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Abstract— Neuromorphic computing has emerged as a
promising solution to meet the computational demands of ar-
tificial intelligence and enhance the energy efficiency through
spiking neural networks (SNNs). This paper models a previ-
ously published biomimetic electronic neuron (eNeuron), fo-
cusing on the effects of its random noise within an analog
SNN framework. The analog SNN is trained via Spike-Timing-
Dependent Plasticity (STDP) using unsupervised learning
method. Its computational efficiency is evaluated against two
benchmarks. Preliminary results have demonstrated that the
analog SNN with either simplified or omitted random noise
modeling perform better than those with full noise modeling.
This highlights the significant impact that random noise of
transistors in the eNeuron has on STDP learning processes.
However, if random noise is neglected during the training
phase, the reintroduction of noise modeling in the testing phase
causes an average accuracy drop of only 0.2% for the simpli-
fied model of random noise and 4.5% for the full model.

Index Terms— Neuromorphic circuit, Analog Spiking Neu-
ron, Spiking Neural Network, Unsupervised STDP, Random
noise

I INTRODUCTION

Artificial intelligence (AI), notably Artificial Neural Net-

works (ANNs), has demonstrated remarkable success in

solving various complex problems. However, their increas-

ing complexity often runs on traditional Von Neumann ar-

chitectures with limited CPU and memory performance. As

a result, a substantial cost in terms of energy consumption is

required, which limits their widespread application [1].

Recently, neuromorphic systems have gained significant

attention as potential biomimetic solutions. In fact, the hu-

man brain still stands out for its exceptional capabilities, with

approximately 86 billion neurons [2], of which less than 1%

are active simultaneously [3], leading to a low power con-

sumption of a few tens of Watts [4]. Neuromorphic systems

consist of neuron-equivalent processing elements intercon-

nected by synapses. By replicating the differential equa-

tions governing neurons and synapses behavior through ana-

log circuits, these systems can achieve power consumption

reduced by several orders of magnitude, compared to the nu-

merical solution of these equations using digital processors

[5].

Although Spiking Neural Networks (SNNs) offer a va-

riety of learning algorithms, the more efficient and well-

established gradient-based learning algorithms used in

ANNs are not directly applicable to SNNs [6], [7]. In addi-

tion, those learning frameworks do not consider physical de-

sign limitations from analog SNNs, as noise [8]. In fact, one

of the primary challenges in implementing SNNs in analog

hardware is the availability of efficient and accurate learning

techniques [9].

Spike-Timing-Dependant Plasticity (STDP) is a biological

plausible learning rule through the temporal correlation of

events [10]. Previous studies have demonstrated that STDP

is a robust learning rule for SNNs, enabling on-chip unsuper-

vised learning [11]. The implementations in literature have

been proposed using various theoretical neuron models [12]-

[14]. However, the analog electronic neurons (eNeurons) ex-

hibit a random noise contributions, due to transistor noise

sources, (ie. thermal and shot noise). In [15], tools were

propsed to analyze random noise contributions in ring oscil-

lators. It demonstrated that such noise can cause variations

in switching timing. Referring to this work, and given that

spiking eNeuron circuits operate on similar oscillation prin-

ciples, random noise affects spike timing in these circuits as

proved in previous work [16]. This may influence the accu-

racy of analog SNN using temporal learning methods such

as STDP-based methods.

To achieve an unsupervised STDP-based learning within

a analog SNN using eNeurons and conductance-based

synapses, physical eNeuron models should be considered.

This paper proposes

• Physical-informed neuron model from Morris-Lecar

(ML) eNeuron inplementation from the post-layout sim-

ulation (PLS) results of its analog circuit from [17], [18].

• A synthesis framework for analog SNN training consid-

ering such eNeuron model, through unsupervised STDP.

• Two benchmark problems XOR and MNIST to as-

sert common neural networks figure-of-merit for analog

SNN implementation.

