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Highlights

Cautious classifier ensembles for set-valued decision-making

Haifei Zhang, Benjamin Quost, Marie-Hélène Masson

• Averaging and voting in ensemble learning generalized for cautious classification.

• Efficient cautious decision-making strategy by maximizing the lower expected utility.

• Great trade-off between prediction accuracy and imprecision under high uncertainty.
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bIUT de l’Oise, Université de Picardie Jules Verne, Beauvais 60000, France

Abstract

Classifiers now demonstrate impressive performances in many domains. However, in some applications where
the cost of an erroneous decision is high, set-valued predictions may be preferable to classical crisp decisions,
being less informative but more reliable. Cautious classifiers aim at producing such imprecise predictions
so as to reduce the risk of making wrong decisions. In this paper, we describe two cautious classification
approaches rooted in the ensemble learning paradigm, which consist in combining probability intervals.
These intervals are aggregated within the framework of belief functions, using two proposed strategies that
can be regarded as generalizations of classical averaging and voting. Our strategies aim at maximizing the
lower expected discounted utility to achieve a good compromise between model accuracy and determinacy.
The efficiency and performances of the proposed procedures are illustrated using imprecise decision trees,
thus giving birth to cautious variants of the random forest classifier. The performance and properties of
these variants are illustrated using 15 datasets.

Keywords: Imprecise classification, Set-valued predictions, Belief functions, Imprecise Dirichlet model,
Ensemble learning

1. Introduction

Ensemble learning, which amounts to build a complex model by pooling a set of base models, has
emerged as one of the most widely used techniques, in particular for processing tabular data. Arguably
its most prominent representative, random forests [1, 2] consist in combining the outputs of classification
or regression trees; their efficiency and accuracy have been demonstrated in a wide range of domains. In
their classification version, tree outputs are either precise class probability estimates or decisions, obtained
from class counts for the training instances falling into the leaf nodes; and decisions are classically made
either by averaging the probabilities or by majority voting on the chosen classes. However, trees—and more
generally traditional classifiers—may exhibit poor robustness when faced with low-quality data, e.g., in the
presence of noise in the training labels, or for instances located in low-density regions of the input space. To
overcome this issue, previous works have proposed to use the imprecise Dirichlet model (IDM) to replace
precise class probability estimates with convex sets of probability distributions (in the form of probability
intervals) whose size depends on the number of training samples [3, 4]: the more samples in a leaf, the
shorter the length of the probability intervals.

The joint use of the IDM and decision trees has already been explored in two directions. First, it has
been used to improve the training of single trees or tree ensembles. Credal decision trees (CDT) [5, 6] and
credal random forests (CRF) [7] use the maximum entropy principle to select split features and values from
the probability intervals obtained via the IDM, thus improving their robustness to data noise. To enhance

∗Corresponding author, with the current address: Laboratoire Hubert Curien, UMR CNRS 5516, Saint-Etienne 42000,
France, and the Email address: haifei.zhang@univ-st-etienne.fr

Email addresses: haifei.zhang@hds.utc.fr (Haifei Zhang), benjamin.quost@hds.utc.fr (Benjamin Quost),
mylene.masson@hds.utc.fr (Marie-Hélène Masson)

Preprint submitted to International Journal of Approximate Reasoning January 14, 2025



the generalization performance of tree ensembles trained on small datasets, data sampling and augmentation
based on the IDM probability intervals have been proposed to train deep forests [8] and weights associated
with each tree in the ensemble can be learned to further optimize their combination [9].

Second, the probability intervals given by the IDM can also be used to make cautious decisions, thereby
reducing the risk of prediction error [3, 10]. A cautious decision of a classification task is often in the form
of a set-valued prediction: i.e., a cautious classifier may return a set of plausible classes instead of a single
class when the uncertainty is too high. An imprecise credal decision tree (ICDT) [11] is a single tree where
set-valued predictions are returned by applying the interval dominance principle [12] to the probability
intervals obtained via the IDM. In tree ensembles, applying cautious decision-making strategies becomes
more complex. One group of approach consists of aggregating the probability intervals given by the trees—
for example by conjunction, disjunction, or averaging—before making cautious decisions by computing a
partial order between the classes, e.g., using interval dominance [13, 14]. Another group of approaches
consists of allowing each tree to make a cautious decision first before pooling them. The Minimum-Vote-
Against (MVA) is such an approach, where the set of classes with minimal opposition are retained [15]. It
should be noted that MVA generally results in precise predictions, whereas disjunction and averaging often
turn out to be inconclusive. Even worse, using conjunction very frequently results in empty predictions
due to conflict. In other words, these methods hardly achieve a good compromise between accuracy and
cautiousness.

To address this issue, a generalized voting aggregation strategy for binary cautious classification within
the theoretical framework of belief functions was proposed in [16, 17]. In this paper, we extend these previous
works to the multi-class case, as illustrated in Fig. 1. The contributions in this paper can be summarized
as follows:

1. we generalize the averaging and voting aggregation strategies classically used in ensemble learning to
cautious classification problems;

2. we propose an efficient implementation of these principles, by maximizing a lower expected utility
criterion;

3. through extensive experiments1 realized using classification trees as base classifiers, we demonstrate
that the proposed approaches can achieve a good compromise between the accuracy and the cautious-
ness of the model, especially in the presence of high uncertainty.

The structure of this paper is as follows. After recalling background material in Section 2, we propose
in Section 3 an efficient way for computing the subset of classes maximizing the lower expected utility
given a belief function, based on which two cautious decision-making strategies presented in Section 4,
which generalize averaging and voting for imprecise tree ensembles, are deduced. The experiments reported
in Section 5 demonstrate the ability of our approach to reach a good compromise between accuracy and
determinacy, especially when facing high uncertainty, and to remain tractable even in the case of a high
number of classes. Finally, a conclusion is drawn in Section 6.

2. Preliminaries

In this section, we provide background knowledge about the imprecise Dirichlet model [4], belief functions
[18, 19], and decision-making strategies in the belief functions framework [20].

2.1. Imprecise Dirichlet model

Let H = {h1, . . . ,hT } be an ensemble of classifiers ht (e.g., trees in a random forest), trained on a
classification problem of K ≥ 2 classes. Let Rt(x) be the (multidimensional) decision region for classifier
ht in which a given test instance x ∈ X is located—typically, for a tree, Rt(x) is defined by the leaf in
which x falls; and let ntj denote the number of training samples of class cj in Rt(x).

1Our code is available on GitHub: https://github.com/Haifei-ZHANG/Cautious-Random-Forest.
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Figure 1: Overview of the proposed aggregation strategy.

The IDM consists in using a family of Dirichlet priors for estimating the class posterior probabilities
P(cj |x,Rt), rather than a single Dirichlet prior: as a consequence, each classifier provides a set of probability
intervals

Itj(x) =
[
p
tj
, ptj

]
=

[
ntj

Nt + s
,
ntj + s

Nt + s

]
, j = 1, . . . ,K; (1)

here, ntj(x) and Nt(x) =
∑K
j=1 ntj(x) are the numbers of instances from class cj and the total number of

instances in Rt(x), and s can be interpreted as a number of additional (virtual) samples with unknown class
information also located in Rt(x). Although the issue of choosing an appropriate value for s remains open,
the parameter is often set in practice to s = 1 or s = 2, following [4]. The IDM provides a natural local
estimate of epistemic uncertainty, i.e., the uncertainty caused by the lack of (training) information when a
decision must be made for x.

In Section 4, we describe two approaches for pooling these probability intervals into a mass function m,
from which a (cautious) decision h(x) can then be made.

2.2. Belief functions

The theory of belief functions, also referred to as Dempster-Shafer theory (DST) or the theory of evidence,
is a mathematical framework for dealing with uncertainty and reasoning with incomplete or conflicting
information [18, 19]. It provides a formal way to combine and reason with uncertain information from
multiple sources, allowing for a more robust and cautious approach to decision-making. DST has found
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applications in various fields, such as information fusion [21, 22, 23], pattern recognition [24, 25, 26, 27],
semantic segmentation [28], fault diagnosis [29, 30, 31], etc.

Let Ω = {c1, c2, . . . , cK} denote the frame of discernment, i.e., the finite set of mutually exclusive
alternatives for our class variable C. A mass function is a mapping m : 2Ω → [0, 1], such that

∑
A⊆Ωm(A) =

1. Any subset A ⊆ Ω such that m(A) > 0 is called a focal element of m. The value m(A) measures the
degree of evidence supporting the assumption “C ∈ A”, but nothing more specific; m(Ω) represents the
degree of total ignorance, i.e., the belief mass that could not be assigned to any specific subset of classes.
A mass function is Bayesian if its focal elements are singletons only, and quasi-Bayesian if they are only
singletons and Ω.

The belief and plausibility functions can be computed from the mass function m, which are respectively
defined as

Bel(A) =
∑
B⊆A

m(B), ∀A ∈ Ω, (2)

Pl(A) =
∑

B∩A6=∅

m(B), ∀A ∈ Ω. (3)

In a nutshell, Bel(A) measures the total degree of support to “C ∈ A”, and Pl(A) is the degree of belief
that does not contradict “C ∈ A”. These two functions are dual since Bel(A) = 1−Pl(A), with A = Ω \A.

The mass, belief, and plausibility functions are in one-to-one correspondence and can be retrieved from
each other. When it comes to making a decision, a mass function can be transformed into a probability
distribution through the pignistic transformation [32, 33]:

BetP (ck) =
∑

A⊆Ω,ck∈A

m(A)

|A|
, ∀ck ∈ Ω, (4)

in which the mass of focal sets is equally assigned to their elements.

