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Abstract. In this paper, we focus on the Discrete Bayesian Classifier
(DBC), which discretizes the input space into regions where class proba-
bilities are estimated. We investigate fuzzy partitioning as an alternative
to the hard partitioning classically used to discretize the space. We show
that our approach not only boosts the DBC’s performance and resilience
to noise, but also mitigates the loss of information due to discretiza-
tion. The benefits of soft partitioning are demonstrated experimentally
on several synthetic and real datasets.

Keywords: Bayesian classifier · Discretization · Robustness.

1 Introduction

In this paper, we address the problem of learning a classifier from data. Our goal
is to train a model to accurately classify any new instance. We are particularly
interested in the case where the data are corrupted by noise. More precisely, we
study how softening/randomizing a discretized classifier can improve robustness
to label or feature noise. We distinguish label noise, which corresponds to mis-
takes in the training labels, from feature (or attribute) noise [10], referred in the
title as covariate noise, which might corrupt training as well as test features.

A wide range of techniques have been proposed to determine a classifier with
theoretical performance guarantees. In order to well approximate the Bayes de-
cision rule when processing numeric or mixed features in a high dimensional
feature space, a relevant approach consists in partitioning the feature space so
as to determine a discrete, nonparametric version of the Bayes classifier (DBC)
[8,4,6,12,11]. In a nutshell, this approach discretizes the input space into regions
(also called discrete profiles), into which the Bayes classifier is analytically deter-
mined by estimating the class frequencies; test instances are classified based on
the estimates in the region to which they belong. Discrete profiles can correspond
to the regions associated with the leaves of a tree when using supervised decision
trees [5,21,13], or to the Voronoi cells derived from a K-means partitioning [18].

Most discretization methods are based on hard partitioning [24]: a test in-
stance is mapped to a unique discrete profile, all the instances assigned to this
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profile are assumed to share similar features and are associated to the same pre-
dicted class. Discretization has been shown to mitigate the impact of noise or
outliers [15]. Yet, the hard partitioning may result in very similar instances in
different profiles being assigned different outputs by the subsequent “hard DBC”,
and in the estimates for a given profile being unaffected by instances close but
outside of this profile, thus potentially missing important information. The hard
DBC may therefore still suffer from label and covariate noise.

Randomization, as well as softening strategies, have been shown to regularize
classifiers while retaining their main features. For instance, some research [22] in-
vestigated the use of soft partitioning together with the naive Bayesian classifier
with promising results, for a specific classifier with strong assumptions, together
with a specific (0/1) loss function. Label smoothing, i.e., replacing hard labels
with probabilistic ones, is commonly used in deep learning to reduce overfitting:
introducing a small amount of uncertainty during training prevents the model
from becoming overly confident, thus enhancing its generalization performance.
Label smoothing can also improve robustness to label noise [17].

The goal of this paper is to investigate the use of soft clustering with the
DBC, so as to benefit from the theoretical guarantees of this latter while im-
proving classification performances by computing smoother decision boundaries.
We first recall the basics of the DBC and discuss its limitations. Through de-
tailed mathematical modeling and algorithms, we explain how soft partitioning
can enhance its performances. Building on this, we propose the soft probabilistic
DBC (SPDBC), which allows each data point to belong to different classes with
a certain probability, thus enabling the model to handle overlapping or noisy
data more flexibly. In contrast with [22], our present approach allows to consider
any kind of loss/cost function.

Experiments on synthetic and standard real datasets, and in particular with
a controlled level of noise, demonstrate how the SPDBC improves classification
accuracy in noisy environments while maintaining stability. The experimental
results confirm the effectiveness of our proposal in dealing with complex data
structures and showcase its potential for practical applications.

The paper is organized as follows. Section 2 provides reminders on the dis-
crete Bayesian classifier, talks about how to make DBC probabilistic(PDBC) and
presents some criticisms of this classifier. Section 3 proceeds with our approach
to deal with the limitation of DBC, resulting in the so-called soft probabilis-
tic discrete Bayesian classifier (SPDBC). Section 4 reports some experiments,
which notably stress the robustness of the SPDBC compared to the DBC when
facing noisy data. Section 5 provides some conclusions to this preliminary work,
mentioning several possible future directions.