Section II presents literature overview of ML eNeurons

and STDP learning rule. The synthesis of the analog SNN

is detailed in Sec. III. Detailed code for the synthesis frame-

work is available [19]. Section IV presents a detailed anal-

ysis of the results obtained from the eNeuron modeling and

the two benchmarks. Conclusions are drawn in Sec. V.
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II BACKGROUND

II.A Analog Spiking eNeurons

The Morris-Lecar model is a biomimetic neuron model

that achieves a balance between complexity and biological

accuracy [20]. It describes the conductance-based dynamics

of neuron behavior, with membrane potential changes driven

by calcium during depolarization and potassium during re-

polarization, as follows:

Cm
dVm

dt
=I −gCaMss(Vm)(Vm −VCa)

−gL(Vm −VL)−gKN(Vm −VK)
(1)

dN
dt

=
Nss(Vm)−N

τN(Vm)
(2)

Figure 1 illustrates the ML eNeuron circuit and its cor-

responding layout, redesigned from [17], and studied in

this paper. It is chosen for its biomimetic properties and

broad dynamic range, which enhance learning accuracy [8].

Briefly, upon receiving a synaptic current Isyn from pre-

synapses, the membrane capacitance Cm charges via MPNa
(pull-up) and discharges through MNK (pull-down), causing

rapid fluctuations in membrane potential Vm and spike gen-

eration.

In this eNeuron circuit, the transistors are biased in

the deep-subthreshold region to optimize power usage and

achieve the required non-linear functions [21]. As a low cur-

rent Isyn excites an eNeuron, it flows through these transis-

tors, causing carrier diffusion to dominate the channel cur-

rent. This results in a significant variation of current that

flows across Vm. This variation, amplified in the subthreshold

regime, allows shot noise to become a dominant factor due to

stochastic electron and hole recombination at Vm [22]. The

spectral density of the shot noise current in the subthreshold

region is given by:

SI = 2 ·q · ID · |Zout|2 (3)

where q is the electronic charge; ID is the drain current; and

Zout is the output impedance (which is here the parallel com-

bination of Cm and the total output resistances of transistors).

Previous work [16] demonstrates that this noise strongly

affects the spike timing of the low-power analog eNeurons

with high spike frequencies, such as the ML eNeuron. Post-

layout simulation results reveal that the spike timing vari-

ability, measured as the ratio of standard deviation to mean

(σ /μ), exceeds 76%.

II.B Spike-Time-Dependant Plasticity

STDP provides a biological plausible mechanism of learn-

ing that adjusts synaptic strength based on the relative timing

of pre-synaptic and post-synaptic spikes [23]. If a presynap-

tic neuron fires before a postsynaptic neuron within a short

time window, the synaptic weight is strengthened. If the

postsynaptic neuron fires before, the synapse is weakened.

This temporal relationship is defined by the STDP function

or learning window, which varies across excitatory and in-

hibitory synapses connectivity [10]. A common STDP win-

dow function, defined by A+ and A− (maximum synaptic

changes) and τ+ and τ− (time constants), is shown in (4).

Fig. 1: The Morris-Lecar eNeuron at (a) circuit and (b) layout

levels, designed in BiCMOS 55 nm technology (VDD = 100

mV, VSS = -100 mV), with a layout size of 5.7 × 17.3 μm2.

The change in synaptic weight Δw is computed by aggregat-

ing the values of the STDP function applied to the differ-

ences between all corresponding presynaptic tpre and postsy-

naptic spike times tpost.

W (Δt) =

{
A+ exp

(− Δt
τ+

)
if Δt > 0

−A− exp
( Δt

τ−
)

if Δt < 0
,Δt = tpost − tpre

(4)

Its straightforward implementation via spike traces makes

it a favorable option for analog SNNs hardware. In addi-

tion, STDP is an unsupervised local learning rule. On unsu-

pervised learning, the algorithm receives inputs but, neither

supervised target outputs nor rewards. Thus labelled data

are not required. It is traditionally used for finding patterns

into data which limits the applications [24], [25]. STDP-

based learning often requires additional techniques, such as

winner-take-all strategies to impose competition or weight

normalization to prevent intrinsic instability [26]. It can also

be used in supervised learning or reinforcement learning sce-

narios with several different methods [27].