2.3. Decision-making in the belief function framework

A decision problem can be seen as choosing the most desirable action among a set of alternatives F =
{f1, . . . , fL}, according to a set of states of nature Ω = {c1, . . . , cK} and a corresponding utility matrix U
of dimensions L×K. The value of uij ∈ R is the utility or payoff obtained if action fi, i = 1, . . . , L is taken
and state cj , j = 1, . . . ,K occurs. In the classification setting, the action is that of assigning a test instance
x to a class (or a subset of classes in cautious classification), the states of nature mentioned above being
obviously the set of (actual) classes for x.

Assume our knowledge of the class of the test instance is represented by a mass function m: then, several
criteria to make decisions have been proposed in the framework of belief functions [20]. Should only singleton
assignments be considered, a convenient way to build a complete preference order over the set of classes
consists in transforming the mass function m into a probability distribution according to Eq. (4), and then
calculating the expected utility of each action which results in assigning a singleton class: this latter, called
the pignistic expected utility, is defined as

EBetP (fi, U) =

K∑
k=1

BetP (ck)uik. (5)

However, when actions fi are not restricted to assigning a single class but consider subsets A ⊆ Ω of classes,
denoted as fA, the expected utility criterion may be extended to the lower and upper expected utilities,
respectively defined as the weighted sums of the minimum and maximum utility within each focal set:

Em(fA, U) =
∑
B⊆Ω

m(B) min
ck∈B

uAk, (6)

Em(fA, U) =
∑
B⊆Ω

m(B)max
ck∈B

uAk. (7)
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It is obvious that E(m, fA, U) ≤ E(m, fA, U) and only when m is Bayesian, the equality applies, as we
retrieve the probabilistic case. The Hurwicz expected utility is a convex combination of Em(fA, U) and
Em(fA, U), defined as:

Em,α(fA, U) = αE(m, fA, U) + (1− α)E(m, fA, U), (8)

where α ∈ [0, 1] is called the pessimism index. The minimax regret criterion can also be extended to belief
functions. The regret that action fA is chosen whereas state ck occurs is defined as rAk = maxB uBk, ∀B ⊆
Ω. The expected maximal regret of action fA is defined as

Rm(fA, U) =
∑
B⊆Ω

m(B) max
ck∈B

rAk. (9)

From now on, for the sake of simplicity, we will identify by abuse of notation the action fA of choosing
a subset A ⊆ Ω with the subset A itself.

It should be noted that in all of these decision-making strategies, if class assignments are restricted to
singletons, i.e., |A| = 1, then, all of these four expected measures lead to computing complete preorders
among all possible precise assignments, and the one that reaches the highest expected utility or the lowest
expected maximal regret will be selected, which results in precise predictions [34]. Otherwise, if all possible
partial assignments (i.e., any subset A ⊆ Ω) are considered as legitimate decisions, the lower, upper, Hurwicz
expected utilities, and the expected maximal regret establish complete preorders among partial assignments:
then, selecting the subset that reaches the highest expected utility or the lowest expected maximal regret
leads to make set-valued or cautious predictions [35].

2.4. Evaluation of cautious classifiers

Unlike traditional classifiers, cautious classifiers may return set-valued decisions: in this case, classical
evaluation criteria are no longer applicable. Various criteria have been proposed to evaluate the quality
of such predictions, which depends both on their ability to avoid making mistakes and on their level of
informativeness:

• determinacy counts the proportion of samples that are determinately classified (i.e., for which the
classifier outputs a single class);

• single-set accuracy measures the proportion of correct decisions among the determinate ones;

• set accuracy measures the proportion of indeterminate predictions containing the actual class (com-
puted only over indeterminate predictions);

• set size gives the average size of indeterminate predictions;

• the discounted utility calculates the expected utility of making a correct decision, discounted by the
size of the predicted set: two special cases are the classical u65 and u80 measures described below.

Let h(x) = A ⊆ Ω be the outcome of the decision procedure for a test sample x with actual class c.
Zaffalon et al. [36] proposed to evaluate the quality of this decision using a discounted utility function uα,
which rewards both its cautiousness and accuracy as follows:

uα(A, c) = dα(|A|)1(c ∈ A), (10)

where |A| is the cardinality of A, dα(.) is a discount ratio that adjusts the reward for cautiousness (which
is considered preferable to random guessing whenever dα(|A|) > 1/|A|), and 1(·) stands for the indicator
function. The u65 and u80 scores are two notable special cases of uα, respectively obtained using

d65(|A|) =
1.6

|A|
− 0.6

|A|2
, d80(|A|) =

2.2

|A|
− 1.2

|A|2
.
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3. Lower discounted utility maximization

Let m be a mass function defined on the frame of discernment Ω = {c1, . . . , cK} with K ≥ 2, representing
our knowledge of the actual class of a given instance x. Assume we want to compute the lower expected
utility Em(fA, U) of the action fA (which consists in assigning x to the subset of classes A ⊆ Ω), according
to a utility matrix U , as per Eq. (6). When the utility function has the same form as in Eq. (10), this
amounts to calculating the product of the belief degree Bel(A) with the corresponding discounted utility
dα(|A|), as shown in Theorem 3.1.

Theorem 3.1. Let us consider the utility matrix U of general term uAk = dα(|A|)1(ck ∈ A), where ck
refers to the ground truth and A ⊆ Ω to a set-valued decision; then, the lower expected utility is equal to
Em(A,U) = dα(|A|)Bel(A).

Proof 3.1. Following Eq. (6), and taking any A ⊆ Ω as action, we have

Em(A,U) =
∑
B⊆Ω

m(B) min
ck∈B

uAk

=
∑
B⊆Ω

m(B) min
ck∈B

[dα(|A|)1(ck ∈ A)]

= dα(|A|)
∑
B⊆Ω

m(B) min
ck∈B

1(ck ∈ A)

= dα(|A|)
∑
B⊆A

m(B)

= dα(|A|)Bel(A).

Indeed, for any subset B ⊆ Ω such that B ∩ A 6= ∅ and B * A, there obviously exists ck ∈ B such that
ck /∈ A: thus, minck∈B 1(ck ∈ A) = 1 if and only if B ⊆ A.

Example 1 (Discounted utility matrix and lower discounted utility). Let us consider a problem de-
fined on Ω = {c1, c2, c3} and an associated mass function m defined as

m({c1}) = 0.45, m({c2}) = 0.35, m({c3}) = 0.1, m(Ω) = 0.1.

In Table 1, the columns associated with uAk indicate the utility of taking A as the decision and the corre-
sponding state of nature occurs. For example. if we take {c1, c2} as the decision and c1 (or c2) is the true
state of nature, then the discounted utility is 0.65. Otherwise, if c3 is the true state of nature, then the
discounted utility is zero.

The column Bel(A) is calculated via Eq. (2), which is the belief degree of each decision. The columns
associated Em(A,U) is then the expected lower discounted utility when we take A as the decision and the
corresponding state of nature occurs, which is calculated according to Theorem 3.1. It is obvious that {c1, c2}
reaches the maximum of lower expected discounted utility, so it is taken as the decision.

Following the definition of lower expected utility in Eq. (6), Em({c1, c2}, U) can be calculated as follows

Em({c1, c2}, U) = m({c1})×min(0.65) +m({c2})×min(0.65),

+m({m3})×min(0) +m(Ω)×min(0.65, 0.65, 0),

= 0.45× 0.65 + 0.35× 0.65 + 0.1× 0 + 0.1× 0,

= 0.52.

Remark 3.1. Obviously, in our setting, the lower expected utility is not the only criterion based on which
set-valued decisions can be made.
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Table 1: Example of lower expected discounted utility with three classes

A
uAk d65(|A|) Bel(A) Em(A,U) = d65(|A|)Bel(A)

c1 c2 c3
{c1} 1 0 0 1 0.45 0.45

{c2} 0 1 0 1 0.35 0.35

{c3} 0 0 1 1 0.1 0.1

{c1, c2} 0.65 0.65 0 0.65 0.8 0.52

{c1, c3} 0.65 0 0.65 0.65 0.55 0.3575

{c2, c3} 0 0.65 0.65 0.65 0.45 0.2925

{c1, c2, c3} 0.4667 0.4667 0.4667 0.4557 1 0.4667

As we can see in Theorem 3.1, computing Em(A,U) requires to compute the belief degree Bel(A), based
on the mass degrees m(B) of all subsets B ⊆ A, B 6= ∅. In principle, maximizing Em(A,U) across all
subsets requires to check all subsets A ⊆ Ω, the number of which is 2|Ω|; however, as it will be seen, several
properties make it possible to decrease this complexity, by stopping the search once a given subset cardinality
is attained.

Maximizing the upper expected utility Em(A,U), on the other hand, would require to calculate the plau-
sibility degree Pl(A), based on the mass degrees m(B) of all subsets B ∩ A 6= ∅, which significantly raises
the complexity. Since the Hurwicz criterion takes the upper expected utility into account, its complexity is
also affected by this issue. The expected maximal regret also faces a similar problem, requiring to scan all
subsets A ⊆ Ω.

These complexity considerations constitute yet another incentive to choose the lower expected utility as
the criterion for making cautious decisions.

4. Proposed aggregation strategies

In this section, we detail our contributions: first, we expose how the classical averaging and voting
strategies in ensemble learning can be generalized to the belief-theoretic case; then, we detail how cautious
decisions based on the lower expected utility can be efficiently made, by leveraging the formulation of the
criterion provided in Theorem 3.1.

