
HAL Id: hal-04885997
https://hal.science/hal-04885997v1

Submitted on 14 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Circuits with Constraints via Convex
Optimization

Soroush Ghandi, Benjamin Quost, Cassio de Campos

To cite this version:
Soroush Ghandi, Benjamin Quost, Cassio de Campos. Probabilistic Circuits with Constraints
via Convex Optimization. 2024 European Conference on Machine Learning and Knowledge Dis-
covery in Databases, Sep 2024, Vilnius, Lithuania. pp.161-177, �10.1007/978-3-031-70352-2_10�. �hal-
04885997�

https://hal.science/hal-04885997v1
https://hal.archives-ouvertes.fr

Probabilistic Circuits with Constraints via
Convex Optimization

Soroush Ghandi1, Benjamin Quost2, and Cassio de Campos1

1 Eindhoven Unisversity of Technology
2 University of Technology of Compiègne

Abstract. This work addresses integrating probabilistic propositional
logic constraints into the distribution encoded by a probabilistic circuit
(PC). PCs are a class of tractable models that allow efficient compu-
tations (such as conditional and marginal probabilities) while achieving
state-of-the-art performance in some domains. The proposed approach
takes both a PC and constraints as inputs, and outputs a new PC that
satisfies the constraints. This is done efficiently via convex optimization
without the need to retrain the entire model. Empirical evaluations indi-
cate that the combination of constraints and PCs can have multiple use
cases, including the improvement of model performance under scarce or
incomplete data, as well as the enforcement of machine learning fairness
measures into the model without compromising model fitness. We believe
that these ideas will open possibilities for multiple other applications in-
volving the combination of logics and deep probabilistic models.

Keywords: Probabilistic Circuits · Probabilistic Logic · Graphical Mod-
els.

1 Introduction

Generative probabilistic models typically aim to learn the joint probability dis-
tribution of data, in order to perform probabilistic inference and answer queries
of interest. However, not all the probabilistic models are the same in that regard.
Models like variational autoencoders (VAEs) [13] and generative adversarial net-
works (GANs) [9] possess exceptional modeling prowess; nevertheless, their abil-
ity to perform probabilistic inference such as marginalization and conditioning
remains rather limited, due to tractability issues.

In contrast, tractable probabilistic models, such as probabilistic circuits (PCs),
including the prominent sum-product networks (SPNs) [27,31], allow for a wider
range of exact inferences, arguably at the expense of some fitting power. PCs
fall within the family of probabilistic graphical models (PGMs), a class of mod-
els using a graph-based representation to encode high-dimensional distributions
[14]. Unlike Bayesian networks, which have a notoriously high complexity for
general queries [5], PCs can produce several types of inferences in polynomial
time under arguably mild assumptions [33].

ar
X

iv
:2

40
3.

13
12

5v
1

 [
cs

.L
G

]
 1

9
M

ar
 2

02
4

2 Ghandi et al.

Learning a PC from data D is defined as specifying a PC that represents
the probability distribution underlying D. This active line of research has seen
several meaningful proposals in the past few years, such as [1,6,7,8,11,12,16]
and [17,18,20,22,24,28,29,30,32,34,35], but remains nevertheless open, given the
difficulty of the task which involves both structure and parameter learning.

We address here the issue of enhancing a PC learned from data by using ad-
ditional information and/or learning goals. To this end, we propose an approach
for combining the PC with probabilistic propositional logic (PPL) constraints.
More specifically, the approach takes a learned PC and updates (some of) its
parameters in order to enforce the PPL constraints globally in the represented
distribution. Our strategy can be seen as a “post-learning” method, which gives
the advantages of versatility (existing models need not be retrained) as well as
modularity: one may train a PC using any algorithm, as long as the resulting
network keeps dependent variables (which may appear together in the same PPL
constraint) together within the model; that is, they cannot appear factorized in
the graph (further details are given in Section 3). This allows to build convex
optimization problems (more precisely, constrained KL-divergence solvers) over
parts of the distribution encoded in the PC so as to improve the corresponding
model parameters via an efficient tractable method.

The benefits of having user-specified constraints are multi-fold. In order to
illustrate them, we employ PPL constraints in a few (non-exhaustive) scenarios:
(1) we improve the quality of models by enforcing that the yielded model matches
the empirical marginal distributions under situations of (a) scarce data or (b)
missing data; (2) we enforce fairness constraints into the model while at the same
time avoiding a decrease in fitness. Overall, the experiments indicate that using
PPL constraints often yields a better model (without compromising efficiency
or accuracy), which is likely possible because of typical over-parametrizations
that current large machine learning models impose. We emphasize that these
applications of constraints are only a few examples of possible use, as we believe
there are many other possibilities ahead to be tried.

2 Probabilistic circuits

Probabilistic circuits (PCs) are a family of distribution representations facili-
tating many exact and efficient inference routines (see [2] for a nice introduc-
tion). A PC encodes a probabilistic model over a collection of variables X; it
is structured as a rooted directed acyclic graph G, containing three types of
nodes: (i) distribution nodes, (ii) sum nodes, and (iii) product nodes. Distribu-
tion nodes are the leaves of the graph G, while sum and product nodes are the
internal nodes. Each distribution node (leaf) v computes a probability distri-
bution over some subset X′ ⊆ X, i.e. an integrable function pv(x

′) : X ′ → R+

from the sample space of X′ to the non-negative real numbers. The scope of v
is the set of variables sc(v) := X′ over which the leaf computes a distribution.
The scope of any internal node v (sum or product) is recursively defined as
sc(v) = ∪u∈ch(v) sc(u), where ch(v) is the set containing the children of v. Sum

Probabilistic Circuits with Constraints via Convex Optimization 3

nodes compute convex combinations over their children, i.e. if v is a sum node,
then v computes v(x) =

∑
u∈ch(v) wv,uu(x), where wv,u ≥ 0. In a normalized

PC, we have
∑

u∈ch(v) wv,u = 1. Product nodes compute the product over their
children, i.e. if v is a product node, then v(x) =

∏
u∈ch(v) u(x). The support of

a node is the region where its associated function is strictly positive.