II.C SNN using Morris-Lecar Neurons

Su et al. have exploited (1) and (2) to implement a

Morris-Lecar neuron model within SNNs and proceed ma-

chine learning in [28]. A STDP-based unsupervised learning

of memristive SNN using ML neuron model is proposed in

[29]. The ML neuron model is based on simplified version

of (1) and (2). A ML eNeuron inspired from a 65 nm CMOS

technology is proposed in [30]. It is employed for extraction

of electrocardiography features with low power consump-

tion. However, none of these implementations have demon-

strated the SNN robustness over circuit constraints such as

transistor noise.

III ANALOG SNN MODEL AND LEARNING
FRAMEWORK

To synthesize the analog SNN effectively, the initial step

involves modeling the ML eNeuron using data from the
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PLS results of the eNeuron circuit (detailed in Sec. III.A).

Next, a detailed framework for analog SNN synthesis is pre-

sented, applying unsupervised STDP learning (detailed in

Sec. III.B). This framework is finally showcased to demon-

strate the capabilities of the analog SNN through solving the

XOR and MNIST (detailed in Sec. III.C)

III.A eNeuron and Synapses

The ML model presented in (1) and (2) is complex and

do not take in consideration the physical constraints of ana-

log circuits. To accurately model the ML eNeuron behavior

from analog circuit design shown in Fig. 1, it is essential to

incorporate three key properties from PLS results

1. The dynamics of potential membrane behavior over

time, including aspects such as resting potential and

spike timing.

2. The firing rate’s response to different input excitation

levels through the eNeuron’s activation function.

3. The random noise from transistors, which is crucial in

STDP learning, where noise affects spike timing and

synaptic adjustments.

This model stands out for its flexibility, allowing for easy

adaptation to various eNeuron types while maintaining low

computational demands and high precision in fitting eNeu-

ron properties.

1. Dynamics of the spike behavior: The dyanmics of

the spike is presented as

dVm

dt
=

(Vrest −Vm)

τleak
+ Isyn · Rm

τm
, (5)

which describes the membrane potential Vm of the ML eNeu-

ron, influenced by the leakage current and the synaptic input

current (Isyn). The first term ((Vrest −Vm)/τleak) represents

the leaky behavior, driving Vm back towards the resting po-

tential Vrest over time, ensuring stability and preventing run-

away excitation. The time constant τleak indicates the sys-

tem dynamics during Cm discharges. PLS results reveal that

speed values vary with different input currents. A constant

value of τleak, equal to the mean over the entire range of cur-

rent, is selected.

The second term (Isyn · Rm/τm) represents the effect of

the external current on the eNeuron’s membrane, driving Vm
away from Vrest , potentially towards the threshold of firing

an action potential. The membrane time constant τm (typi-

cally Rm ·Cm) represents how quick the membrane responds

to input currents. Here, the eNeuron model in (5) closely

resembles the equation of the LIF model in [31].

To accurately model the spike shape of the ML eNeuron,

precise control over the dynamics of Vm is necessary.This

can be achieved through a variable membrane resistance Rm,

which changes in a non-linear piecewise manner based on

the membrane potential as described by

Rm =
n

∑
i=1

Ri · [Vm ≤Vi] · (1− [Vm ≤Vi−1]). (6)

[P] is the Iverson bracket, returning 1 if P is true and 0 if P is

false. This approach segments Rm into different segments Ri

depending on Vm relative to a series of voltage thresholds Vi.

This extention into the model provided by (6) enhances the

fidelity of the model over the simple Leaky Integrate-and-

Fire (LIF) model by reflecting the ion channels dynamics

occurring as the ML eNeuron depolarizes or hyperpolarizes.

The proposed model is a physical-informed version of the

typical ML model (1)-(2), while maintaining similar behav-

ior and avoiding the need for numerous constants. Finer

segmentation of Rm allows a more precise adjustments to

small changes in Vm, better reflecting the nonlinear proper-

ties of the ML eNeuron. However, increased segmentation

enhances precision and realism of the model with complex-

ity increased.