4.1. Generalization of averaging
We start with the generalized averaging strategy. First, we show that the outputs of imprecise classifiers

are aggregated into a quasi-Bayesian mass function. Then, we demonstrate the cautious decision-making
problem can be solved in a time complexity of O(K logK), where K is the number of classes in the data.

Classifier averaging

We assume that each classifier output ht(x) is a set of probability intervals

Itk(x) =
[
p
tk

(x), ptk(x)
]
, t = 1, . . . , T, k = 1, . . . ,K.

In the case of decision trees, these intervals are typically obtained using the imprecise Dirichlet model, as
in Eq. (1). According to [37], the corresponding quasi-Bayesian mass function associated with Itk(x) is

mt({ck}) = p
tk
, k = 1, . . . ,K; mt(Ω) = 1−

K∑
k=1

mt({ck}). (11)

A straightforward classifier combination strategy consists in averaging these mass functions, resulting in the
following quasi-Bayesian mass function:

m({ck}) =

∑T
t=1mt({ck})

T
, k = 1, . . . ,K; m(Ω) =

∑T
t=1mt(Ω)

T
. (12)
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Decision-making

To make a decision based on the mass function defined by Eq. 12, we start by building the sequence of
nested subsets A(k) ⊆ Ω, k = 1, . . . ,K: defining A(0) = ∅, we compute

A(k+1) = A(k) ∪ arg max
c` /∈A(k)

m({c`}), for k = 1, . . . ,K, (13)

thus repeatedly aggregating the class with the highest mass among the remaining ones. Remark that we have
A(K) = Ω. As shown by Theorem 4.1, the sequence of nested subsets A(1), . . . , A(K) necessarily contains
the subset A? with the highest lower expected utility, i.e., A? = arg maxA Em(A,U). Therefore, once the
sequence has been built, we may simply scan it to determine A? in linear complexity. For the sake of
simplicity, we will use the notation E(A) to refer to the lower expected utility Em(A,U) as a function of
A ⊆ Ω, when both the mass function m and the utility matrix U are fixed.

Theorem 4.1. Consider a quasi-Bayesian mass function m, where the classes are already sorted by de-
creasing mass: m({c(k)}) ≥ m({c(k+1)}), for k = 1, . . . ,K− 1. The subset A? = arg maxA E(A) maximizing
the lower expected utility can be identified in complexity O(K) by scanning the sequence of nested subsets

A(1) = {c(1)} ⊂ A(2) = {c(1), c(2)} ⊂ · · · ⊂ A(K) = Ω.

Proof 4.1. Since the masses m({c(k)}) are sorted in decreasing order, the focal element with the highest
belief among all focal elements of cardinality i is A(i) = {c(k), k = 1, . . . , i}: indeed, for any B ⊆ Ω such that
|B| = i, we have

Bel(A(i)) =

i∑
k=1

m({c(k)}) ≥ Bel(B).

Since dα(|A|) only depends on |A|, A(k) maximizes the lower expected utility over all subsets of size i.
As a consequence, selecting the subset with maximal lower expected utility in the sequence of nested

subsets A(k), k = 1, . . . ,K computes the maximizer A? in time complexity O(K).

It should be noted that the total complexity of the decision-making starting from the aggregated mass
function provided by Eq. (12) is O(K logK) due to sorting the classes by decreasing mass. We also remark
that the property established in Theorem 4.1 also holds for other kinds of mass functions, and notably for
consonant mass functions.

Theorem 4.2. Consider a consonant mass function m2, i.e., with nested focal elements A(1) ⊂ A(2) ⊂
. . . ⊂ A(R).

The maximizer A? of the lower expected utility can be identified in complexity O(R) by scanning the focal
elements of m2.

Proof 4.2. The proof is trivial and invokes similar arguments to that of Theorem 4.1. Let B ⊆ Ω be a
subset which does not belong to the sequence of focal elements of m2.

• If B does not contain any subset A(i) in this sequence, then B has necessarily a zero belief, and therefore
E(B) = 0.

• If B does contain at least one subset in this sequence, assume A(i) ⊂ B is the largest of those subsets
in the sequence belonging to B: then, we have that Bel(B) = Bel(A(i)), but E(B) < E(A(i)) since
|A(i)| < |B|.

As a consequence, the maximizer of the lower expected utility necessarily belongs to the sequence of nested
focal elements A(r), r = 1, . . . , R of the mass function m2, and can be identified by scanning this sequence.

As a matter of fact, finding the maximizer A? of the lower expected utility does not require to scan the
whole sequence of nested subsets as suggested in Theorem 4.1 or Theorem 4.2. Indeed, we can proceed by
scanning subsets of increasing cardinality and stop whenever a subset does not improve the lower expected
utility, as shown by Proposition 4.1.
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Algorithm 1: Cautious Decision Making by Averaging

Input: Classifier outputs Itk(x) = [p
tk

(x); ptk(x)]k=1,...,K
t=1,...,T ; discount ratio dα

Output: Decision A ⊆ Ω
1 for k = 1, . . . ,K do

2 m({ck}) = 1/T ×
∑T
t=1 ptk

3 m(Ω) = 1−
∑K
k=1m({ck})

4 Sort classes by decreasing mass: m({c(1)}) ≥ m({c(2)}) ≥ · · · ≥ m({c(K)})
5 A = ∅
6 bel = 0
7 mleu = 0 // maximum lower expected utility

8 for i = 1, . . . ,K do
9 bel = bel +m({c(i)})

10 leu = dα(i)× bel // lower expected utility

11 if leu > mleu then
12 mleu = leu
13 A = A ∪ {c(i)}
14 if leu > dα(i+ 1) then
15 break;

16 return A

Proposition 4.1. Consider a subset A ⊆ Ω (typically, the current maximizer of the lower expected utility in
the search procedure) such that we have E(A) ≥ dα(i), for some i > |A|, i ∈ {1, . . . ,K}; then, E(A) ≥ E(B)
for any B ⊆ Ω with cardinality |B| ≥ i.2

Proof 4.3. Let A ⊆ Ω be a subset of classes. Assume that E(A) > dα(i) for some i > |A|. Since Bel(B) ≤ 1
for any subset B ⊆ Ω, then dα(i) is an upper bound for the lower expected utility of any subset B such that
|B| = i, and therefore E(A) > E(B). The generalization to all subsets B such that |B| > i comes from dα(i)
being monotone decreasing in i.

Overall procedure

Our overall procedure for averaging imprecise classifier outputs, hereafter referred to as CDM/Ave,
extends classical averaging for precise probabilities. It is summarized in Algorithm 1. Note that the stopping
condition used in lines 14–15 proceeds from Proposition 4.1 above.

Note that a theorem similar to Theorem 4.1 was independently proven in [38], which addressed set-valued
prediction in a probabilistic framework for a wide range of utility functions. Since the masses obtained by
averaging the interval-valued classifier outputs are quasi-Bayesian, the procedure described in Algorithm 1
is close to that described in [38]. The overall complexity of Algorithm 1 is O(K logK) due to sorting the
classes by decreasing mass.

Example 2 (Cautious decision-making via generalised averaging). Assume the averaged mass func-
tion on Ω = {c1, c2, c3, c4} is given as follows:

m({c1}) = 0.32, m({c2}) = 0.48, m({c3}) = 0.04, m({c4}) = 0.06,

m(Ω) = 0.05.

The classes ordered by decreasing mass are thus c2 � c1 � c4 � c3. They are repeatedly aggregated to the
candidate maximizer of the lower expected utility, which is re-computed (using d65) each time a new class is
added. The results are displayed in Table 2.

2Note that E(A) > dα(i) for some i > |A| implies E(A) > E(B) for any B ⊆ Ω.
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Table 2: Intermediate results obtained using Alg. 1 on the mass function in Example 2.

|A| A d65(|A|) Bel(A) Em(A,U) > d65(|A|+ 1)? Status

1 {c2} 1 0.48 0.48 No (< 0.65) Continue
2 {c2, c1} 0.65 0.8 0.52 Yes (> 0.467) Stop

The cautious prediction made is A? = {c2, c1}, which reaches the maximum expected lower discounted utility
since E({c1, c2}) > d65(3) = 0.467.

4.2. Generalization of voting

We now present our generalized voting strategy, which aggregates the imprecise outputs of trees into a
single mass function, which is usually not quasi-Bayesian, via the interval dominance criterion. We then
propose a decision-making procedure with a reasonable time complexity to select the best subset of classes
as cautious predictions.

Classifier output aggregation

We now address the combination of probability intervals via voting. As above, we assume that each
classifier output is a set of probability intervals Itk(x), for k = 1, . . . ,K.

The first step of our approach consists in identifying, for each classifier, the set At of non-dominated
classes, using for instance the interval dominance criterion. The classifier outputs are then aggregated by
computing the frequencies of all subsets B ⊆ Ω across the sets of non-dominated classes At, t = 1, . . . , T :

m(B) =
1

T

T∑
t=1

1 (At = B) , (14)

which is equivalent to letting each classifier vote for its set At of non-dominated classes. Algorithm 2
describes this approach to combining classifier outputs into a single mass function m, in time complexity
O(TK2).