The main feature of PCs is that they facilitate a wide range of tractable
inference routines, which go hand in hand with certain structural properties
[2,4]: (i) a sum node v is called smooth if its children have all the same scope:
sc(u) = sc(u′), for any u, u′ ∈ ch(v); (ii) a product node v is called decom-
posable if its children have non-overlapping scopes: sc(u) ∩ sc(u′) = ∅, for any
u, u′ ∈ ch(v), u ̸= u′; (iii) a node is consistent if its support is non-empty. A
PC is smooth (respectively decomposable) if all its sum (respectively product)
nodes are smooth (respectively decomposable). A PC is consistent if all its nodes
are consistent. The distribution p(sc(v)) represented by a node v in the PC is
the function computed by the rules of the previous paragraph, and can be eval-
uated with a feed-forward pass. In order to ensure the tractability of queries,
we can rely on smoothness and decomposability, but we also need leaf distribu-
tion nodes to compute inferences efficiently. This is a reason for many proposed
PCs in the literature to assume that leaf nodes are univariate with some known
distribution, such as Bernoulli, categorical, Gaussian, etc. Now, assume that we
wish to compute a marginal query, that is, to evaluate the probability value over
Xo ⊂ X for evidence Xo = xo, while marginalising X¬o = X \ Xo. In smooth
and decomposable PCs, this task reduces to performing marginalization at the
leaves [25]: for each leaf v, one marginalizes sc(v)∩X¬o, and evaluates it for the
values corresponding to sc(v) ∩Xo. The desired marginal pXo

(xo) results from
evaluating internal nodes as in computing the complete distribution. Smoothness
and consistency are sufficient to guarantee that the function of a PC represents
a distribution. We also assume PCs are normalized.

pa(X1)

pi(X2)

pb(X2) pd(X2)pc(X3) pe(X3) pf (X1) pg(X1) ph(X3)

.8 .2

.5 .5
.3

.7

Fig. 1: Example of PC with variables X1, . . . , X3. Sum nodes are in blue, product
nodes in green, distribution leaf nodes in salmon. In this example, all leaf nodes
are univariate. Subscriptions on each p in the figure are used to indicate that
those are different leaf distributions (even if sometimes over the same variable).

4 Ghandi et al.

An important feature of normalized valid PCs is their interpretation as hier-
archical, discrete mixture models [23,36]:

p(x) =
∑
z

p(x|z)p(z) =
∑
z

pz(x)p(z), (1)

where Z is a discrete latent vector, which originates from the sum nodes of the
structure. The number of states of Z, and thus of represented mixture compo-
nents p(x|z), grows exponentially in the depth of the PC [21,36]. While we use
this notation here and throughout the paper, we do not run computations di-
rectly in this formulation, but instead we make use of the graphical structure of
the PC in order to perform efficient tractable inference, as usual for PCs.

3 Probabilistic circuits with constraints

We assume that a normalized valid PC has been produced (learned from data,
designed by a human, etc.) over a domain with variables X. Such a PC in-
duces a joint distribution p(X). The goal is to enforce some (linear) probabilistic
propositional logic (PPL) constraints upon p. We work with constraints of the
form: ∑

ic

τic · p(Fic) ≤ αc, (2)

where each Fic is a propositional logic formula defined over Boolean variables
Xc = {Xjc}∀jc ⊆ X, τic , αc are real numbers, jc (and ic) are indexes of variables
(terms) of the constraint c, and c ∈ C is an index over a set of PPL constraints.
We assume that constraints are placed in buckets B (mathematically a bucket
can be simply an index set indicating the constraints it contains) such that
XB1 ∩ XB2 = ∅ for all distinct buckets B1, B2, where XB = ∪c∈BXc is the
union of all variables appearing in a constraint inside bucket B. If any Xc1 and
Xc2 of two constraints are not disjoint, then we put them together into the same
bucket, so as to ensure that buckets have mutually exclusive sets of variables.

The constraints in each bucket B may obviously create dependencies among
the variables XB . In order to avoid inconsistencies between such dependencies
and those arising from the graph structure of the PC, we require that the vari-
ables in a bucket appear together in nodes of the model, that is, for any v,B,
X ∈ XB ∩ sc(v) ⇒ XB ⊆ sc(v). Therefore, Equation (1) can be recast as

p(X) =
∑
z

p(z)
∏
B

pz(XB)
∏

Xi∈X\∪XB

pz(Xi), (3)

where pz(XB) is a categorical distribution—note that notations pz(XB) and
pz(Xi) employ a slight abuse, as the function itself is “aware” of the indexes of
the variables in their arguments and may vary accordingly, for example, pz(Xi)
is also a function of i and not only of Xi; the same abuse holds elsewhere, for
example in Expression (2). Equation (3) basically decomposes pz(x) of Equa-
tion (1) into components that involve PPL variables (which remain together) and

Probabilistic Circuits with Constraints via Convex Optimization 5

the other variables, which are assumed to be represented by univariate leaf-node
distributions.