2. Firing rate response property: To consider the acti-

vation function property of the eNeuron model, its firing rate

over input synaptic current Isyn in (5) is replaced by

I′syn = δ (Isyn) · fFT_eNeuron(Isyn), (7)

where fFT_eNeuron(Isyn) is the interpolation function derived

from the PLS results of the nonlinear ML eNeuron activa-

tion function. The coefficient δ (Isyn) adjusts the interpolated

function affected by the leakage term. Additionally, the cur-

rent I′syn is limited to 15 nA to prevent transistors operating

out of deep-subthreshold region.

3. Noise model in spike timing property: To improve

the model’s precision in analog circuits, incorporating noise

is crucial. The eNeuron typically encounters two types of

noise: external noise from input signals and intrinsic noise

from transistors. The eNeuron already mitigates external

noise by averaging input currents. Therefore, this study fo-

cuses on addressing the random noise caused by transistors.

This random noise in the eNeuron refers to the shot noise, as

detailed in Sec. II.A.

Figure 2 compares the spike timing of an ideal eNeuron,

which ignores the random noise, with a real eNeuron that

considers it. It highlights trise, the moment where the mem-

brane potential surpasses the threshold, and T , the interval

between consecutive spikes.

-100

-50

0

50

Fig. 2: Comparison of spike timing and voltage response in

ideal and real eNeurons. Left panel: spike intervals and rise

times. Right panel: Post-layout simulations results of the

Vm with a noise-free transient simulation (in blue) and two

trans-noise simulations (in red and green).

In the ideal model, spikes occur at regular intervals, with

each kth spike firing at trise,ik = trise,i1 + k ·Ti. However, in a

real eNeuron, spike timing varies due to shot noise, causing

deviations from expected rise timings (e.g., trise,n1 < trise,i1)

and irregular periods (Tn1, Tn2, etc., not equal to the ideal

Digital Object Identifier 10.29292/jics.v19i3.889
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period Ti). The graph in Fig. 2 illustrates these variations

through PLS results, showing spikes that occur either earlier

or later compared to the ideal regular timings (in blue).

To accurately model the impact of noise on spike tim-

ing in the eNeuron, timing deviations caused by noise can

be defined in two types: noise-driven period deviation and

noise-driven rise deviation. Noise-driven period deviation

(ΔTn = Tn −Ti) refers to variations in the intervals between

consecutive spikes. Noise-driven rise deviation (Δtrise,n =
trise,n − trise,i) pertains to deviations in the time it takes for

a spike to reach its threshold. This study concentrates on

noise-driven rise deviation, as it adopts the STDP learning

that relies on precise spike timing. The focus on noise-driven

rise deviation provides a more precise account of deviations

in the timing of spike occurrences, rather than the intervals

between spikes.

At each spike index, the noise follows a Gaussian distribu-

tion characterized by a mean and standard deviation that ac-

cumulate and scale with each spike occurrence, as presented

later in Sec. IV. Therefore, this noise follows a Gaussian ran-

dom walk distribution over spike occurrences. The mean of

the noise-driven rise deviation for spike k increases linearly,

described by

μ(ΔTrise,n) = k×μ1(ΔTrise,n), (8)

where k is the spike index, and μ1(ΔTrise,n) represents the

mean at the first spike. This pattern results from the linear

accumulation of noise due to membrane capacitance dynam-

ics, allowing for a straightforward adjustment to achieve a

zero-mean distribution.

The standard deviation of the noise-driven rise deviation

shows a nonlinear increase with spike index, modeled as

σ(ΔTrise,n) =
√

k×σ1(ΔTrise,n), (9)

where σ1(ΔTrise,n) is the initial standard deviation. This non-

linear trend likely stems from the accumulation of noise in

the feedback loops of the eNeuron circuit over time. Thus,

the noise can be described as following a Gaussian ran-

dom walk distribution with mean zero and standard devia-

tion
√

k ·σ1(ΔTrise,n), where σ1(ΔTrise,n) is calculated from

the noise analysis in the eNeuron circuit, detailed in [16]

σ2
1 (ΔTrise,n) =

q
Isyn

(
1

fspike
+

rds ·Cm

π

)
, (10)

where rds is the output resistance of the transistors, and fspike
is the spiking frequency over a certain period of time. There-

fore, the noise model of the eNeuron, as defined by (9) and

(10), depends on circuit variables Cm, fspike, rds, and the ex-

ternal input current Isyn. The model scales with the index of

spike occurrence. This noise model is added to the eNeuron

model through the threshold level.