2 Discrete Bayesian Classifier

2.1 Setting

We aim to compute a function δ : X → Y able to provide, for any instance
in the input space x ∈ X , an estimate (or “guess”) δ(x) of its (unknown) ac-
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tual class Y ∈ Y = {1, . . . ,K}. For this purpose, we leverage a training set
{(x1, y1), . . . , (xn, yn)} composed of instances xi ∈ X associated with labels
yi ∈ Y, assumed to be observations of the actual classes of the instances.

We consider here asymmetrical decision problems, i.e. where the decision
costs may not be the same (notably across errors). We assume to have access
to a matrix L = (Lkl), whose general term Lkl ≥ 0 quantifies the cost incurred
from predicting δ(x) = l when the ground truth (i.e., actual class) is k. While
it is reasonable to assume Lkk = 0 for all k ∈ Y, we may have Lkl ̸= Llk for
some k ̸= l: for instance, erroneously raising an alarm regarding the condition
of a patient may be considered as less harmful (and therefore more acceptable)
than failing to detect an actual condition of this same patient.

Bayes’ decision strategy. Bayesian decision theory [2,9,20] provides a theoretical
solution to this learning problem. Under the assumption that data are generated
according to a joint probability P over X × Y, it establishes that the decision
strategy minimizing the expected risk (or misclassification loss) should be based
on the posterior probabilities of the classes and on the misclassification costs:

δB(x) = arg min
k=1,...,K

Rk(δ|x), with Rl(δ|x) =
K∑

k=1

LklP (Y = k|X = x) . (1)

Generative models typically derive the posterior probabilities P (Y = k|X = x)
from the class-conditional distributions P (X = x|Y = k) and the prior proba-
bilities πk = P (Y = k) using Bayes’ rule:

P (Y = k|X = x) =
πkP (X = x|Y = k)

P (X = x)
, P (X = x) =

∑
l

πlP (X = x|Y = l) .

Therefore, a wide range of approaches aim at estimating the prior probabilities πk

and the conditional distributions P (X = x|Y = k) so as to implement the Bayes
classifier [15,14,1], for instance via maximum likelihood (ML). While πk can be
estimated using the class frequencies in the training set, P (X = x|Y = k) usu-
ally requires additional assumptions. Thus, many strategies postulate a (semi-
)parametric model for P (X = x|Y = k) and focus on estimating the parameters
of the distribution, for instance as in discriminant analysis [16].

Discrete Bayesian classifier. When the distributional assumption is not satis-
fied, the resulting classifier may be a biased estimate of the actual Bayes classifier
[15], and thus be far from optimal even if the training sample is large. An alter-
native then consists in using a nonparametric approach. First, the input space
X is partitioned into T regions or profiles {ϕ1, . . . , ϕT } = P. We introduce the
mapping Φ : X → P, which maps any instance x to a profile Φ(x); we may
interchangeably write Φ(x) = ϕt or x ∈ ϕt whenever the instance x falls into the
region ϕt (or, put another way, when x corresponds to profile ϕt).

Then, the discrete Bayesian classifier (DBC) amounts to estimate the class-
conditional distributions P (X = x|Y = k) by the fractions of input samples from
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a given class falling into the various profiles:

p̂kt = P̂ (Φ(X) = ϕt | Y = k) :=
1

nk

∑
i∈Ik

1{Φ(xi) = ϕt

}, (2)

with Ik = {i ∈ {1, . . . , n} : Yi = k} the set of indexes corresponding to instances
from class k, nk = |Ik| the cardinal of this set and 1{} is the indicator function:

1{Φ(x) = ϕt

} =

{
1 if x is assigned to cluster ϕt

0 otherwise.
(3)

Two approximations are made here: one is due to the input space being dis-
cretized into profiles, and thus to the class-conditional density P (X = x|Y = k)
being replaced with the probability of the profile P (Φ(X) = ϕt | Y = k); the
second one results from this latter probability being estimated with the relative
frequency of the profile ϕt in the instances of class k in the training set. Figure 1
displays a 2D example, where the input space is discretized using K-means.

 p1,6 = 4
30

p2,6 = 5
20

ϕ1

ϕ4

ϕ2
ϕ3

ϕ5
ϕ7

ϕ9

ϕ8
ϕ10

ϕ6

Fig. 1: Bivariate classification problem addressed using the DBC; class 1 (blue)
counts n1 = 30 training instances, class 2 (red) n2 = 20 training instances.