For ease of exposure, but also for the sake of compatibility with software that
only deals with univariate leaf distributions, one can replace categorical distri-
butions in leaf nodes with new sub-PCs. If one assumes independence among
scope variables, then a product node with univariate leaf nodes suffices. If one
wants to fully exploit the categorical distribution node, then a sum node with one
child per parameter of the categorical distribution can be used. Figure 2 gives
an example of dealing with a categorical “joint” distribution over two Boolean
variables X1, X2. Figure 2a shows the independent case, while Figure 2b shows
the joint approach to represent the distribution for X1 and X2. The reader may
have already noticed that large buckets of constraints will force the model to
keep together many variables, which can be problematic as the number of pa-
rameters of the categorical joint distribution of all variables in a bucket B will
grow exponentially in |XB | (as in Figure 2b, all possible configurations of XB

would be listed). We will discuss this later, and ask the reader to assume that
buckets (or equivalently scopes of leaf distribution nodes) are not large.

p(X1) p(X2)

p(X1, X2)

(a) Leaf structure using independence
for X1 and X2.

p(X1, X2)

x1 ¬x2 ¬x1 x2x1 x2 ¬x1 ¬x2

θ10 θ01θ11 θ00

(b) Leaf replacement structure without
assuming independence of X1 and X2.

Fig. 2: Leaf distribution replacement structures that can be used to represent
the parameters of a categorical variable for a bucket B with XB = {X1, X2}.

Given a PC representing p(X) and PPL constraints, we aim to find an effi-
cient approach to discover a new PC inducing a distribution q∗(X) that is close
to p(X) while respecting the PPL constraints:

q∗(X) = argmin
q(X)

L(p(X), q(X))

s.t. ∀B, ∀c ∈ B :
∑
ic

τic · q(Fic) ≤ α′
c, , q(X) ∈ P(X) ,

(4)

where L measures the discrepancy between two distributions, P(X) denotes a
set of probability distributions over X that can be represented by a PC, and B
are buckets of PPL constraints. Optimization (4) is impractical, as it amounts to
solving a complex optimization problem to search over P(X), even if L is simple

6 Ghandi et al.

enough. Therefore, we exploit the PC on which p(X) was estimated, in order to
constraint the search space of q(X): we enforce q(X) to have a shape similar to
p(X), i.e.

q(X) =
∑
z

p(z)
∏
B

qz(XB)
∏

Xi∈X\∪XB

pz(Xi), (5)

that is, only
∏

B qz(XB) will differ from the specification of p(X). Plainly put,
we only refine the distributions in the leaf nodes of the PC. Moreover, we use
the Kullback-Leibler divergence L(p(X), q(X)) = H(p(X), q(X)) −H(p(X)) as
discrepancy measure, where H(·) is the entropy and H(·, ·) the cross entropy.
Clearly, we can focus on the cross entropy only, as the second term does not
contain q(X). Our first result is an upper bound on the cross entropy which
allows us to run the optimization efficiently. The bound on the cross-entropy
establishes an upper bound on the KL-divergence between p(X) and q(X).

Theorem 1. Assume a PC representing a distribution p(X) as in Equation (3)
and PPL constraints as in Equation (2) (placed in disjoint buckets B) are given.
Assume that q(X) is a distribution induced by a PC with form as in Equation (5).
Then, H(p(X), q(X)) ≤

∑
B Ez[H(pz(XB), qz(XB))] + H(p(X′, Z)), where X′

are the variables not appearing in constraints.

Proof. Note that we are particularly interested in terms with parameters in q(X),
as they will be optimized later. First, recall that

−H(p(X), q(X)) =
∑
x

p(x) log q(x) , (6)

and for any configuration x of X and for any arbitrary z0 ∈ Z, we have:

q(x) =
∑
z

p(z)p′z(x
′)
∏
B

qz(xB) ≥ p(z0)p
′
z0(x

′)
∏
B

qz0(xB) , (7)

which holds because all terms are non-negative, where X′ = X \∪XB (variables
not in any constraint), and p′z(X

′) =
∏

Xi∈X′ pz(Xi), for given z. By substituting
(7) into (6), we can establish a lower bound on the negative cross-entropy term:

−H(p(X), q(X)) ≥
∑
x

p(x) log[p(z0)p
′
z0(x

′)
∏
B

qz0(xB)] (8)

=
∑
x

∑
z

p(z)p′z(x
′)
∏
β

pz(xβ) log[p(z)p
′
z(x

′)
∏
B

qz(xB)], (9)

with the arbitrary z0 ∈ Z in Expression (8) being chosen to be equal to z for
each of the elements in the summation over z, thus resulting in Expression (9).
Then, we can split Expression (9) into two parts (using the log of products as
sum of logs), where only the second term depends on q(X):

−H(p(X), q(X)) ≥
∑
x

∑
z

p(z)p′z(x
′)
∏
β

pz(xβ) log[p(z)p
′
z(x

′)]

+
∑
x

∑
z

p(z)p′z(x
′)
∏
β

pz(xβ) log[
∏
B

qz(xB)]. (10)

Probabilistic Circuits with Constraints via Convex Optimization 7

The first term in the RHS of Expression (10) can be reduced to −H(p(X′, Z));
it does not depend on q(X), and will consequently not be analyzed further. The
second term in the RHS can be manipulated as

=
∑
B

∑
x

∑
z

p(z)p′z(x
′)
∏
β

pz(xβ) log qz(xB)

=
∑
B

∑
xBt
∀t

∑
x′

∑
z

p(z)p′z(x
′)
∏
β

pz(xβ) log qz(xB)

=
∑
B

∑
z

p(z)
∑
xBt
∀t

∏
β

pz(xβ) log qz(xB)
∑
x′

p′z(x
′)