Algorithm 2: Tree aggregation via interval dominance

Input: Classifier outputs Itk(x) = [p
tk

(x); ptk(x)]k=1,...,K
t=1,...,T

Output: Mass function m
1 m(A) = 0,∀A ⊆ Ω
2 for t = 1, . . . , T do
3 DC = ∅ // set of dominated classes

4 for k = 1, . . . ,K do
5 for j = 1, . . . ,K and j 6= k do
6 if ptk < p

tj
then

7 DC = DC ∪ ck
8 break

9 NDC = Ω \DC // non-dominated classes

10 m(NDC) = m(NDC) + 1
T

11 return m
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Decision-making

Our decision-making strategy consists again to compute the maximizer A? of the lower expected dis-
counted utility E(A) over all subsets A ⊆ Ω. However, the mass function m obtained by aggregating the
classifier outputs does not have any specific property; in particular, it is neither quasi-Bayesian nor conso-
nant. As a consequence, computing the maximizer A? of the lower expected discounted utility requires in
principle to check all candidate subsets A ⊆ Ω, the worst-case complexity of which is exponential (O(2K))
and therefore prohibitive for datasets with large numbers of classes. In order to alleviate this complexity,
we leverage the following properties:

(i) we may arbitrarily restrict the decision to subsets A ⊆ Ω with cardinality |A| ≤ Q < K, which reduces

the complexity to O(
∑Q
k=1

(
K
k

)
).

(ii) we scan subsets A ⊆ Ω of increasing cardinality: given a current maximizer A, we stop the procedure
when larger subsets B such that |B| > |A| are known not to increase the lower expected discounted
utility as per Proposition 4.1;

(iii) in addition, during the search, for a given cardinality i, only subsets A composed of classes appearing
in focal elements B such that |B| ≤ i need to be considered (see Proposition 4.2);

Proposition 4.2 shows that for a given cardinality i, we do not need to consider all subsets A : |A| = i as
candidate maximizers for the lower expected discounted utility, but only those composed of classes appearing
in focal elements B : |B| ≤ i.

Proposition 4.2. Let Ωi be the set of classes appearing in focal elements of cardinality less than or equal
to i, for some i ∈ {1, . . . ,K}.

The subset A?i ⊆ Ω maximizing the lower expected utility among all A such that |A| = i is a subset of Ωi
composed of classes appearing in focal elements B such that |B| ≤ i.

Proof 4.4. Assume a subset A of cardinality |A| = i is such that A = A1 ∪ A2, with A1 = A ∩ Ωi: then,
Bel(A) = Bel(A1).

If A2 6= ∅, then E(A) < E(A1) since Bel(A) = Bel(A1) and |A| > |A1|: classes ck /∈ Ωi necessarily
decrease E(A), and focal elements B such that |B| > i do not contribute to Bel(A).

Example 3. Let Ω = {c1, c2, c3, c4} and m be a mass function defined by

m({c1}) = 0.3, m({c2}) = 0.2, m({c1, c3}) = 0.15,

m({c2, c3, c4}) = 0.25, m(Ω) = 0.1;

the subset of classes appearing in focal elements B such that |B| ≤ 2 is Ω2 = {c1, c2, c3}: therefore, we get
the following belief degrees for focal elements of cardinality i = 2 which are subsets of Ω2:

Bel({c1, c2}) = 0.5, Bel({c1, c3}) = 0.45, Bel({c2, c3}) = 0.2.

The maximizer of the lower expected discounted utility among subsets of cardinality |A| = 2 is thus A?2 =
{c1, c2}.

The procedure described in Algorithm 3, to which we refer in the following as CDM/Vote, extends voting
when votes are expressed as subsets of classes and returns the subset A? = arg max E(A) among all subsets
A ⊆ Ω such that |A| ≤ Q ≤ K. It generalizes the method proposed in the previous paper [17, 16] for binary
cautious classification, which amounts to maximizing the discounted accuracy dracc when Ω = {c1, c2}. Note
that CDM/Vote is computationally less efficient than CDM/Ave by design, even if the time complexity can
be controlled. However, as it is shown in the experimental part, this approach remains able to address
cautious classification problems with large numbers of classes.
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Algorithm 3: Cautious Decision Making by Voting

Input: Mass function m (typically obtained by Algorithm 2); cardinality bound Q; discount ratio
dα

Output: Decision A
1 FE = ∅ // focal elements

2 Ωi = ∅ // considering classes

3 A = ∅
4 mleu = 0 // maximum lower expected utility

5 for i = 1, . . . , Q // trick 1

6 do
7 dr = dα(i)
8 if mleu > dr then
9 Return A // trick 2 (Prop. 4.1)

10 else
11 FE = FE ∪ {B : m(B) > 0, |B| = i, B ⊆ Ω}
12 Ωi = Ωi ∪ {c : c ∈ B,B ∈ FE} // trick 3 (Prop. 4.2)

13 for all B ⊆ Ωi and |B| = i do
14 bel =

∑
C∈FE, C⊆Bm(C)

15 leu = dr × bel // lower expected utility for B
16 if leu > mleu then
17 mleu = leu
18 A = B

19 return A

Example 4 (Cautious decision-making by generalised voting). Let Ω = {c1, c2, c3, c4}, and let the
mass function m obtained via Algorithm 2 be defined by

m({c1}) = 0.15, m({c2}) = 0.25, m({c1, c2}) = 0.35,

m({c1, c3}) = 0.05, m({c2, c3}) = 0.1, m({c2, c3, c4}) = 0.05,

m(Ω) = 0.05.

Let us apply Algorithm 3 to make a decision, using d65 as the discount ratio. The first iteration considers
candidate maximizers of the lower expected discounted utility of cardinality i = 1. We have A?1 = {c2}
as current maximizer for the lower expected utility: since E({c2}) < dα(2), the process continues. At
iteration i = 2, the process determines A?2 = {c1, c2} as current maximizer for the lower expected utility,
with E({c1, c2}) > dα(3): the search process is therefore stopped.
The final set-valued prediction is then A? = {c1, c2} since any subset B ⊆ Ω with |B| > 2 has a smaller
lower expected utility than A?. Remark that class c4 has never been considered in the process since it would
have appeared in iteration i = 3 as a component of the focal element {c2, c3, c4}: however, focal elements
with cardinality i = 3 are not considered, since they are detected as unable to ameliorate the lower expected
utility.

5. Experiments and results

In this section, we detail the experiments conducted using random forests as an ensemble classification
method. We report the results obtained on 15 datasets of various sizes and numbers of classes. These
datasets, which are described in Table 4, were collected from the UCI repository [39] and the Kaggle website
[40]. In all the following experiments, we used the scikit-learn implementation of random forests [41] as the
base ensemble learning model.
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Table 3: Intermediate results obtained using Alg. 3 on the mass function in Example 4.

Iteration i = 1: subset of considered classes Ω1 = {c1, c2}

A d65(|A|) Bel(A) Em(A,U) > d65(|A|+ 1)? Status

{c1} 1 0.15 0.15 No (< 0.65)
{c2} 1 0.25 0.25 No (< 0.65) Continue

Iteration i = 2: subset of considered classes Ω2 = {c1, c2, c3}

A d65(|A|) Bel(A) Em(A,U) > d65(|A|+ 1)? Status

{c1, c3} 0.65 0.20 0.13 No (< 0.4667)
{c2, c3} 0.65 0.35 0.2275 No (< 0.4667)
{c1, c2} 0.65 0.75 0.4875 Yes (> 0.4667) Stop

Table 4: Brief description of the datasets used: numbers of instances, features, and classes.

Datasets Nb. instances Nb. features Nb. classes

1 Balance-scale 625 4 3
2 Ecoli 336 7 8
3 Forest 523 27 4
4 Glass 214 9 6
5 Letter 20000 16 26
6 Libras 360 90 15
7 Optdigits 5620 64 10
8 Page-blocks 5473 10 5
9 Seeds 210 7 3

10 Spectrometer 531 101 48
11 Vehicle 846 18 4
12 Vowel 990 10 11
13 Waveform 5000 40 3
14 Wine-quality 1599 11 6
15 Yeast 1484 8 10

5.1. Generalized voting efficiency

As mentioned above, a limitation of our generalized voting strategy is its computational complexity.
Therefore, the first experiment studies the time complexity of the CDM/Vote approach as a function of the
number of labels.

Experimental setting

For a given number of labels i, we first picked i labels at random and extracted the corresponding samples
from the original dataset to construct a dataset with i labels. We then divided this dataset into a training
set (containing 80% of the instances) and a test set (20% of the instances). A random forest consisting of
100 trees was trained with the parameter min samples leaf set to one. The IDM parameter was set to s = 1
in this experiment.

During the test phase, we applied the CDM/Vote approach using the d65 discounted ratio to make
predictions for the test data. For each sample, we recorded the elapsed time of the entire decision-making
procedure (aggregation of classifier outputs via interval dominance, followed by the lower expected discounted
utility maximization step), as well as the elapsed time for the second step only (lower expected utility
maximization), respectively referred to as ID+MLEDU and MLEDU. In particular, since for high values of
i, the decision-making would be intractable without any control of the complexity, we always set the allowed
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Figure 2: Decision-making time complexity of CDM/Vote according to the number of labels (for 100 samples), with (up) and
without (down) filtering as per Proposition 4.2. Left to right: vowel, letter, and spectrometer.

maximum labels in the prediction to Q = 5, and stopped the procedure when a larger prediction cardinality
was known not to increase the utility: thus, we compared the efficiency with and without filtering the focal
elements based on Proposition 4.2.

For each given number of labels i, we repeated the process of dataset construction, data division, model
training, and decision-making 10 times. Finally, the average elapsed time per 100 inferences was reported.