The deterministic DBC consists in classifying any instance x into the class
which minimizes the expected risk:

δBπ (x) = argmin
l∈Y

fl(π, x), (4a)

fl(π, x) :=
∑
k∈Y

Lkl

T∑
t=1

πk p̂kt∑
j πj p̂jt

1{Φ(x) = ϕt

}, ∀l ∈ Y. (4b)

Notice the similarity of Eq. (4b) with Eq. (1), where the posterior probabilities
P (Y = k|x) have been replaced with their profile-based estimates

P (Y = k|Φ(x)) :=
T∑

t=1

πk p̂kt∑
j πj p̂jt

1{Φ(x) = ϕt

}. (5)
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We note that since fl is a risk associated with a specific class, theoretically
the class with smaller fl is more likely to be less risky as a prediction. We propose
to map fl into a probability of predicting class l, written P

(
δBπ (x) = l

)
, so as

to derive a probabilistic counterpart to the deterministic DBC presented above.
For this purpose, Definition 1 proposes a relative compensation probability as-
signment technique, that allows each point to belong to different classes with a
certain estimated probability reflecting the associated risk. We first calculate a
compensatory score λl for each class, such that if a class’s score fl is relatively
lower, λl will be comparatively higher, and vice versa. We then normalize these
λl values across all classes to calculate the final probabilities, so as to ensure
that these probabilities sum up to 1.

Definition 1. For any initial feature point x ∈ X , the estimated probability for
the discrete Bayes classifier δBπ to assign a class l ∈ Y is given by

P
(
δBπ (x) = l

)
=

λl(π, x)∑
k∈Y λk(π, x)

where λl(π, x) =
∑
k∈Y

fk(π, x)− fl(π, x).
(6)

This method naturally balances differences in scores between classes, reducing
the undue influence of any single class due to scale discrepancies in scoring. Note
that whenever the 0/1 loss function is considered, these probabilities boil down
to the profile-based posterior probability estimates defined by Eq. (5).

Example 1. Assume a test instance x in Fig. 1 such that Φ(x) = ϕ6, together
with a loss matrix L satisfying L11 = L22 = 0, L21 = 3, L12 = 2; we can calculate

f1(π, x) = L21
π2p̂2,6

π1p̂1,6 + π2p̂2,6
= 3×

20
50 × 5

20
30
50 × 4

30 + 20
50 × 5

20

=
5

3
,

f2(π, x) = L12
π1p̂1,6

π1p̂1,6 + π2p̂2,6
= 2×

30
50 × 4

30
30
50 × 4

30 + 20
50 × 5

20

=
8

9
.

Thus, λ1 and λ2 are

λ1(π, x) = (f1(π, x) + f2(π, x))− f1(π, x) =
5

3
+

8

9
− 5

3
=

8

9
,

λ2(π, x) = (f1(π, x) + f2(π, x))− f2(π, x) =
5

3
+

8

9
− 8

9
=

5

3
.

Finally, we obtain

P
(
δBπ (x) = 1

)
=

λ1(π, x)

λ1(π, x) + λ2(π, x)
=

8
9

8
9 + 5

3

=
8

23
, P

(
δBπ (x) = 2

)
=

15

23
.

Proposition 1. The decision rule of the DBC in Eq. (4a) is equivalent to pick-
ing the class with highest probability P

(
δBπ (x) = l

)
defined in Eq. (6):

δBπ : x 7→ argmax
l∈Y

P
(
δBπ (x) = l

)
. (7)
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Proof. Let fl(π, x) be the minimum value among the set {fk(π, x) : k ∈ Y};
then,

∀k ∈ Y, fl(π, x) ≤ fk(π, x)

⇔ ∀k ∈ Y, ∀j ̸= l, fk(π, x)− fj(π, x) ≤ fk(π, x)− fl(π, x)

⇔ ∀j ̸= l,
∑
k∈Y

fk(π, x)− fj(π, x)︸ ︷︷ ︸
λj(π,x)

≤
∑
k∈Y

fk(π, x)− fl(π, x)︸ ︷︷ ︸
λl(π,x)

.

In other words,

fl(π, x) = min
k∈Y

fk(π, x) ⇔ λl(π, x) = max
k∈Y

λk(π, x).