=
∑
B

∑
z

p(z)
∑
xBt
∀t

∏
β

pz(xβ) log qz(xB)

=
∑
B

∑
z

p(z)
∑
xB

pz(xB) log qz(xB)
∑
xBt

∀t,Bt ̸=B

∏
β ̸=B

pz(xβ)

=
∑
B

∑
z

p(z)
∑
xB

pz(xB) log qz(xB)
∏
β ̸=B

∑
xβ

pz(xβ)

=
∑
B

∑
z

p(z)
∑
xB

pz(xB) log qz(xB)

= −
∑
B

Ez[H(pz(XB), qz(XB))]. (11)

Hence, −H(p(X), q(X)) ≥ −H(p(X′, Z))−
∑

B Ez[H(pz(XB), qz(XB))], and the
result follows. ⊓⊔

Thus, we can adapt the PC at hand using the specified constraints by min-
imizing the upper bound on the desired discrepancy, leaving aside the term
H(p(X′, Z)) which does not involve q(X):

q∗(X) = argmin
q(X)

∑
B

Ez[H(pz(XB), qz(XB))]

s.t. ∀B, ∀c ∈ B :
∑
ic

τic · q(Fic) ≤ αc , q(X) ∈ P(X) ,
(12)

Theorem 2 sheds light on the complexity of the procedure; it is based on consid-
erably mild assumptions, as long as buckets do not involve too many variables.

Theorem 2. Given the same inputs as Theorem 1, and assuming |XB | ≤ k for
all buckets B, the solution q∗ to the optimization in Optimization (12) can be
found in polynomial time in the input size (while possibly exponential in k).

Proof. The objective function is a sum over buckets containing (mutually) dis-
joint sets of variables, so we can solve Optimization (12) by solving separate

8 Ghandi et al.

optimizations for each bucket B:

∀B : q∗(XB) = argmin
q(XB)

−
∑
z

p(z)
∑
xB

pz(xB) log qz(xB)

s.t. ∀c ∈ B :
∑
ic

τic · q(Fic) ≤ αc , q(XB) ∈ P(XB) .
(13)

(Note the abuse of notation here, as q∗(XB) is used to indicate the parameters
of model q∗(X) that are associated with leaf nodes containing variables XB .)
Optimization (13) can be solved for each B using convex optimization solvers,
which run in polynomial time in the size of their inputs (and can be very efficient
in practice). The values pz(xB) and p(z) are fixed during the optimization and
can be obtained directly from the PC model representing p(X).

Assuming that qz(xB) is parameterized using values θz,xB
representing a cat-

egorical distribution over XB conditional to Z = z (same structure as in Figure
2b), we obtain Optimization (14) for each bucket B. Note that in Optimiza-
tion (14), each PPL formula Fic is written down as the sum of the worlds that
satisfy the formula (we can query Fic(xB) to see if each xB satisfies Fic , assum-
ing Fic = 1 if so, and zero otherwise). Optimization (14) also connects the local
parameters θz,xB

with the marginal value of the candidate PC for xB , that is,
q(xB) =

∑
z p(z)θz,xB

, which appears in the last expression of the optimization
problem: thus, the imposed constraint is a global constraint in the joint model
q(X), and not simply a local constraint in the local parameters. Note also that
p(z) = q(z) (by assumption from Expression (5)).

∀B : q∗(XB) = argmin
θz,xB

: ∀z,xB

−
∑
z

p(z)
∑
xB

pz(xB) log θz,xB
,

s.t.

∀z,xB : θz,xB
≥ 0 , ∀z : 1 =

∑
xB

θz,xB
,

∀c ∈ B :
∑
ic

τic ·

(∑
xB

Fic(xB)(
∑
z

p(z)θz,xB
)

)
≤ αc .

(14)

Optimization (14), and hence Optimizations (4) and (13), will have a feasible
solution so long as the set of PPL constraints has a feasible solution. This can be
checked using linear programming using the constraints in Optimization (14).
Therefore, it can be checked in polynomial time if the user provided an in-
feasible set of constraints. The number of buckets is bounded by the number of
constraints C, which therefore also bounds the number of optimization calls. The
optimization for bucket B has O(|Z|·|XB |) variables and O(C ·|XB |) constraints
(those are all very loose bounds), which is asymptotically bounded by the PC
size plus constraints’ size (that is, the input size), and convex optimization can
be solved in polynomial time in the number of variables and constraints. ⊓⊔

Probabilistic Circuits with Constraints via Convex Optimization 9

Fig. 3: LearnSPN vs. (constrained) PPL-LSPN trained on scarce datasets.

Fig. 4: RAT-SPN vs. (constrained) PPL-RSPN trained on scarce datasets.

Fig. 5: Sum of quadratic differences on marginal parameters between the models
with and without marginal constraints, when trained on scarce data. Constraints
clearly refine the model more strongly for RAT-SPNs than for LearnSPN. Stan-
dard RAT-SPN marginals are very far from matching the empirical marginal
distributions (data not shown).

4 Experiments

We conduct a series of experiments to illustrate how constrained optimization
can be utilized to shape a desirable performance or behavior in PCs. For the
sake of this illustration, we focus on two use cases of constraints, namely (i)
constraints over marginals of the distribution, and (ii) constraints for enforcing
fairness in distributions.

The idea behind constraints on marginals is to adjust a probabilistic model
to match the empirical marginals of X on data D. Typically, it is easier to ac-
curately learn the marginal distributions over single variables rather than the
whole joint distribution, in particular in cases when D is scarce and/or incom-

10 Ghandi et al.

plete. In Sections 4.1 and 4.2 we explore how the use of constraints on empirical
marginals affects the performance/behavior of learned PCs.