4. Synapses: Finally, a conductance-based synapse

model is employed to link neurons to each other. When a

spike occurs, the synaptic conductance is increased by an

amount corresponding to the synaptic weight, conductance

which exponentially decays towards zero (11). gl and τl are

respectively conductance and time constant for either excita-

tory or inhibitory synapses.

dgl

dt
=−gl

τl
, l ∈ (e, i) (11)

Synapses are classified into two types: excitatory and in-

hibitory. An instantaneous change in conductance leads to

the generation of a post-synaptic current. Depending on

the manipulation of the equilibrium potential Veq in (12), a

synapse is considered excitatory if Veq = Vthresh leading to a

positive increase in the current that decays exponentially to-

wards zero. The synapse is considered inhibitory if Veq =

Vreset leading to a negative increase in the current, tending

exponentially towards zero. A setting value αl, modulating

the postsynaptic current, is used to differentiate the impact

of excitatory and inhibitory synapses.

Isyn,l = αl ·gl · (Veq −Vm), l ∈ (e, i) (12)

Algorithm 1 Analog SNN Synthesis Framework for un-
supervised STDP learning

1: 1. PLS activation function of eNeuron
2: activation_function =

load_PLSresults(ML_eNeuron_Ferreira2021)
3: 2. Definition of eNeuron and synapses
4: MLeNeuron = [activation_function,
5: Rm: segmentation(nb=3),
6: dynamic_range_restriction: 15nA,
7: noise: scenario 1 or 2 or 3 ];
8: synapses = [conductance_based,
9: type: exci or inhi];

10: 3. Network Structure for the MNIST problem
11: SNN = [ #Network can be adjusted for any problem

12: Input_layer(nb=784,type=MLeNeurons)
13: Output_layer(nb=1225,type=MLeNeurons)
14: fully_connect(Input_layer,Output_layer,

synapses = exci & inhi)
15: Lateral_connect(Output_layer,Output_layer,

synapses = inhi)];
16: 4. Encoding input data #from pixel to current value

17: train,test_data = load_MNIST()*3nA/255

18: 5. Network Model for learning
19: training = (SNN,train_data,time=120μs,

learning=STDP,weight_normalization)
20: labeling = (SNN,train_data)
21: testing = (SNN,test_data)
22: 6. Network Model Training on MNIST dataset
23: for epoch = 0 to max_epoch do
24: accuracy = learning(SNN, epoch)
25: if accuracy ≥ accuracy_min then
26: break;
27: end if
28: end for
29: final_accuracy,weights = testing()
30: if noise == 3 then
31: accuracy_noise =

testing(noise=1,2)
32: end if

III.B Analog SNN Synthesis with unsupervised STDP
Learning

The synthesis framework Algo. 1 outlines the entire pro-

cess to build and train modeled analog SNN. First, it loads
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activation_function from PSL results of the ML

eNeuron. This function is employed to define MLeNeuron,

its random noise, and synapses models. Once the

eNeuron and synapse models are integrated into the Brian2

simulator [32], the architecture of the analog SNN can be

designed with varying numbers of layers, eNeurons, and ex-

citatory/inhibitory synapses, configured to address the spe-

cific complexity and requirements of the given problem. It

corresponds to the class SNN, built in Step 3 of Algo. 1.

Figure 3 illustrates the analog SNN architecture designed

to address either the XOR or MNIST problem presented in

Sec. III.C.

eNI,1

eNI,k

eNI,n

eNO,1

eNO,2

eNO,k

eNO,n

...

...

...

...

Excitation

Inhibition

Lateral Inhibition

Fig. 3: Architecture of the analog SNN using modeled eNeu-

ron.