Results and dicussion

Fig. 2 shows that for a small number of labels (less than 15), filtering out subsets A 6⊆ Ωi does not signifi-
cantly improve the efficiency, as applying interval dominance prevails over computing the subset maximizing
the lower expected discounted utility in terms of computational time. However, for a larger number of labels,
this latter step becomes prominent: filtering out subsets A 6⊆ Ωi substantially accelerates the procedure,
regardless of the number of labels, as shown in the right column of Fig. 2. This experiment demonstrates
that CDM/Vote remains applicable with a large number of labels.

5.2. Reducing the risk of making wrong decisions

Cautious classification aims at producing set-valued predictions for instances whose actual class is difficult
to accurately identify, so as to decrease the risk of missing it. This experiment studies the behavior of our
approach when facing difficult test instances. In precise classification, the level of difficulty can be measured
by the margin between the highest class posterior probability and the second highest [42]:

µ(x) = P(ci1 |x)− P(ci2 |x), (15)

where
i1 = arg max

j
P(cj |x), i2 = arg max

j 6=i1
P(cj |x).

This margin can be considered as an indicator of the aleatoric uncertainty pertaining to x: the smaller µ(x),
the harder it is to correctly classify x.

Experimental setting

In this experiment, we repeated the decision-making procedure via two times 5-fold cross-validation, and
the average results over all folds are reported.
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(a) balance scale (b) ecoli (c) forest

(d) glass (e) letter (f) libras

(g) optdigits (h) page blocks (i) seeds

(j) spectrometer (k) vehicle (l) vowel

(m) waveform (n) wine quality (o) yeast

Figure 3: Performances of the cautious and classical random forests as a function of instance difficulty.
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In each fold, a random forest consisting of 100 trees was trained on training data, with the parameter
min samples leaf set to one, and the IDM parameter set to s = 2. Then, in each fold, we computed the
quantile of level α of obtained margins over the validation samples, noted as µα, and we selected the
instances with a margin µ(x) < µα as test samples. The value of α directly quantifies the level of difficulty
of these selected instances, in terms of (accurate) classification. For these selected instances, we evaluated
the determinacy and the risk of the proposed cautious decision-making strategy, and compared them to those
of a conventional random forest. Note that the risk of our cautious decision-making approach (CDM/Vote
using the d65 discounted ratio) is the proportion of predictions that do not contain true labels, i.e., it is the
set accuracy computed over all test instances. The risk of the precise random forest used as a benchmark is
its error rate.

Results and discussion

In Fig. 3, for all datasets, we can first observe what was expected: as α increases, the proportion of
difficult instances decreases and determinacy consequently increases. The second observation is that the
risk of the cautious classifier is significantly lower than the one of the conventional random forest. The
superiority of our method in terms of risk is even more notable when the proportion of difficult samples is
larger (when α is low).

It is important to note that in the above experiments, we investigated the performance of our approach
in the presence of aleatoric uncertainty. However, we also found that our approach does not present the
same behavior when facing epistemic uncertainty, i.e., there is no guarantee that an increase in epistemic
uncertainty (via an adjustment of the IDM parameter s) will result in an increase in terms of cautiousness.

5.3. Performance comparison of cautious classifiers

In this experiment, we compared our two proposed approaches (CDM/Ave, presented in Section 4.1,
which generalizes averaging, and CDM/Vote, presented in Section 4.2, which generalizes voting) with the
following cautious classification approaches:

• Constant Risk (CR) consists in fixing an acceptable risk threshold r (usually by cross-validation or by
expert users) and selecting the smallest number of best classes with cumulative probability exceeding
1− r;

• the NonDeterministic Classifier (NDC) aims to maximize the discounted utility Fβ = 1+β2

β2+|A| ·
∑
ck∈A p(ck|x),

where the value of β is often taken as one;

• AVEraging (AVE) computes the average probability intervals provided by the trees and applies interval
dominance to make cautious predictions, following [43] and [14];

• Minimum Vote Against (MVA) counts the number of classifiers that predict a class as dominated (vote
against), and outputs the set of classes with the lowest amount of votes against as final decision [15].

All of these methods can be divided into two groups. While CR and NDC are two cautious classifiers based
on precise estimation of the class posterior probabilities (after aggregation of precise decision trees), the four
others are based on the aggregation of imprecise classifier outputs.

Experimental setting

In this experiment, the number of trees in the forest was also set to 100, and the parameter min samples leaf
was set to one. The CDM/Vote and CDM/Ave procedures used the d65 discounted ratio to make decisions.

We first compared these models with the original data. For each dataset and each compared model, we
conducted a procedure of two times 5-fold cross-validation to evaluate the determinacy, single-set accuracy,
set accuracy computed over indeterminate predictions only, set size, u65 score and u80 score. In each fold,
we set the parameter value β = 1 for NDC, and for the other five methods, a nested 5-fold cross-validation
was conducted to choose the best value for the parameter s within the set {0.5, 1, 1.5, 2, 2.5} by maximizing
the u65 score. It should be noted that the same decision trees were used in all of these six approaches.
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Table 5: Average results across all datasets

Results on data without label noise

Criteria CR NDC AVE MVA CDM/Ave CDM/Vote

Determinacy 0.767 0.775 0.833 0.987 0.787 0.796
Single-set accuracy 0.891 0.894 0.875 0.822 0.890 0.885
Set accuracy 0.873 0.873 0.904 0.802 0.881 0.878
Set size 2.115 2.054 3.544 2.042 2.135 2.116
u65 score 0.813 0.824 0.815 0.818 0.822 0.821
u80 score 0.842 0.852 0.834 0.819 0.849 0.847

Results on data with 30% label noise

Criteria CR NDC AVE MVA CDM/Ave CDM/Vote

Determinacy 0.524 0.632 0.655 0.976 0.658 0.680
Single-set accuracy 0.874 0.847 0.855 0.745 0.850 0.847
Set accuracy 0.849 0.838 0.934 0.779 0.863 0.841
Set size 2.239 2.100 5.463 2.058 2.417 2.192
u65 score 0.705 0.735 0.710 0.740 0.738 0.748
u80 score 0.763 0.780 0.746 0.742 0.780 0.786

Then, we also studied the behavior of the classifiers by introducing label noise. We followed the same
procedure mentioned above in each cross-evaluation fold: 30% of training samples were randomly selected
and their labels were replaced with a randomly selected label different from the actual one. The labels of
the test instances were left unchanged.

Results and discussion

Table 5 shows the evaluation of each metric averaged across all datasets to show the overall performance
of the different models. The detailed evaluation of each dataset can be found in Appendix A, from Table A.6
to Table A.11. Below, we discuss the results obtained on data without and with label noise.

1. Noise-free data:

• Determinacy and single-set accuracy : On data without label noise, the MVA method almost
always produces determinate predictions, but this confidence comes at the cost of a significant
drop in single-set accuracy. Conversely, the CR approach is too cautious, resulting in a low deter-
minacy. The NDC and our proposed CDM methods have a lower determinacy and comparable
accuracy.

• Set accuracy and set Size: Regarding indeterminate predictions, the AVE method frequently
achieves a higher set accuracy but at the expense of a much larger number of labels in predictions,
especially for several datasets such as “letters”, “libras”, and “spectrometer”. In contrast, other
cautious classifiers, including the NDC and CDM models, manage to keep the average size of
indeterminate predictions reasonable (less than three labels in predictions).

• Utility Scores (u65 and u80): On the original datasets, NDC shows the best performance, but
CDM/Ave and CDM/Vote achieve very close results. This observation demonstrates that these
three approaches can achieve a better balance between accuracy and cautiousness.

2. Data with 30% label noise:

• Determinacy and single-set accuracy : When facing label noise in training data, all classifiers
except MVA show a reduced determinacy, which indicates more cautious decisions. The drop of
CR in terms of determinacy is significant, due to lower gaps between the class posterior proba-
bilities. Compared to NDC and AVE, our proposed CDM models can return more determinate
predictions while keeping a very similar accuracy, which means our models are more efficient in
capturing samples that are difficult to classify.
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• Set accuracy and set size: In the presence of label noise, the AVE method still performs best in
set accuracy but with very imprecise predictions. Other cautious classifiers, such as NDC and
CDM, maintain reasonable set sizes and good set accuracy despite the noise. Meanwhile, we
find that with the introduction of noise, the models tend to provide indeterminate predictions of
larger size, except for MVA, which keeps two labels in the indeterminate predictions.

• Utility Scores (u65 and u80): On noisy datasets, CDM/Ave and CDM/Vote show higher dis-
counted utility values. CDM/Vote, in particular, achieves the best u65 and u80 scores on 9 and
10 out of 15 datasets, respectively, outperforming all other methods. This can be explained by
its ability to deal with uncertainty in the decision-making process and to keep a better balance
between cautiousness and accuracy.

In summary, our cautious decision-making approaches, especially CDM/Vote, exhibit a sensitivity to
label noise in training data, and are able to achieve a good compromise between model accuracy and
cautiousness, in particular when the data are pervaded with noise.

6. Conclusion

In this paper, we have proposed two aggregation strategies to make cautious decisions in the case of
multi-class classification problems. In this setting, we consider ensembles of classifiers that provide intervals
of posterior probabilities as outputs, such as those provided by the imprecise Dirichlet model for classifiers
based on sample counts (like, e.g., decision trees).