Moreover, given the definition of P
(
δBπ (x) = l

)
in Eq. (6),

λl(π, x) = max
k∈Y

λk(π, x) ⇔ P
(
δBπ (x) = l

)
= max

k∈Y
P
(
δBπ (x) = k

)
.

To conclude, we have

argmin
l∈Y

fl(π, x) = argmax
l∈Y

P
(
δBπ (x) = l

)
,

and thus δBπ (x) = argminl∈Y fl(π, x) and δBπ = argmaxl∈Y P
(
δBπ (x) = l

)
are

equivalent. □

This stresses that our probabilized classifier is consistent with Bayes’ decision
strategy, as it will assign the highest probability to Bayes’ optimal decision.

2.2 Impact of discretization

Advantages. As discussed in the Introduction, discretization makes the result-
ing classifier less sensitive to noise or outliers [15], two issues which may sig-
nificantly affect parameter estimates of continuous distributions, and therefore
impede approximating the actual Bayes’ classifier. Last, for large-scale data sets,
discretization can significantly reduce the overall computational complexity.

Limitations. As can be seen from Eq. (4b), the value of fl(π, x) is the same for
all instances in the same profile. This results in the decision boundary of DBC
being solely determined by the boundaries of the discrete profiles. Therefore, the
partitioning algorithm may have a significant impact on the performances of the
classifier. In particular, two instances close to each other in the input space may
nevertheless be associated with different decisions. Fig. 2 displays the profiles
obtained for a synthetic 2D dataset: as can be seen, some of them (like the
leftmost profile in red) are associated with mixed subsets of training instances,
in which case associating the profile with a single class will result in errors.

Besides, linking the instances to the profiles using a “hard” mapping (de-
termined by the indicator function) results in instances close to x in the input
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Fig. 2: An example for three different decision regions of DBC, the purple line is
the decision boundary

space being associated to different profiles, hence having no influence on the class-
conditional risks computed via Eq. (4b). This results in the decision boundary of
DBC being a combination of multiple local optimal boundaries between profiles,
determined entirely by the instances in these profiles.

These two considerations motivate determining the profile using soft clus-
tering, so that instances can belong to several profiles with different degrees,
resulting in DBC decisions being based on more global information.

3 PDBC with Soft Partitioning

We discuss here how soft profile memberships can be leveraged to improve the
performances of the DBC. The main idea is to replace the indicator function
1{Φ(x) = ϕt

} in Equation (4a) by a probability P (Φ(x) = ϕt), so as to reg-

ularise/soften the boundaries of the clusters. This means that any clustering
methods producing probabilities such as Gaussian mixture [23] or other ap-
proaches producing probabilities [25] can be relevant.

In our case, we use the fuzzy C-means (FCM) algorithm [3] for this purpose.
The choice of FCM is motivated by several reasons. This robust and versatile
approach comes with a geometrical interpretation; it provides cluster represen-
tatives (the cluster centers), to which profiles can be associated, and based on
which cluster memberships can be derived (thus, even among the points that
would be associated with a given profile, cluster memberships can vary).
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We first introduce the FCM algorithm, and then discuss how it can be com-
bined with PDBC to improve the robustness of the decision boundaries.

3.1 Reminder on the Fuzzy C-means partitioning

Fuzzy C-means (FCM) is a typical fuzzy partitioning method [3] akin to the
K-means algorithm. In this algorithm, any instance x is associated with a set
of coefficients modelling its degrees of membership to each of the C clusters: in
the following, ut(x) stands for the membership of instance x to the t-th cluster.

Centroids. In FCM, a cluster is characterized by its centroid ct, defined as the
average of all instances weighted by their membership degrees to the cluster:

ct =

∑
x ut(x)

mx∑
x ut(x)m

,

with m the hyper-parameter that controls the level of fuzziness of the cluster
(the higher m, the fuzzier the cluster).