The architecture selection was optimized through multiple

simulations on the XOR problem (e.g with hidden layers or

not, etc.). It consists of an input layer and an output layer,

fully connected with both excitatory and inhibitory synapses.

The first layer of eNeurons receives input data and feeds it

into the analog SNN using a rate-code approach. Jouni et

al. have demonstrated the impact of a random noise, in the

used eNeuron, on the precise-timing of a spike (temporal-

code) which leads up to 76% of variation where the impact

are at 6% on the firing rate (rate-code) [16]. Moreover, the

analog SNN, which employs only one type of eNeuron, facil-

itates the conversion to rate-code. In this method, the inten-

sity of the input is translated into excitation currents, caus-

ing each input eNeuron to spike at a rate that corresponds

to the encoded information. This corresponds to Step 4 of

Algo. 1. These specific spike rates are calculated based on

(7) from the eNeuron model, which maps the firing rate re-

sponse to the input excitation. Additionally, a lateral inhi-

bition is implemented in the final layer through inhibitory

synapses, connecting each eNeuron to all other eNeurons in

the same layer. It plays a crucial ’soft-winner-take-all’ role

for fostering competitive learning that effectively differenti-

ates the inputs, as explained in [33].

The unsupervised learning strategy adopted is influenced

by Diehl and Cook’s 2015 framework [34], which uses un-

supervised STDP for training SNNs. However, their im-

plementation focuses on a simple LIF model and does not

account for the circuit properties or the effects of random

noise of transistors, which are crucial for a more compre-

hensive neuromorphic system. The learning process is struc-

tured into three distinct phases: training, labeling,

and testing initialized in Step 5 of Algo. 1.

During the training process, the network uses STDP, de-

picted in Sec. II.B, to adjust synaptic weights based on the

timing of spikes between eNeurons. In this phase, the net-

work self-organizes without supervision or reinforcement.

The weights are initialised randomly. Only the weights be-

tween the input layer and the output layer are adjusted by

STDP, while those in the lateral inhibition remain constants.

A normalization of weights conducted by STDP according

to the divisive enforcement rule, as described in [35], is per-

formed. The normalization factor employed is made twice

as small for inhibitory synapses as for excitatory synapses to

ensure an active SNN. To address the lack of weight bound-

ary function in STDP function, a clipping function is used.

Each input data is processed during 120 μs including 20 μs

of resting time allowing the variables to return to their resting

values, preventing the influence of neighboring data simula-

tions.

Following training, a labeling process assigns meaningful

labels to the eNeurons in the output layer. This step is crucial

for evaluating the network’s performance in tasks requiring

classification. During labeling, the activity of each eNeuron

in the output layer is monitored as the network is exposed to a

portion of the last inputs used during training. Each eNeuron

is then labeled, based on the input type that most frequently

causes it to fire. Finally, the network’s performance is eval-

uated during the testing phase. In this phase, new inputs are

presented to the network, and the response of the output neu-

rons is observed. The response of the neurons is checked

against the labels assigned during the labeling phase. These

three functions are repeatedly executed for a specified num-

ber of iterations, as detailed in Step 6 of Algo. 1.

In the framework, the dataset includes both features and

labels, even though the training algorithm is unsupervised.

This is essential for the testing phase, which requires cor-

rectly labeled data to compare against the network’s output

and determine accuracy. Additionally, the framework incor-

porates a boolean setting named noise to enable or disable

the random noise of transistors within the eNeuron model.

This feature allows for performance comparisons under var-

ious scenarios depicted in Sec. III.C and helps quantify the

impact of intrinsic random noise on STDP training.

III.C Analog SNN assesses through two benchmarks

To evaluate the effectiveness of the analog SNN using un-

supervised STDP, two benchmarks are undertaken. The first

benchmark is the exclusive OR (XOR) logical operator prob-

lem. The XOR problem is historically a fundamental issue

in the field of neural networks and symbolizes a simple yet

significant challenge for any computational model [36]. It

involves the classification of inputs into two classes that are

not linearly separable. Thus, it requires the neural network

to effectively learn and represent non-linear boundaries be-

tween classes. Multiple methodologies to solve the problem

Digital Object Identifier 10.29292/jics.v19i3.889
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with SNNs trained by tuned-STDP have already bean pro-

posed [37]-[39].