In Section 4.3, we investigate the impact of applying our method to a variety
of fairness-specific classification tasks by adding fairness in the form of PPL
constraints into PCs. Most common PC learning methods are not known to be
inherently compatible with fairness, and being able to apply fairness constraints
to PCs opens the door to utilizing these probabilistic models in areas where
fairness is a priority, thus extending their domain of applicability.

Throughout the experiments, we utilize both LearnSPN [8] and RAT-SPN
[26] for learning baseline PC models (one could also handcraft a PC for a pur-
pose and use it with our approach, as we are not bound by the way the PC was
obtained). We use the original implementation of RAT-SPN3, and the imple-
mentation of [3]4 for LearnSPN. For LearnSPN, statistical test significance and
the Laplace smoothing parameter are set to 0.01 over all experiments. For RAT-
SPN, hyperparameters that correspond to the region graph structure are set as
follows: the number of recursive splits is 10, the depth of each recursive split is 2,
the number of input distributions in each partition is 8, and the number of sum
nodes per partition is 8; all the other hyperparameters are set to their defaults.
For each experiment, RAT-SPN is trained for 20 epochs.

Fig. 6: LearnSPN vs. (constrained) PPL-LSPN trained on datasets with MCAR
missing values. Test log-likelihood measures the joint fitness, while quadratic er-
ror shows the quality of the marginals of the model with respect to the marginals
of test data, with clear superior accuracy after constraints are imposed.

3 https://github.com/cambridge-mlg/RAT-SPN
4 https://github.com/AlCorreia/GeFs

Probabilistic Circuits with Constraints via Convex Optimization 11

4.1 Scarce datasets

We carry out this experiment on three different binary datasets, namely NLTCS,
MSNBC, and Jester [19]. Our goal is to illustrate how additional information
pertaining to the empirical marginal distributions can be incorporated into the
PC so as to compensate for data scarcity. In order to simulate scarce data, we
randomly subsample each dataset with a varying number of data instances. We
use this subsample to train the PC model using LearnSPN and RAT-SPN. We
then improve the model using the procedure described above so as to match the
empirical marginal distributions: we add PPL constraints of the form p(Xi =
1) = αi for every variable Xi, which we enforce globally into the model. The test
log-likelihood results are given in Figures 3 and 4. The enhanced models obtained
by applying the constrained optimization are called PPL-LSPN (variant of the
LearnSPN baseline), and PPL-RSPN (variant of RAT-SPN).

As can be seen, PPL-LSPN (Figure 3) and PPL-RSPN (Figure 4) slightly
outperform LearnSPN (resp. RAT-SPN) as the training data become scarcer.
This performance gain (in terms of testing data log-likelihood) is not similar
across all datasets, which we attribute to the relative amount of information
captured by the marginals. Arguably, in smaller datasets (in terms of the number
of samples), matching marginals should lead to larger performance gains, as
marginals encode a relatively larger amount of information. More importantly,
matching marginals did not harm joint accuracy.

We argue that marginal matching is even more advantageous to PPL-RSPN
compared to PPL-LSPN, as the learned marginals are far more erroneous in the
case of RAT-SPN. Figure 5 displays the increase in quadratic error induced by
not matching marginals, for both LearnSPN and RAT-SPN. Clearly, a large gap
can be observed between LearnSPN and RAT-SPN on scarce data. Somewhat to
our surprise, estimated marginals in RAT-SPN are far off (also when compared
to LearnSPN), making that model useless for marginal inference unless the con-
straints are imposed. Hence, and in particular for RAT-SPN, matching marginals
leads to a strong improvement on the marginals themselves while (only but still)
slightly improving the test joint likelihood.

4.2 Experiments with missing values

We again use the three binary datasets above (NLCTS, MSNBC, and Jester).
In order to simulate missing data, we train the baseline PC (via LearnSPN) in a
missing completely at random (MCAR) setting, by removing entries completely
at random from the data tables. After the models are trained, we enhance the
learned distribution to match the training data marginals using the proposed ap-
proach. Note that the current implementation of RAT-SPN mimics the effect of
missing data with dropout layers (which is different from learning in presence of
missing values); as well, the original version of RAT-SPN is not equipped to deal
with missing data at training time, but can be easily tweaked for that purpose.
We therefore focus these experiments on models trained with LearnSPN.

12 Ghandi et al.

Results with MCAR data are summarized in Figure 6. The top plots show
the joint testing data log-likelihood, while the bottom plots show the difference
in the testing data marginal distributions (whose gains are very clear). We can
see that in every experiment, as the proportion of missing values increases, the
PC enhanced using constraints outperforms the base model, which suggests that
marginal matching can be considered as an effective way to deal with missing
data, potentially as an alternative to data imputation.

4.3 Fairness experiments

We investigate the impact of imposing fairness constraints in PCs. For each ex-
periment, we assume variables X which comprise a binary class/target variable
Y ∈ X and a binary protected attribute X ′ ∈ X, X ′ ̸= Y . Our objective is to
improve the distribution learned via a PC towards fairness for the protected at-
tribute when predicting class labels. We consider statistical parity as our measure
of fairness (we use this as an example; we will not debate on fairness measures,
since it is not the main focus of the paper). The corresponding fairness con-
straint is p(y = 1|x′ = 1) = p(y = 1|x′ = 0). It is clear that this constraint is not
of the form

∑
i τi · p(Fi) ≤ α. It would actually induce a non-linear constraint

and the convex optimization could not be directly applied. However, we can lift
the optimization problem to a higher dimension by including a new unknown
β where we take p(y = 1|x′ = 1) = p(y = 1|x′ = 0) = β. This latter can be
decomposed into two separate linear constraints in the desired form:

p((y = 1) ∧ (x′ = 1))− β · p(x′ = 1) = 0,

p((y = 1) ∧ (x′ = 0))− β · p(x′ = 0) = 0;
(15)

and as long as β is fixed, the optimization can be carried out to impose the
constraints in Equation (15) to a learned PC using the proposed approach. In
order to solve for β, we simply carry out an exhaustive search over candidate
values between 0 and 1, retaining the best based on the performance of each
resulting PC (obviously, this search procedure is reasonable for a single unknown
β, or at most a few; otherwise, a smarter strategy would be required).