Our two strategies respectively generalize averaging and voting for classical tree ensembles. In both cases,
they aim at making decisions by computing the subset of classes which maximizes the lower expected utility
over all possible subsets of classes. Our generalized averaging approach is computationally more efficient
than our generalized voting strategy, the complexity of which can nevertheless be controlled—by leveraging
two theoretically supported tricks that avoid scanning all candidate subsets of classes, and by restricting the
cardinality of the set-valued predictions.

The experiments conducted on different datasets illustrate the interest of our proposals in order to
achieve a good compromise between model accuracy and determinacy, especially for difficult instances. This
is especially the case when the data are pervaded with label noise, in which case the performances of our
proposals compare very favorably to that of the other strategies used as benchmarks. The experiments also
confirm that our cautious decision-making procedure is able to process datasets with a large number of
classes in a limited computational complexity.

In the future, we may further investigate how to efficiently calculate the upper expected utility for the
CDM methods. Thus, the Hurwicz expected utility can be applied to make the model more flexible to
adjust the cautiousness. Moreover, for a better compromise between the model accuracy and cautiousness,
the weight assignment for imprecise trees in multi-class cases is also an interesting study direction. Finally,
we may explore tree-based ensembles that can adapt to epistemic uncertainty in data space (our current
approach primarily captures aleatory uncertainty), for example using generative tree models.
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Appendix A. Comparison results of cautious classifiers

Table A.6: Comparison of determinacy

Results on data without label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.871±0.059 0.807±0.028 0.844±0.024 0.980±0.009 0.778±0.030 0.787±0.022

Ecoli 0.844±0.081 0.833±0.052 0.912±0.023 0.994±0.007 0.844±0.043 0.850±0.048

Forest 0.930±0.042 0.906±0.032 0.954±0.027 0.999±0.003 0.912±0.030 0.920±0.030

Glass 0.771±0.069 0.745±0.059 0.829±0.029 0.993±0.011 0.762±0.065 0.771±0.063

Letter 0.662±0.018 0.792±0.019 0.761±0.025 0.978±0.010 0.798±0.018 0.799±0.019

Libras 0.628±0.045 0.703±0.060 0.764±0.029 0.976±0.020 0.711±0.053 0.731±0.049

Optdigits 0.941±0.009 0.956±0.008 0.976±0.005 0.998±0.001 0.959±0.007 0.959±0.007

Page-blocks 0.982±0.013 0.975±0.010 0.984±0.007 1.000±0.001 0.978±0.009 0.979±0.007

Seeds 0.952±0.054 0.919±0.047 0.962±0.036 0.998±0.007 0.917±0.049 0.924±0.041

Spectrometer 0.370±0.032 0.476±0.049 0.541±0.036 0.954±0.020 0.502±0.043 0.519±0.039

Vehicle 0.636±0.083 0.683±0.027 0.733±0.023 0.987±0.008 0.703±0.028 0.710±0.028

Vowel 0.804±0.025 0.834±0.028 0.888±0.027 0.992±0.007 0.831±0.024 0.834±0.023

Waveform 0.845±0.037 0.709±0.010 0.853±0.027 0.990±0.004 0.741±0.014 0.742±0.016

Wine-quality 0.664±0.105 0.664±0.027 0.800±0.048 0.989±0.003 0.691±0.023 0.702±0.017

Yeast 0.610±0.078 0.623±0.032 0.687±0.026 0.980±0.007 0.682±0.037 0.720±0.047

Average 0.767 0.775 0.833 0.987 0.787 0.796

#Best 0 0 0 15 0 0

Results on data with 30% label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.540±0.140 0.632±0.045 0.646±0.062 0.982±0.010 0.563±0.054 0.595±0.043

Ecoli 0.656±0.073 0.726±0.053 0.744±0.039 0.979±0.019 0.781±0.046 0.845±0.040

Forest 0.737±0.052 0.722±0.054 0.823±0.043 0.988±0.012 0.753±0.048 0.746±0.049

Glass 0.448±0.097 0.540±0.066 0.593±0.059 0.979±0.025 0.584±0.080 0.635±0.088

Letter 0.416±0.032 0.625±0.019 0.514±0.029 0.957±0.012 0.680±0.022 0.732±0.020

Libras 0.376±0.066 0.622±0.049 0.582±0.039 0.976±0.015 0.635±0.037 0.625±0.044

Optdigits 0.675±0.011 0.895±0.009 0.876±0.011 0.995±0.002 0.922±0.010 0.933±0.009

Page-blocks 0.846±0.020 0.821±0.022 0.878±0.015 0.995±0.002 0.873±0.016 0.887±0.022

Seeds 0.586±0.190 0.702±0.074 0.712±0.138 0.990±0.012 0.664±0.126 0.702±0.074

Spectrometer 0.155±0.028 0.436±0.036 0.326±0.037 0.934±0.027 0.476±0.046 0.481±0.057

Vehicle 0.505±0.117 0.516±0.044 0.638±0.068 0.971±0.015 0.547±0.047 0.526±0.053

Vowel 0.470±0.035 0.628±0.023 0.617±0.034 0.976±0.009 0.666±0.030 0.694±0.033

Waveform 0.695±0.009 0.509±0.013 0.784±0.010 0.980±0.004 0.524±0.011 0.509±0.013

Wine-quality 0.425±0.102 0.582±0.028 0.641±0.031 0.973±0.009 0.606±0.031 0.630±0.042

Yeast 0.327±0.028 0.529±0.027 0.455±0.026 0.971±0.007 0.591±0.026 0.661±0.025

Average 0.524 0.632 0.655 0.976 0.658 0.680

#Best 0 0 0 15 0 0
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Table A.7: Comparison of single-set accuracy

Results on data without label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.881±0.047 0.930±0.025 0.930±0.020 0.863±0.024 0.960±0.017 0.956±0.019

Ecoli 0.896±0.050 0.914±0.036 0.891±0.031 0.867±0.036 0.915±0.034 0.911±0.039

Forest 0.909±0.018 0.918±0.017 0.902±0.043 0.889±0.020 0.916±0.015 0.915±0.015

Glass 0.836±0.083 0.847±0.081 0.817±0.045 0.783±0.067 0.844±0.084 0.833±0.090

Letter 0.984±0.008 0.948±0.015 0.959±0.012 0.852±0.019 0.940±0.018 0.937±0.015

Libras 0.936±0.017 0.935±0.038 0.885±0.070 0.797±0.032 0.922±0.031 0.916±0.027

Optdigits 0.994±0.002 0.993±0.002 0.990±0.003 0.980±0.005 0.992±0.002 0.991±0.003

Page-blocks 0.976±0.007 0.978±0.009 0.976±0.008 0.969±0.010 0.977±0.009 0.977±0.008

Seeds 0.943±0.029 0.956±0.038 0.938±0.030 0.931±0.047 0.956±0.038 0.956±0.037

Spectrometer 0.741±0.040 0.686±0.076 0.673±0.040 0.544±0.054 0.677±0.063 0.664±0.066

Vehicle 0.890±0.048 0.878±0.027 0.849±0.027 0.748±0.030 0.876±0.026 0.864±0.022

Vowel 0.990±0.006 0.991±0.007 0.977±0.014 0.941±0.017 0.987±0.008 0.984±0.008

Waveform 0.895±0.013 0.939±0.008 0.897±0.013 0.852±0.010 0.930±0.009 0.929±0.008

Wine-quality 0.786±0.041 0.788±0.024 0.743±0.025 0.691±0.018 0.777±0.026 0.763±0.028

Yeast 0.712±0.038 0.707±0.029 0.692±0.021 0.621±0.029 0.689±0.025 0.681±0.026

Average 0.891 0.894 0.875 0.822 0.891 0.885

#Best 6 5 0 0 3 1

Results on data with 30% label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.871±0.060 0.873±0.045 0.876±0.052 0.751±0.034 0.908±0.055 0.887±0.046

Ecoli 0.905±0.034 0.896±0.031 0.896±0.034 0.811±0.045 0.897±0.030 0.877±0.034

Forest 0.908±0.029 0.910±0.022 0.900±0.024 0.841±0.028 0.909±0.026 0.906±0.025

Glass 0.828±0.120 0.801±0.085 0.787±0.076 0.666±0.071 0.796±0.086 0.787±0.074

Letter 0.945±0.018 0.889±0.025 0.954±0.020 0.752±0.020 0.894±0.027 0.890±0.019

Libras 0.816±0.096 0.768±0.067 0.797±0.069 0.654±0.067 0.766±0.074 0.771±0.055

Optdigits 0.999±0.001 0.992±0.003 0.996±0.002 0.972±0.004 0.992±0.002 0.991±0.003

Page-blocks 0.957±0.008 0.967±0.010 0.967±0.012 0.916±0.012 0.971±0.012 0.972±0.012

Seeds 0.923±0.055 0.892±0.077 0.900±0.081 0.810±0.071 0.907±0.072 0.895±0.077

Spectrometer 0.849±0.118 0.680±0.072 0.754±0.070 0.523±0.031 0.662±0.067 0.675±0.055

Vehicle 0.835±0.067 0.844±0.040 0.807±0.048 0.699±0.042 0.844±0.044 0.845±0.047

Vowel 0.949±0.018 0.923±0.014 0.935±0.018 0.797±0.028 0.927±0.010 0.923±0.015

Waveform 0.898±0.009 0.943±0.008 0.890±0.008 0.831±0.006 0.946±0.008 0.943±0.008

Wine-quality 0.707±0.045 0.665±0.029 0.671±0.032 0.594±0.017 0.669±0.035 0.688±0.028