The second benchmark is the MNIST problem, a standard

benchmark in the field of machine learning for recognizing

and classifying handwritten digits [40], [41]. It involves the

MNIST dataset that comprises 70,000 images of digits rang-

ing from 0 to 9, with each image having a resolution of 28x28

pixels.

The number of eNeurons in both layers varies with the

complexity of the problem. The XOR problem employs 2

input neurons and 13 output neurons are used, making a to-

tal of 208 synapses. The MNIST problem employs 784 input

neurons and 1225 output neurons, making a total of 3420200

synapses. In the framework, input encoding uses a rate-code

approach. For the XOR problem, the two logical values 0

and 1 respectively correspond to a low power input constant

current of 0.3 nA and a higher input current of 2 nA. It re-

spectively triggers spike rate of 215 kHz and 540 kHz in the

input eNeuron layer. For the MNIST problem, a grayscale

image is presented to the network. The intensity of each

pixel is translated into a current that varies from 0 to 3 nA,

driving eNeuron spike rates between 0 and 610 kHz.

This analysis compares three scenarios, each accounting

for different the random noise models provided in Sec. III.A.

Scenario 1 incorporates the eNeuron model with a constant

Standard Deviation (SD) for its random noise. This scenario

does not include the Gaussian walk distribution of the noise

over spike occurrences, which leads to a non-linear accumu-

lation of its standard deviation over time. Here, the stan-

dard deviation considered is the average calculated across

the entire range of input current. Scenario 2 involves sim-

ulations with the complete eNeuron model, where the full

noise model is considered. This includes the Gaussian walk

distribution of the noise and its variable standard deviation

over spike occurrences. In scenario 3, simulations are con-

ducted using the eNeuron model without considering its ran-

dom noise. Thus, it allows to assess if the training framework

is effective when eNeurons do no present random noise. In

addition, the reintroduction of noise model from scenarios

1 and 2 in the testing phase enables to assess the impact of

the random noise on post-trained analog SNN, respectively

named scenario 3.1 and 3.2.

IV RESULTS AND DISCUSSION

IV.A eNeuron Model

This section presents the validation results of the ML

eNeuron model. Figure 4 illustrates the potential mem-

brane fitting for the ML eNeuron, using different levels of

resistance Rm segmentation: one (orange plot), two (yellow

plot), and three (green plot), compared with the actual post-

layout potential membrane over time (blue plot). This figure

demonstrates that increasing the segmentation fineness en-

hances the model’s accuracy, reducing the error from 40.3%

to 4.6%. For ongoing work on solving XOR and MNIST

problems, the model with three segmentations was selected

due to its acceptable error margin in approximating the post-

layout potential membrane. Further refinement in segmen-

tation could reduce the error margin to negligible levels, but

at the cost of an increased computational time when imple-

menting this model in learning analog SNN.

Fig. 4: Membrane potential of the ML eNeuron from PLS

results (in blue)) and membrane potential of the model for

different segmentation of the resistance Rm. The error corre-

sponds to the relative error between the area under the curve

of the rise of the membrane potential of the ML eNeuron and

the area under the various presented models.

Fig. 5: Firing rate activation function of the ML eNeuron from

PLS results (in blue) and the activation function of the model

(in green). The red curve corresponds to the subtraction of

the blue and green curves.

Figure 5 shows the activation function of the ML eNeu-

ron from post-layout simulations (in blue) and from the pre-

viously depicted model (in green). The correction coefficient

δ (Isyn) from (7) enables the correlation coefficient r to tend

to 1, resulting in an accurate modeling of the ML eNeuron

PLS activation function. Figure 6 illustrates the post-layout

distribution of noise-driven rise deviation in spike timings

of ML eNeuron. The multiple plots in the figure repre-

sent the distributions of noise-driven rise deviation at vari-

ous spike occurrences over time. As shown in this figure,

the noise-driven rise deviation exhibits a Gaussian random

walk distribution over all spike occurrences, having different

means and standard deviations that exhibit a cumulative ef-

fect scaling with the spike index. The average noise-driven

rise deviation, defined in (8), demonstrates a linear increase

corresponding to spike occurrences. Figure 7(a) confirms
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this trend, displaying the measured post-layout mean of the

noise-driven rise deviation in blue and the estimated mean in

red.
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Fig. 6: Distribution of noise-driven rise deviation in ML

eNeuron, illustrating noise characteristics across spike oc-

currences.