We consider six different classification datasets commonly used in fairness-
aware machine learning, namely Adult, German Credit, Bank Marketing, Dutch
Census, Credit Card Clients, and Law School [15]. As in Section 4.1, we refer
to the variants as PPL-LSPN (for LearnSPN) and PPL-RSPN (for RAT-SPN).
The details regarding the pre-processing of each dataset are provided in the
appendix. The results are displayed in Tables 1 and 2. Not only PPL-LSPN and
PPL-RSPN are able to achieve a “fair” distribution w.r.t the protected attribute,
but they also manage to do so without losing much of their representation power
compared to LearnSPN or RAT-SPN, that is, the test likelihood and 0-1 accuracy
are barely affected while statistical parity is enforced by the use of constraints.
We stress out that our procedure being a post-processing of the PC at hand,
models already trained and potentially in use in applications could be enhanced
without the need of re-training from scratch.

Probabilistic Circuits with Constraints via Convex Optimization 13

Table 1: Classification with LearnSPN vs. PPL-LSPN enforcing statistical parity
via constraints.

Dataset Protected Method Test LL Accuracy Statistical
Attribute Parity

Adult Sex LearnSPN -13.614 0.8256 0.1754
PPL-LSPN -13.764 0.7946 0.0

German Sex LearnSPN -22.802 0.6993 -0.0171
Credit PPL-LSPN -23.075 0.704 0.0
Bank Marital LearnSPN -16.448 0.8957 -0.0305
Marketing Status PPL-LSPN -16.493 0.8949 0.0
Dutch Sex LearnSPN -9.801 0.8141 0.2520
Census PPL-LSPN -9.947 0.7359 0.0
Cr. Card Sex LearnSPN -22.505 0.8164 0.0185
Clients PPL-LSPN -22.539 0.8035 0.0
Law Race LearnSPN -11.800 0.9076 -0.3012
School PPL-LSPN -11.845 0.9013 0.0

Table 2: Classification with RAT-SPN vs. PPL-RSPN enforcing statistical parity
via constraints.

Dataset Protected Method Test LL Accuracy Statistical
Attribute Parity

Adult Sex RAT-SPN -7.767 0.8193 0.2000
PPL-RSPN -7.796 0.8148 0.0

German Sex RAT-SPN -28.752 0.745 -0.0309
Credit PPL-RSPN -28.756 0.745 0.0
Bank Marital RAT-SPN -13.736 0.8820 -0.0388
Marketing Status PPL-RSPN -13.739 0.8788 0.0
Dutch Sex RAT-SPN -12.880 0.7888 0.2620
Census PPL-RSPN -12.923 0.7629 0.0
Cr. Card Sex RAT-SPN -3.998 0.7838 0.0053
Clients PPL-RSPN -3.998 0.7838 0.0
Law Race RAT-SPN -7.274 0.9050 -0.2054
School PPL-RSPN -7.294 0.9034 0.0

5 Conclusions and future work

We introduce a novel approach that allows to incorporate probabilistic propo-
sitional logic (PPL) constraints into a (pre-trained) probabilistic circuit (PC),
so that the distribution encoded by the PC respects the constraints. We explain
our design choices which allow for achieving tractable learning and inferences
while ensuring that PPL constraints are satisfied. We also develop theoretical
foundations that explain the feasibility of the optimization and how to reach an
optimal solution in computationally tractable (polynomial) time. Experiments
illustrate how we can take PCs and enhance them into better PCs that can

14 Ghandi et al.

be applied to practical scenarios, for example by applying fairness measures to
the learned distribution and by (arguably) better handling missing values in the
training data.

We make space for a couple of reflections. The goal of this research is to
enhance machine learning models with probabilistic logic assessments, in the
same spirit as neurosymbolic AI. We found out that PC models are already
over-parameterized: thus, one can better tune the parameters in order to satisfy
external constraints. The first obvious idea is to do so via some variation of
Expectation-Maximization or gradient methods, putting violation of constraints
as (strong) penalties. However, it is not guaranteed that constraints are fully
enforced; we therefore see that avenue as a great direction to investigate, even
though the solution is likely to differ from the one described here. We managed
to find a way to improve PCs a posteriori (without retraining) and efficiently
(the optimization can run exactly and fast with modern convex optimization
solvers). This choice comes at the expense of being able to only change the
parameters of leaf distribution nodes; this—quite surprisingly—turns out to be
enough to precisely enforce the constraints globally on the joint distribution
while not losing model fitness. Moreover, we have no intention to claim that
we are (or not) obtaining state-of-the-art results. This is an investigation of
the combination of constraints into circuits, which we consider overall successful
(but obviously not without limitations). We see many possibilities with that. We
are aware that the bucket size limitation is a serious complication, but creative
experiments show that there may be many interesting problems to solve even
under such limitation. Moreover, we know that the limitation can be mitigated
by using some smarter parametrization of the local distributions: this direction
is definitely worthwhile, although it may lead to a decrease in accuracy and will
likely not provide the same guarantees as we currently have.