Yeast 0.727±0.056 0.659±0.045 0.696±0.041 0.562±0.027 0.667±0.045 0.657±0.034

Average 0.874 0.847 0.855 0.745 0.850 0.847

#Best 10 1 0 0 2 2
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Table A.8: Comparison of set accuracy

Results on data without label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.727±0.077 0.676±0.086 0.713±0.079 0.520±0.409 0.867±0.085 0.838±0.101

Ecoli 0.924±0.128 0.920±0.094 0.932±0.087 1.000±0.000 0.905±0.090 0.921±0.078

Forest 0.945±0.088 0.939±0.053 0.937±0.076 1.000±0.000 0.946±0.048 0.952±0.056

Glass 0.877±0.079 0.899±0.083 0.932±0.090 0.331±0.471 0.882±0.096 0.898±0.094

Letter 0.809±0.035 0.735±0.052 0.933±0.020 0.591±0.186 0.729±0.054 0.697±0.041

Libras 0.832±0.074 0.818±0.093 0.865±0.103 0.882±0.165 0.798±0.115 0.763±0.118

Optdigits 0.944±0.027 0.943±0.026 0.938±0.044 0.926±0.167 0.940±0.036 0.954±0.025

Page-blocks 0.901±0.165 0.941±0.081 0.871±0.126 1.000±0.000 0.932±0.147 0.953±0.147

Seeds 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Spectrometer 0.683±0.049 0.689±0.071 0.795±0.060 0.469±0.188 0.654±0.075 0.661±0.083

Vehicle 0.890±0.046 0.907±0.045 0.956±0.028 0.818±0.214 0.924±0.041 0.916±0.036

Vowel 0.961±0.020 0.963±0.026 0.964±0.039 0.934±0.165 0.967±0.033 0.954±0.043

Waveform 0.999±0.003 0.999±0.001 0.999±0.002 1.000±0.000 1.000±0.000 1.000±0.001

Wine-quality 0.836±0.035 0.866±0.031 0.886±0.050 0.777±0.278 0.868±0.031 0.875±0.028

Yeast 0.768±0.050 0.795±0.034 0.841±0.030 0.776±0.204 0.801±0.041 0.785±0.030

Average 0.873 0.873 0.904 0.802 0.881 0.878

#Best 1 1 8 5 4 2

Results on data with 30% label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.835±0.076 0.815±0.047 0.898±0.048 0.826±0.173 0.965±0.029 0.875±0.094

Ecoli 0.818±0.058 0.853±0.068 0.913±0.047 0.643±0.416 0.844±0.071 0.875±0.097

Forest 0.887±0.072 0.931±0.047 0.951±0.039 0.847±0.346 0.965±0.023 0.951±0.040

Glass 0.818±0.073 0.823±0.089 0.885±0.058 0.890±0.400 0.860±0.099 0.796±0.113

Letter 0.823±0.020 0.720±0.021 0.977±0.013 0.541±0.113 0.704±0.026 0.666±0.028

Libras 0.775±0.047 0.713±0.084 0.894±0.057 0.471±0.412 0.700±0.087 0.707±0.087

Optdigits 0.979±0.009 0.947±0.028 0.990±0.007 0.885±0.111 0.951±0.023 0.931±0.032

Page-blocks 0.895±0.033 0.920±0.025 0.963±0.023 0.950±0.150 0.969±0.021 0.967±0.022

Seeds 0.914±0.097 0.928±0.080 0.967±0.051 1.000±0.000 0.993±0.043 0.936±0.083

Spectrometer 0.739±0.053 0.638±0.058 0.913±0.036 0.586±0.275 0.633±0.057 0.610±0.072

Vehicle 0.854±0.065 0.890±0.045 0.938±0.020 0.776±0.172 0.923±0.025 0.911±0.046

Vowel 0.861±0.041 0.841±0.054 0.949±0.026 0.792±0.215 0.847±0.050 0.842±0.049

Waveform 0.983±0.007 0.992±0.003 0.998±0.002 0.971±0.044 1.000±0.000 0.992±0.003

Wine-quality 0.805±0.027 0.823±0.028 0.878±0.024 0.886±0.125 0.833±0.030 0.813±0.030

Yeast 0.747±0.028 0.739±0.028 0.896±0.026 0.621±0.154 0.754±0.040 0.744±0.031

Average 0.849 0.838 0.934 0.779 0.863 0.841

#Best 1 0 7 3 4 0
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Table A.9: Comparison of set size

Results on data without label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 2.000±0.000 2.037±0.037 2.292±0.135 2.000±0.000 2.809±0.116 2.752±0.130

Ecoli 2.067±0.067 2.045±0.069 2.339±0.261 2.000±0.000 2.019±0.029 2.010±0.033

Forest 2.000±0.000 2.000±0.000 2.063±0.072 2.000±0.000 2.153±0.186 2.132±0.182

Glass 2.020±0.039 2.037±0.070 2.260±0.198 2.000±0.000 2.049±0.132 2.051±0.088

Letter 2.828±0.090 2.202±0.053 12.493±1.261 2.182±0.106 2.176±0.053 2.181±0.068

Libras 2.205±0.064 2.145±0.102 3.382±0.526 2.294±0.544 2.135±0.091 2.088±0.101

Optdigits 2.057±0.029 2.047±0.025 2.542±0.142 2.037±0.105 2.041±0.028 2.050±0.055

Page-blocks 2.000±0.000 2.000±0.000 2.129±0.100 2.000±0.000 2.034±0.082 2.082±0.147

Seeds 2.000±0.000 2.000±0.000 2.000±0.000 2.000±0.000 2.000±0.000 2.000±0.000

Spectrometer 2.410±0.120 2.140±0.043 9.995±2.307 2.102±0.194 2.134±0.058 2.112±0.040

Vehicle 2.024±0.023 2.030±0.018 2.348±0.136 2.000±0.000 2.223±0.119 2.163±0.075

Vowel 2.031±0.021 2.040±0.037 2.421±0.185 2.000±0.000 2.042±0.031 2.040±0.029

Waveform 2.000±0.000 2.000±0.001 2.009±0.005 2.000±0.000 2.032±0.015 2.023±0.021

Wine-quality 2.004±0.005 2.021±0.013 2.139±0.054 2.000±0.000 2.015±0.011 2.016±0.014

Yeast 2.074±0.036 2.070±0.015 2.747±0.183 2.017±0.030 2.165±0.241 2.042±0.013

Average 2.115 2.054 3.544 2.042 2.135 2.116

#Best 5 3 1 12 3 2

Results on data with 30% label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 2.012±0.024 2.030±0.024 2.339±0.073 2.000±0.000 2.784±0.147 2.318±0.412

Ecoli 2.073±0.044 2.103±0.079 3.541±0.350 2.000±0.000 2.401±0.364 2.067±0.086

Forest 2.000±0.000 2.089±0.074 2.432±0.178 2.000±0.000 2.426±0.274 2.432±0.392

Glass 2.080±0.092 2.096±0.081 3.069±0.286 2.112±0.133 2.667±0.784 2.096±0.072

Letter 3.107±0.127 2.219±0.051 15.273±1.008 2.163±0.136 2.331±0.163 2.240±0.053

Libras 2.461±0.071 2.165±0.101 5.990±0.779 2.176±0.624 2.262±0.410 2.163±0.109

Optdigits 2.247±0.019 2.112±0.042 4.755±0.195 2.033±0.064 2.434±0.209 2.116±0.041

Page-blocks 2.000±0.000 2.061±0.018 2.522±0.086 2.050±0.150 2.684±0.415 2.735±0.531

Seeds 2.011±0.015 2.032±0.034 2.397±0.232 2.000±0.000 2.674±0.297 2.064±0.097

Spectrometer 3.139±0.092 2.204±0.059 23.621±3.143 2.171±0.176 2.182±0.024 2.176±0.051

Vehicle 2.008±0.012 2.088±0.027 2.553±0.199 2.082±0.109 2.401±0.116 2.238±0.256

Vowel 2.188±0.044 2.098±0.041 4.120±0.408 2.021±0.075 2.210±0.206 2.086±0.025

Waveform 2.000±0.000 2.022±0.006 2.082±0.023 2.000±0.000 2.321±0.022 2.022±0.006

Wine-quality 2.107±0.080 2.074±0.020 2.719±0.102 2.023±0.041 2.152±0.112 2.052±0.016

Yeast 2.154±0.027 2.100±0.018 4.528±0.233 2.034±0.065 2.333±0.215 2.079±0.029

Average 2.239 2.100 5.463 2.058 2.418 2.192

#Best 5 0 0 11 0 1
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Table A.10: Comparison of u65 scores

Results on data without label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.828±0.027 0.834±0.023 0.849±0.017 0.852±0.027 0.839±0.023 0.839±0.023

Ecoli 0.848±0.033 0.860±0.033 0.861±0.032 0.865±0.037 0.864±0.032 0.863±0.034

Forest 0.888±0.014 0.889±0.014 0.888±0.043 0.889±0.020 0.888±0.013 0.889±0.015

Glass 0.775±0.048 0.778±0.048 0.773±0.040 0.779±0.066 0.777±0.051 0.774±0.057

Letter 0.800±0.016 0.846±0.014 0.793±0.019 0.842±0.018 0.842±0.015 0.837±0.015

Libras 0.779±0.031 0.808±0.030 0.777±0.070 0.790±0.035 0.799±0.027 0.800±0.029

Optdigits 0.971±0.004 0.976±0.003 0.979±0.003 0.979±0.005 0.976±0.003 0.976±0.004

