas. The conclu
sions are as follows: (1) ICESat-2 demonstrates a powerful capability for 

Fig. 14. Scatterplots of ICESat-2-derived KL
d corrected by MSCM-532 versus MODIS-derived KM

d (532) with a cumulative distance of 9 km under different sea areas. 
Red solid lines denote the best-fit function, and blue solid lines denote the 1:1 line. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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retrieving the diffuse attenuation coefficient across a diverse range of 
aquatic environments.; (2) Due to the influence of multiple scattering 
and other factors, there is a certain discrepancy between the lidar system 
attenuation coefficient estimated by ICESat-2 and the diffuse attenua
tion coefficient of MODIS; (3) This discrepancy can be effectively 
eliminated or reduced through the construction of a multiple scattering 
correction model; (4) The multiple scattering model performs well 
across varied cumulative distances; (5) Validation with in-situ BGC-Argo 
measurements indicates that the accuracy of the lidar-derived diffuse 
attenuation coefficient is greatly improved after the application of the 
multiple scattering correction model. In summary, our research is the 
first to validate the capability of spaceborne photon-counting lidar in 
detecting marginal seas. The findings of this study carry significant 
implications for the characterization of oceanic optical properties in 
marginal seas, which are often subject to substantial human impact. The 
successful application of space-borne lidar data, as demonstrated 
through our analysis, offers a powerful tool for monitoring and assessing 
the complex dynamics of these vulnerable marine environments. The 
ability to accurately determine the diffuse attenuation coefficient is 
particularly crucial for understanding light availability, which is a key 
driver of photosynthesis and primary productivity in marine ecosystems. 
Moreover, the enhanced accuracy of the lidar-derived attenuation co
efficient, achieved through our developed multiple scattering correction 
model, provides a more reliable basis for environmental studies and 
management decisions in coastal and nearshore areas. However, due to 
the lack of measured data, this study relies on MODIS data as the 
reference value to correct Klidar, and the Argo measurements are only 
used for model validation. Consequently, any inherent uncertainty 
present in MODIS data would inevitably be propagated to the final 
correction results. Future research should collect sufficient in-situ 
measurements and use them for the correction of the multiple scat

tering model, which will further improve the reliability and accuracy of 
the results.
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Loiselle, S.A., Bracchini, L., Cózar, A., Dattilo, A.M., Tognazzi, A., Rossi, C., 2009. 
Variability in photobleaching yields and their related impacts on optical conditions 
in subtropical lakes. J. Photochem. Photobiol. B Biol. 95, 129–137.

Lu, X., Hu, Y., Pelon, J., Trepte, C., Liu, K., Rodier, S., Zeng, S., Lucker, P., Verhappen, R., 
Wilson, J., Audouy, C., Ferrier, C., Haouchine, S., Hunt, B., Getzewich, B., 2016. 
Retrieval of ocean subsurface particulate backscattering coefficient from space-borne 
CALIOP lidar measurements. Opt. Express 24, 29001–29008.

Lu, X., Hu, Y., Yang, Y., Bontempi, P., Omar, A., Baize, R., 2020. Antarctic spring ice-edge 
blooms observed from space by ICESat-2. Remote Sens. Environ. 245, 111827.

Lu, X., Hu, Y., Yang, Y., Neumann, T., Omar, A., Baize, R., Vaughan, M., Rodier, S., 
Getzewich, B., Lucker, P., Trepte, C., Hostetler, C., Winker, D., 2021a. New ocean 
subsurface optical properties from space Lidars: CALIOP/CALIPSO and ATLAS/ 
ICESat-2. Earth Space Sci. 8 e2021EA001839. 

Lu, X., Hu, Y., Yang, Y., Vaughan, M., Palm, S., Trepte, C., Omar, A., Lucker, P., Baize, R., 
2021b. Enabling value added scientific applications of ICESat-2 data with effective 
removal of afterpulses. Earth Space Sci. 8 e2021EA001729. 

Lu, X., Hu, Y., Omar, A., Yang, Y., Vaughan, M., Lee, Z., Neumann, T., Trepte, C., 
Getzewich, B., 2023. Lidar attenuation coefficient in the global oceans: insights from 
ICESat-2 mission. Opt. Express 31, 29107–29118.

Luthcke, S.B., Thomas, T.C., Pennington, T.A., Rebold, T.W., Nicholas, J.B., Rowlands, D. 
D., Gardner, A.S., Bae, S., 2021. ICESat-2 pointing calibration and geolocation 
performance. Earth Space Sci. 8 e2020EA001494. 

Magruder, L.A., Brunt, K.M., 2018. Performance analysis of airborne photon- counting 
lidar data in preparation for the ICESat-2 mission. IEEE Trans. Geosci. Remote Sens. 
56, 2911–2918.

Magruder, L.A., Brunt, K.M., Alonzo, M., 2020. Early ICESat-2 on-orbit geolocation 
validation using ground-based corner cube retro-reflectors. Remote Sens. (Basel) 12, 
3653.

Martino, A.J., Neumann, T.A., Kurtz, N.T., McLennan, D., 2019. ICESat-2 mission 
overview and early performance. In: Sensors, Systems, and Next-Generation 
Satellites XXIII. SPIE, pp. 68–77.

Montes, M.A., Churnside, J., Lee, Z., Gould, R., Arnone, R., Weidemann, A., 2011. 
Relationships between water attenuation coefficients derived from active and 
passive remote sensing: a case study from two coastal environments. Appl. Optics 50, 
2990–2999.

Morel, A., 1991. Light and marine photosynthesis: a spectral model with geochemical 
and climatological implications. Prog. Oceanogr. 26, 263–306.