Beyond these research directions, the paper opens doors for future work, as
the desire to combine probabilistic logic constraints and deep machine learning
methods is immense. Possible immediate avenues include extending the applica-
bility of constraints on continuous and mixed variables, applying constraints to
new tasks such as other forms of fairness measures (for instance, equalized odds
[10]) in order to improve already learned PCs, improving the trade-off between
accuracy and efficiency by using different optimizers, and considering extensions
beyond consistent and valid PCs, to name but a few.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Adel, T., Balduzzi, D., Ghodsi, A.: Learning the structure of sum-product networks
via an svd-based algorithm. In: Uncertainty in Artificial Intelligence (2015), https:
//api.semanticscholar.org/CorpusID:15429402

2. Van den Broeck, G., Di Mauro, N., Vergari, A.: Tractable probabilistic mod-
els: Representations, algorithms, learning, and applications. http://web.cs.ucla.

https://api.semanticscholar.org/CorpusID:15429402
https://api.semanticscholar.org/CorpusID:15429402
http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

Probabilistic Circuits with Constraints via Convex Optimization 15

edu/~guyvdb/slides/TPMTutorialUAI19.pdf (2019), tutorial at Uncertainty in
Artificial Intelligence (UAI) 2019

3. Correia, A., Peharz, R., de Campos, C.P.: Joints in random forests. Advances in
Neural Information Processing Systems (NeurIPS) 33, 11404–11415 (2020)

4. Darwiche, A.: A differential approach to inference in Bayesian networks. Journal
of the ACM 50(3), 280–305 (2003)

5. De Campos, C.P.: New complexity results for map in bayesian networks. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI). vol. 11, pp. 2100–2106.
Citeseer (2011)

6. Dennis, A., Ventura, D.: Learning the architecture of sum-product networks using
clustering on variables. Advances in Neural Information Processing Systems 25
(2012)

7. Di Mauro, N., Vergari, A., Basile, T.M., Esposito, F.: Fast and accurate density
estimation with extremely randomized cutset networks. In: Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2017,
Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I 10. pp. 203–219.
Springer (2017)

8. Gens, R., Domingos, P.: Learning the structure of sum-product networks. In: In-
ternational Conference on Machine Learning. pp. 873–880. PMLR (2013)

9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the
ACM 63(11), 139–144 (2020)

10. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
Advances in Neural Information Processing Systems 29 (2016)

11. Hsu, W., Kalra, A., Poupart, P.: Online structure learning for sum-product net-
works with gaussian leaves. arXiv preprint arXiv:1701.05265 (2017)

12. Kalra, A., Rashwan, A., Hsu, W.S., Poupart, P., Doshi, P., Trimponias, G.: Online
structure learning for feed-forward and recurrent sum-product networks. Advances
in Neural Information Processing Systems 31 (2018)

13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

14. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

15. Le Quy, T., Roy, A., Iosifidis, V., Zhang, W., Ntoutsi, E.: A survey on datasets
for fairness-aware machine learning. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 12(3), e1452 (2022)

16. Lee, S.W., Watkins, C., Zhang, B.T.: Non-parametric bayesian sum-product net-
works. In: ICML Workshop on Learning Tractable Probabilistic Models. vol. 32
(2014)

17. Liang, Y., Bekker, J., Van den Broeck, G.: Learning the structure of probabilistic
sentential decision diagrams. In: Uncertainty in Artificial Intelligence (UAI) (2017)

18. Liu, A., Van den Broeck, G.: Tractable regularization of probabilistic circuits.
Advances in Neural Information Processing Systems 34, 3558–3570 (2021)

19. Lowd, D., Davis, J.: Learning markov network structure with decision trees. In:
2010 IEEE International Conference on Data Mining. pp. 334–343. IEEE (2010)

20. Molina, A., Vergari, A., Di Mauro, N., Natarajan, S., Esposito, F., Kersting, K.:
Mixed sum-product networks: A deep architecture for hybrid domains. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. vol. 32(1) (2018)

21. Peharz, R.: Foundations of sum-product networks for probabilistic modeling. Ph.D.
thesis, PhD thesis, Graz University of Technology (2015)

http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf
http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf
http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

16 Ghandi et al.

22. Peharz, R., Geiger, B.C., Pernkopf, F.: Greedy part-wise learning of sum-product
networks. In: Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013,
Proceedings, Part II 13. pp. 612–627. Springer (2013)

23. Peharz, R., Gens, R., Pernkopf, F., Domingos, P.: On the latent variable inter-
pretation in sum-product networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 39(10), 2030–2044 (2016)

24. Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Van den
Broeck, G., Kersting, K., Ghahramani, Z.: Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In: International Conference on Machine
Learning. pp. 7563–7574. PMLR (2020)

25. Peharz, R., Tschiatschek, S., Pernkopf, F., Domingos, P.: On theoretical properties
of sum-product networks. In: Artificial Intelligence and Statistics. pp. 744–752
(2015)

26. Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K.,
Ghahramani, Z.: Random sum-product networks: A simple and effective approach
to probabilistic deep learning. In: Uncertainty in Artificial Intelligence. pp. 334–
344. PMLR (2020)

27. Poon, H., Domingos, P.: Sum-product networks: A new deep architecture. In:
2011 IEEE International Conference on Computer Vision Workshops (ICCV Work-
shops). pp. 689–690. IEEE (2011)

28. Rahman, T., Gogate, V.: Merging strategies for sum-product networks: From trees
to graphs. In: Uncertainty in Artificial Intelligence (UAI) (2016)