Algorithm. The FCM algorithm attempts to partition the set of n instances at
hand {x1, . . . , xn} into a collection of T fuzzy clusters {ϕ1, . . . , ϕT } as follows.
Given a finite set of data, the algorithm returns a list of T cluster centers C =
{c1, ...cT } and a partition matrix U = uit ∈ [0, 1], i = 1, ..., n, t = 1, ..., T , where
each element uit tells the degree to which element xi belongs to cluster ϕt. The
FCM aims to minimize an objective function:

J(U,C) =

n∑
i=1

T∑
t=1

um
it ||xi − ct||2, (8a)

with uit =
1∑T

j=1(
||xi−ct||
||xi−cj || )

2
m−1

. (8b)

When m is low (close to 1), the cluster memberships become close to binary
(0 or 1): FCM then behaves like the K-means algorithm, producing (almost)
hard partitions. When m is high, the cluster memberships become fuzzier. The
membership degrees of a data point tend to be distributed across different clus-
ters. In this scenario, the cluster boundaries become softer, better capturing the
fuzziness and uncertainty in the data.

3.2 Soft PDBC

According to [19], the membership degree ut(x) of x to the cluster ϕt, defined
in Eq. (8b), can be interpreted as a posterior probability of x belonging to a ϕt

given some assumptions, as it satisfies

0 ≤ ut(x) ≤ 1,

K∑
t=1

ut(x) = 1. (9)
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In the following, given a collection of T fuzzy clusters {ϕ1, . . . , ϕT } and their
associated cluster centers {c1, ...cT }, we define, for all x ∈ X and t ∈ {1, . . . , T},

P (Φ(x) = ϕt) = ut(x) =
1∑T

j=1

(
||x−ct||
||x−cj ||

) 2
m−1

. (10)

We propose to substitute these estimated posterior probabilities to the indi-
cator functions in our PDMC model.

Definition 2. The estimated probability that an instance has the discrete feature
profile ϕt given that its actual class label is y = k, is given by

p̂kt =
1

nk

∑
i∈Ik

P (Φ(xi) = ϕt) (11)

with Ik and nk defined as in Section 2.1 and P (Φ(xi) = ϕt) as in Eq. (10).

Definition 3. Under Definition 2, the risk fl of predicting class l ∈ Y given a
feature instance x ∈ X initially defined by Eq. (4b) becomes

fl(π, x) :=
∑
k∈Y

Lkl

T∑
t=1

πk p̂kt∑
j πj p̂jt

P (Φ(x) = ϕt) . (12)
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Fig. 3: Soft probabilistic DBC obtained using FCM: (left) probability that each
position belongs to the current profile, (center and right) probability that each
position in the feature space belongs to the red class.

Each data point may thus belong to various profiles with specific probabil-
ities, allowing the model to consider the neighboring information in different
profiles, and providing a softer decision boundary which is not constrained by
the profile boundaries, as can be seen in Fig. 2. This will mitigate the impact of
a crude partitioning, and arguably result in better generalization performances.



10 W. Chen et al.

4 Experiments

The purpose of our experimental study is to validate the robustness and accuracy
of our proposed model when dealing with noise. We use eight datasets from the
UCI Machine Learning Repository: Iris, Breast Cancer, Diabetes, Heart Disease,
Raisin, Zoo, Glass, Energy. For each dataset, we conduct two experiments. The
code is available in our Github repository: Menamot/SUM-experiments.

Label Noise. First, we add label noise to the training set on Y with levels
s ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}, meaning that a fraction s of training labels are
switched at random according to a uniform distribution on Y \yi. We then com-
pute the accuracy on the test set for each noise level, via 20 times 5-fold cross
validation. The purpose of this experiment is to study whether the model can
learn accurate decision boundaries from imperfectly-labeled training instances,
which may occur whenever the data are manually labeled.

Covariate Noise. In a second step, we add noise to the features Xj in the test
set according to a Gaussian distribution:

Xnoise
j = Xj + ϵj with ϵj ∼ N

(
0, σ2

j

)
, σj = std(Xj)× s, (13)

and with s ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. This experiment aims at testing the ro-
bustness of the model to feature noise; whereas training data can be collected
carefully, using high-quality sensors or by skilled operators, it is often not the
case for test data, which are generally processed without additional treatment.

Dataset nb. samples nb. classes class frequencies nb. features
Iris 150 3 [0.33, 0.33, 0.33] 4
Breast Cancer 569 2 [0.37, 0.62] 30
Diabetes 768 2 [0.65, 0.35] 8
Heart Disease 303 2 [0.54, 0.46] 13
Raisin 900 2 [0.5, 0.5] 7
Zoo 101 7 [0.41, 0.20, 0.05, 0.13, 0.04, 0.08, 0.10] 16
Glass 214 6 [0.33, 0.36, 0.08, 0.06, 0.04, 0.14] 9
Energy 358 6 [0.31, 0.17, 0.20, 0.13, 0.13, 0.05] 34

Table 1: Datasets used in the experiments.