Morel, A., Huot, Y., Gentili, B., Werdell, P.J., Hooker, S.B., Franz, B.A., 2007. Examining 
the consistency of products derived from various ocean color sensors in open ocean 
(case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 
111, 69–88.

Neumann, T., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck, K., Gibbons, A., 
Lee, J., Luthcke, S., Rebold, T., 2023. ATLAS/ICESat-2 L2A Global Geolocated 
Photon Data, Version 6. NASA National Snow and Ice Data Center Distributed Active 
Archive Center, Boulder, CO. 

Z. Zhang et al.                                                                                                                                                                                                                                   Remote Sensing of Environment 318 (2025) 114602 

15 

https://doi.org/10.5067/ATLAS/ATL03.006
https://doi.org/10.5067/ATLAS/ATL03.006
https://argo.ucsd.edu
https://argo.ucsd.edu
https://www.ocean-ops.org
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0005
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0005
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0005
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0010
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0010
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0010
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0015
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0015
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0015
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0020
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0020
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0020
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0020
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0025
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0025
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0025
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0025
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0030
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0030
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0030
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0030
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0040
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0040
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0040
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0040
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0045
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0045
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0050
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0050
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0050
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0055
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0055
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0060
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0060
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0060
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0065
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0065
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0065
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0070
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0070
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0070
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0070
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0070
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0075
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0075
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0075
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0080
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0080
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0080
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0085
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0085
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0090
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0090
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0090
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0095
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0095
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0095
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0100
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0100
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0100
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0105
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0105
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0110
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0110
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0110
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0115
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0115
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0115
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0120
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0120
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0120
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0125
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0125
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0125
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0130
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0130
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0135
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0135
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0135
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0140
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0140
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0140
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0140
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0145
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0145
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0145
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0150
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0150
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0150
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0155
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0155
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0155
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0160
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0160
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0160
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0165
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0165
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0165
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0165
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0170
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0170
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0175
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0175
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0175
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0175
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0180
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0180
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0180
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0185
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0185
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0185
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0190
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0190
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0190
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0195
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0195
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0195
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0200
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0200
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0200
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0205
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0205
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0205
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0210
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0210
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0210
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0210
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0215
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0215
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0220
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0220
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0220
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0220
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0225
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0225
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0225
http://refhub.elsevier.com/S0034-4257(25)00006-9/rf0225


Organelli, E., Claustre, H., Bricaud, A., Barbieux, M., Uitz, J., D’Ortenzio, F., 
Dall’Olmo, G., 2017. Bio-optical anomalies in the world’s oceans: an investigation on 
the diffuse attenuation coefficients for downward irradiance derived from 
Biogeochemical Argo float measurements. J. Geophys. Res. Oceans 122, 3543–3564.

Rast, M., Bezy, J.L., Bruzzi, S., 1999. The ESA Medium Resolution Imaging Spectrometer 
MERIS a review of the instrument and its mission. Int. J. Remote Sens. 20, 
1681–1702.

Shi, W., Wang, M., 2012. Satellite views of the Bohai Sea, Yellow Sea, and East China 
Sea. Prog. Oceanogr. 104, 30–45.

Song, Z., He, X., Bai, Y., Dong, X., Wang, D., Li, T., Zhu, Q., Gong, F., 2023. Atmospheric 
correction of absorbing aerosols for satellite ocean color remote sensing over coastal 
waters. Remote Sens. Environ. 290, 113552.

Stramska, M., Zuzewicz, A., 2013. Influence of the parametrization of water optical 
properties on the modelled sea surface temperature in the Baltic Sea. Oceanologia 
55, 53–76.

Sun, M., Chen, P., Zhang, Z., Zhong, C., Xie, C., Pan, D., 2023. Evaluation of the CALIPSO 
Lidar-observed particulate backscattering coefficient on different spatiotemporal 
matchup scales. Front. Mar. Sci. 10.

Tiwari, S.P., Shanmugam, P., 2014. A robust algorithm to determine diffuse attenuation 
coefficient of downwelling irradiance from satellite data in coastal oceanic waters. 
IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing 7, 1616–1622.

Vadakke Chanat, S., Jamet, C., 2023. Validation protocol for the evaluation of space- 
borne lidar particulate back-scattering coefficient BBP. front. Remote sensing 4.

Wang, M., Son, S., Harding Jr., L.W., 2009. Retrieval of diffuse attenuation coefficient in 
the Chesapeake Bay and turbid ocean regions for satellite ocean color applications. 
J. Geophys. Res. Oceans 114.

Wang, M., Ahn, J.-H., Jiang, L., Shi, W., Son, S., Park, Y.-J., Ryu, J.-H., 2013. Ocean color 
products from the Korean geostationary ocean color imager (GOCI). Opt. Express 21, 
3835–3849.

Wang, Z., Liu, S., Song, J., Wen, L., Yuan, H., Duan, L., He, Z., Li, X., 2024. Acidification 
state and interannual variability in marginal sea: a case study of the Bohai and the 
Yellow Seas surface waters in April 2023. Environ. Res. 259, 119536.

Werdell, P.J., Bailey, S.W., 2005. An improved in-situ bio-optical data set for ocean color 
algorithm development and satellite data product validation. Remote Sens. Environ. 
98, 122–140.

Wong, A.P.S., Wijffels, S.E., Riser, S.C., Pouliquen, S., Hosoda, S., Roemmich, D., 
Gilson, J., Johnson, G.C., Martini, K., Murphy, D.J., Scanderbeg, M., Bhaskar, T.V.S. 
U., Buck, J.J.H., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X., Poffa, N., 
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