29. Rahman, T., Jin, S., Gogate, V.: Look ma, no latent variables: Accurate cutset
networks via compilation. In: International Conference on Machine Learning. pp.
5311–5320. PMLR (2019)

30. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and indirect
variable interactions. In: International Conference on Machine Learning. pp. 710–
718. PMLR (2014)

31. Sánchez-Cauce, R., París, I., Díez, F.J.: Sum-product networks: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence 44(7), 3821–3839
(2021)

32. Trapp, M., Peharz, R., Ge, H., Pernkopf, F., Ghahramani, Z.: Bayesian learning
of sum-product networks. Advances in Neural Information Processing Systems 32
(2019)

33. Vergari, A., Choi, Y., Liu, A., Teso, S., Van den Broeck, G.: A compositional
atlas of tractable circuit operations for probabilistic inference. Advances in Neural
Information Processing Systems 34, 13189–13201 (2021)

34. Vergari, A., Di Mauro, N., Esposito, F.: Simplifying, regularizing and strengthen-
ing sum-product network structure learning. In: Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2015, Porto, Portu-
gal, September 7-11, 2015, Proceedings, Part II 15. pp. 343–358. Springer (2015)

35. Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., Valera, I.: Au-
tomatic bayesian density analysis. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 33(1), pp. 5207–5215 (2019)

36. Zhao, H., Poupart, P., Gordon, G.J.: A unified approach for learning the parameters
of sum-product networks. Advances in Neural Information Processing Systems 29
(2016)

Probabilistic Circuits with Constraints via Convex Optimization 17

A Data preprocessing for fairness experiments

In this section, we explain the preprocessing measures that are applied to each
dataset for fairness experiments. We would like to note that the specific structure
of RAT-SPN requires a different set of preprocessing measures compared to
LearnSPN. Being able to work with tensors restricts the type of data RAT-SPN
can work with, mainly since tensors put specific restrictions on the parameter
space of leaf nodes. As such, in addition to the general preprocessing measures
(which are applied in both cases), datasets are also discretized and binarized
(using one-hot encoding) for the case of RAT-SPN.

A.1 Adult dataset

For the case where the base learner is LearnSPN, the instances containing miss-
ing values (3620 in total, equal to 7.41 % of records) are removed from the
dataset. The attribute fnlwgt(final weight) is discarded from the dataset. Race
is encoded as a binary attribute race = {white, non-white}. The attribute age is
also discretized as age = {25-60, <25 or >60}.

As for the case of RAT-SPN, in addition to the previous measures, the nu-
merical attributes (capital gain, capital loss, hours per week) are discretized as
follows: capital gain = {≤ 5000, >5000}, capital loss = {≤40, >40}, hours per
week = {<40, 40-60, >60}. Additionally, categorical attributes are transformed
as follows: workclass = {private, non-private}, education = {high, low}, marital-
status = {married, other}, relationship = {married, other}, native-country =
{US, non-US}. Finally, the resulting dataset is discretized to be compatible with
RAT-SPN.

A.2 German dataset

For the case where the base learner is LearnSPN, we extract gender information
from attribute personal-status-and-sex (which contains information on marital
status and the gender of people), which leads to an additional attribute sex (the
protected attribute for our fairness experiments).

As for the case of RAT-SPN, additional transformations are as follows: du-
ration = {≤6, 7-12, >12} (short, medium, and long-term); credit-amount =
{≤2000, 2000-5000, >5000} (low, medium, and high income); age = {≤25, >25}.
Finally, the resulting dataset is discretized to be compatible with RAT-SPN.

A.3 Bank marketing dataset

For the case where the base learner is LearnSPN, the only preprocessing measure
is to extract a binary representation of marital status from attribute marital as
marital-bin = {married, non-married}. the attribute marital-bin is added to the
original dataset as an additional attribute, representing the protected group for
our fairness experiment.

18 Ghandi et al.

As for the case of RAT-SPN, additional transformations are as follows: job
= {blue-collar, management, service, other}; balance = {≤0, >0}; day = {≤15,
>15}; duration = {≤120, 121-600, >600}; campaign = {≤1, 2-5, >5}; pdays
= {≤30, 31-180, >180}; previous = {0, 1-5, >5}; age = {25-60, <25 or >60}.
Finally, the resulting dataset is discretized to be compatible with RAT-SPN.

A.4 Dutch census dataset

For this dataset, no particular preprocessing has been done. For LearnSPN, the
dataset is utilized in its original form, and for the case of RAT-SPN, the only
process is to binarize the dataset to address compatibility issues.

A.5 Credit card clients dataset

For the case where the base learner is LearnSPN, the only preprocessing is to
drop the attribute id, as it does not contain any useful information about the
task. For the of RAT-SPN, additional transformations are as follows: age = {≤35,
36-60, >60}; the amount of the given credit (limit_bal),the amount of the bill
statements (bill_amt_1,...,bill_amt_6), and the amount of the previous pay-
ments (pay_amt_1,...,pay_amt_6) = {≤50000, 50001-200000, >200000} (cor-
responding to low, medium, high levels); history of the past payments pay_0, ...,
pay_6 = {pay dully, 1-3 months, >3 months}.

A.6 Law school dataset

For the case where the base learner is LearnSPN, the dataset is utilized in
its original form. For the case of RAT-SPN, additional transformations are as
follows: decile1b = {≤5, >5}, decile3 = {≤5, >5}, lsat = {≤37, >37}, ugpa =
{<3.3, ≥3.3}, zgpa = {≤0, >0}, zfygpa = {≤0, >0}.

	Probabilistic Circuits with Constraints via Convex Optimization