Page-blocks 0.969±0.008 0.969±0.009 0.969±0.006 0.969±0.010 0.969±0.009 0.969±0.009

Seeds 0.929±0.021 0.931±0.035 0.927±0.032 0.930±0.046 0.930±0.035 0.933±0.034

Spectrometer 0.533±0.027 0.553±0.027 0.515±0.035 0.533±0.050 0.545±0.028 0.546±0.023

Vehicle 0.775±0.011 0.785±0.014 0.772±0.030 0.746±0.030 0.784±0.013 0.779±0.016

Vowel 0.917±0.009 0.929±0.010 0.931±0.016 0.939±0.015 0.925±0.008 0.922±0.010

Waveform 0.857±0.006 0.854±0.004 0.860±0.007 0.850±0.010 0.856±0.004 0.856±0.002

Wine-quality 0.704±0.013 0.711±0.018 0.705±0.021 0.689±0.019 0.710±0.020 0.704±0.022

Yeast 0.626±0.023 0.632±0.022 0.621±0.012 0.619±0.028 0.631±0.021 0.632±0.021

Average 0.813 0.824 0.815 0.818 0.822 0.821

#Best 0 6 3 4 0 2

Results on data with 30% label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.719±0.025 0.745±0.027 0.751±0.023 0.747±0.033 0.722±0.019 0.735±0.029

Ecoli 0.773±0.042 0.798±0.032 0.779±0.035 0.803±0.046 0.813±0.032 0.827±0.036

Forest 0.821±0.033 0.821±0.028 0.838±0.027 0.838±0.029 0.824±0.031 0.817±0.027

Glass 0.658±0.036 0.672±0.036 0.646±0.036 0.664±0.069 0.669±0.041 0.683±0.043

Letter 0.641±0.020 0.723±0.020 0.608±0.022 0.735±0.018 0.747±0.020 0.762±0.017

Libras 0.587±0.055 0.645±0.066 0.601±0.052 0.646±0.063 0.645±0.065 0.648±0.053

Optdigits 0.868±0.005 0.951±0.003 0.923±0.006 0.969±0.004 0.960±0.004 0.964±0.004

Page-blocks 0.899±0.011 0.899±0.011 0.916±0.012 0.914±0.011 0.917±0.011 0.923±0.011

Seeds 0.786±0.049 0.804±0.045 0.801±0.053 0.809±0.070 0.778±0.057 0.806±0.045

Spectrometer 0.443±0.030 0.519±0.028 0.390±0.038 0.513±0.030 0.522±0.032 0.522±0.029

Vehicle 0.696±0.035 0.708±0.032 0.704±0.040 0.693±0.041 0.707±0.032 0.708±0.032

Vowel 0.728±0.027 0.778±0.017 0.741±0.021 0.790±0.027 0.795±0.019 0.804±0.017

Waveform 0.819±0.007 0.795±0.005 0.835±0.007 0.827±0.006 0.777±0.006 0.795±0.005

Wine-quality 0.592±0.019 0.606±0.015 0.601±0.017 0.594±0.017 0.611±0.017 0.626±0.012

Yeast 0.551±0.017 0.569±0.022 0.518±0.017 0.557±0.026 0.584±0.026 0.595±0.020

Average 0.705 0.736 0.710 0.740 0.738 0.748

#Best 0 1 3 2 0 9
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Table A.11: Comparison of u80 scores

Results on data without label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance scale 0.8421 0.8533 0.8646 0.8539 0.8646 0.8635

Balance-scale 0.842±0.029 0.853±0.023 0.865±0.016 0.854±0.027 0.865±0.022 0.864±0.023

Ecoli 0.870±0.035 0.883±0.029 0.873±0.032 0.866±0.036 0.885±0.028 0.884±0.032

Forest 0.898±0.015 0.902±0.013 0.894±0.042 0.889±0.020 0.900±0.012 0.901±0.014

Glass 0.805±0.049 0.812±0.049 0.796±0.039 0.780±0.065 0.808±0.054 0.805±0.059

Letter 0.837±0.016 0.869±0.014 0.811±0.018 0.844±0.017 0.864±0.015 0.858±0.015

Libras 0.825±0.030 0.844±0.029 0.803±0.071 0.793±0.034 0.833±0.029 0.830±0.029

Optdigits 0.980±0.003 0.983±0.003 0.983±0.002 0.980±0.005 0.982±0.003 0.982±0.004

Page-blocks 0.972±0.007 0.973±0.009 0.971±0.006 0.969±0.010 0.972±0.009 0.972±0.008

Seeds 0.936±0.023 0.943±0.034 0.933±0.030 0.930±0.047 0.943±0.034 0.944±0.034

Spectrometer 0.595±0.030 0.606±0.030 0.555±0.038 0.536±0.050 0.593±0.033 0.593±0.025

Vehicle 0.824±0.019 0.828±0.014 0.809±0.030 0.747±0.030 0.824±0.013 0.818±0.017

Vowel 0.945±0.006 0.953±0.007 0.946±0.015 0.940±0.015 0.949±0.006 0.946±0.009

Waveform 0.880±0.008 0.898±0.005 0.882±0.009 0.851±0.010 0.895±0.005 0.895±0.004

Wine-quality 0.746±0.020 0.754±0.019 0.731±0.021 0.690±0.019 0.750±0.020 0.743±0.022

Yeast 0.671±0.029 0.676±0.022 0.658±0.012 0.621±0.028 0.668±0.020 0.664±0.020

Average 0.842 0.852 0.834 0.820 0.849 0.847

#Best 0 11 3 0 2 1

Results on data with 30% label noise

Data CR NDC AVE MVA CDM/Ave CDM/Vote

Balance-scale 0.776±0.028 0.790±0.030 0.796±0.026 0.749±0.034 0.780±0.021 0.786±0.030

Ecoli 0.815±0.038 0.833±0.031 0.808±0.035 0.805±0.047 0.840±0.032 0.847±0.035

Forest 0.856±0.030 0.859±0.025 0.862±0.025 0.839±0.029 0.858±0.028 0.851±0.026

Glass 0.725±0.041 0.728±0.037 0.693±0.033 0.667±0.070 0.718±0.039 0.726±0.038

Letter 0.705±0.018 0.762±0.018 0.640±0.021 0.738±0.018 0.780±0.019 0.788±0.017

Libras 0.656±0.056 0.685±0.067 0.639±0.051 0.647±0.064 0.683±0.067 0.687±0.055

Optdigits 0.914±0.004 0.965±0.003 0.936±0.005 0.970±0.004 0.971±0.003 0.973±0.004

Page-blocks 0.920±0.010 0.924±0.010 0.932±0.012 0.915±0.011 0.934±0.012 0.938±0.011

Seeds 0.842±0.030 0.845±0.047 0.840±0.048 0.810±0.070 0.824±0.048 0.848±0.047

Spectrometer 0.525±0.032 0.572±0.027 0.429±0.038 0.519±0.031 0.570±0.034 0.569±0.027

Vehicle 0.759±0.042 0.772±0.034 0.751±0.038 0.696±0.041 0.767±0.033 0.771±0.035

Vowel 0.795±0.026 0.824±0.017 0.784±0.019 0.793±0.028 0.836±0.019 0.842±0.015

Waveform 0.864±0.006 0.868±0.005 0.867±0.007 0.830±0.006 0.846±0.005 0.868±0.005

Wine-quality 0.661±0.015 0.657±0.018 0.644±0.020 0.597±0.017 0.660±0.019 0.671±0.013

Yeast 0.625±0.020 0.620±0.023 0.572±0.017 0.560±0.026 0.629±0.027 0.632±0.022

Average 0.763 0.780 0.746 0.742 0.780 0.786

#Best 0 3 2 0 0 10
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Appendix B. Friedman and Nemenyi tests for cautious classifier comparison

For further comparison, we conducted Friedman and Nemenyi tests following the recommendation in
[45]. The results of the Friedman tests showed that there are significant differences between the compared
models in terms of all evaluation measures except for the set accuracy on the original data sets. Thus, for
each measure, we conducted the Nemenyi test to determine which pairs of models are significantly different:
we display the results in the form of critical difference diagrams, in Figures B.4 and B.5. In these diagrams,
for each measure, we show the average rank of each model across all datasets: the best-performing model
receives a rank of 1, the second-best model a rank of 2, and so on. Models that could not be significantly
deemed as different (p-value α̂ > 0.05) are connected by a horizontal black crossbar.

(a) determinacy (b) single-set accuracy (c) set accuracy

(d) set size (e) u65 score (f) u80 score

Figure B.4: Critical difference diagrams of the Nemenyi test for cautious classifier evaluations on original data sets.

(a) determinacy (b) single-set accuracy (c) set accuracy

(d) set size (e) u65 score (f) u80 score

Figure B.5: Critical difference diagrams of the Nemenyi test for cautious classifier evaluations on data sets with 30% label
noise.
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[36] M. Zaffalon, G. Corani, D. Mauá, Evaluating credal classifiers by utility-discounted predictive accuracy, in: International
Journal of Approximate Reasoning, Vol. 53, Elsevier, 2012, pp. 1282–1301.
URL https://doi.org/10.1016/j.ijar.2012.06.022

[37] T. Denœux, Constructing belief functions from sample data using multinomial confidence regions, International Journal
of Approximate Reasoning 42 (3) (2006) 228–252.
URL https://doi.org/10.1016/j.ijar.2006.01.001
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