Partitioning methods. We use K-means as hard clustering approach, and Fuzzy
C-means for soft partitioning. In order to remove the influence of the two parti-
tioning methods on the profile position, we set the cluster centers in FCM to be
the same as for K-means, which means that the profiles of the two clusters will be
exactly the same, except that C-means allows data to belong to different profiles
with specific degrees of membership [3], calculated using Eq. (10). In this way,

https://github.com/Menamot/SUM-experiments
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we can determine how replacing hard profile memberships with soft ones affects
the results of the DBC. Note that since the cluster centers are defined as the
K-means centers, the FCM algorithm only needs to calculate these membership
degrees: the runtime of the two models is therefore almost identical to that of
K-means. We select hyper-parameters using 10× 10 cross validation.

Results. Figures 4 and 5 show that our model is indeed more robust than the
original DBC. As discussed in Sections 2.2 and 3.2, we can see that our model
exhibits better performances than the original DBC, even when the data are
not corrupted by noise. This clearly demonstrates how our soft clustering-based
approach improves the robustness and accuracy compared to the traditional hard
clustering-based DBC, especially in presence of both label and covariate noise.

As label noise increases, soft clustering consistently outperforms hard clus-
tering for all datasets. For instance, in the Iris and Breast Cancer datasets, the
performance of soft clustering remains more stable, with accuracy decreasing less
significantly compared to hard clustering when noise levels reach 0.25. This high-
lights the ability of soft clustering to mitigate the effects of noisy labels, resulting
in smoother decision boundaries and improved robustness in classification.

Similarly, when covariate noise is introduced (with varying levels of standard
deviation), soft clustering maintains a higher accuracy across the datasets. Even
in the worst-case scenarios, such as with the Raisin and Zoo datasets, the per-
formance of SPDBC is on par with the standard DBC—we speculate that this
is due to the boundaries between the classes being already clear enough, thereby
allowing K-means to effectively separate instances from different classes. In such
cases, refining the decision boundaries such as with the SPDBC no longer results
in a significant increase in accuracy.

Overall, these experimental results validate the effectiveness of soft proba-
bilistic discrete Bayesian classifiers in noisy environments. Soft clustering im-
proves the robustness of the model, resulting in a higher classification accuracy
even in challenging conditions, such as when data are noisy or uncertain.

5 Conclusion

In this paper, we explored the capabilities of discrete Bayesian classification and
its adaptation using soft partitioning techniques to address challenges posed
by imperfect datasets. Our proposed approach, called soft probabilistic discrete
Bayes classifier, allies the efficiency of discrete Bayesian classification with the
flexibility of probabilistic profiles, thereby enhancing the classifier’s effectiveness
in practical scenarios.

Our experimental results confirm that our approach not only improves the
classification accuracy in noisy environments, but also maintains stability across
different data distributions, making it a valuable tool for applications where
robustness to noise is crucial. Additionally, the probabilistic approach of soft
partitioning within the discrete Bayesian framework helps achieving more regular
decision boundaries, which are essential for complex class structures.
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Future work may explore further enhancements to the SPDBC model. We
may for instance use advanced machine learning algorithms that can dynamically
adjust the partitioning granularity based on data complexity and distribution
shifts. We may also use neural networks to apply our soft probabilistic minimax
approach to advanced image classification. Another interesting line of research
would be to robustify this softening strategy, for instance by considering clus-
tering methods delivering not a single probability for each instance but a set of
probabilities, such as evidential clustering approaches [7].
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(a) Results, Iris dataset
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(b) Results, Breast Cancer dataset
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(c) Results, Diabetes dataset
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(d) Results, Heart Disease dataset

Fig. 4: Experimental results on different data sets: from top to bottom, Iris,
Breast Cancer, Diabetes and Heart Disease.
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(a) Results, Raisin dataset
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(b) Results, Zoo dataset
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(c) Results, Glass dataset
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(d) Results, Energy dataset

Fig. 5: Experimental results on different data sets: from top to bottom, Raisin,
Zoo, Glass, and Energy.
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