Figure 7(b) illustrates the standard deviation of noise-

driven rise deviation through three different considerations.

The blue line represents the post-layout standard deviation,

the red dashed line the estimated standard deviation, and the

yellow line the analytical standard deviation. As shown in

this figure, the post-layout standard deviation, shown in blue,

demonstrates a non-linear accumulation with each spike oc-

currence. The estimated equation for this deviation, defined

in (9), closely matches the post-layout results, as depicted

by the red dashed line. The standard deviation of the noise

accumulates incrementally, beginning with the initial spike’s

standard deviation from (10). The analytical expression for

the standard deviation, shown in yellow, incorporates this

initial value and matches the observed data well. These find-

ings affirm the accuracy of the noise model for the eNeuron,

supporting its integration into analog SNN synthesis with un-

supervised STDP learning.

IV.B The XOR benchmark

The analog SNN has been trained and tested using the al-

gorithm outlined in Sec. III.B. Figure 8 illustrates the train-

ing and testing accuracy faced to the XOR problem through

different scenarios of noise consideration depicted in Sec.

III.C. The analog SNN is trained over 100 epochs, averaged

through multiple simulations, where one epoch consists of

10x a randomly arranged list of the four binary inputs ([0,0],

[0,1], [1,0], [1,1]). During labeling phase, the network is ex-

posed to 30% of the last inputs used during training. One

may notices that when the training is proceeded with eNeu-

rons presenting random noise, corresponding to scenarios 1

and 2, the network usually fails to converge and do not go up

to the lucky threshold within 100 epochs. However, the net-

work presents a high accuracy when using noiseless eNeu-

rons, corresponding to scenario 3. By replacing noiseless
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Fig. 7: (a) Mean noise-driven rise deviation of ML eNeuron

plotted against spike index, measured in blue and estimated

in red, (b) Standard deviation of noise-driven rise deviation

with measured values in blue, estimated in red dashed, and

analytical in yellow.

eNeurons with noisy eNeurons during only the testing pe-

riod, the drop of accuracy is higher with the complete model

of random noise (corresponding to scenario 3.2, pink box-

plot) than with the simplified random noise (corresponding

to scenario 3.1, yellow boxplot). These findings indicate that

random noise characterized by a dynamic standard deviation

exerts a greater disruptive effect on the accuracy of post-

STDP-learning predictions compared to random noise with

a static standard deviation.

Here, a positive aspect of unsupervised training is that

clustering is performed. Thus, analog SNN is trained un-

til at least a clear separation of ([0,1] and [1,0]) from ([0,0]

and [1,1]) is achieved. By extending the training period even

after the XOR problem has been resolved, the SNN is en-

abled to cluster all four distinct inputs. Consequently, it be-

comes capable of solving any two-input logic gate without

additional training, requiring only a re-labeling of the output

neurons. For example, a post-training neuron that responds

Digital Object Identifier 10.29292/jics.v19i3.889
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Fig. 8: Training and testing accuracy over 100 epochs, for

XOR problem and for different scenarios of noise incorpora-

tion in the eNeuron model.

more strongly to the input [0,0] will be labeled ’0’ for the

XOR problem and ’1’ for the NAND problem.

Figure 9 provides a 3D visualization of the XOR prob-

lem as resolved by a trained analog SNN. Each of the plots,

labeled (a) through (e), demonstrates how the network inter-

prets varying combinations of binary inputs, which are finely

segmented into 10 slices ranging from 0 to 1. The X-input

and Y-input axes correspond to the binary inputs [x, y] that

feed the two input neurons of the network. The Z-input rep-

resents the averaged predictions of the network across nu-

merous simulations. The color gradient on this axis, from

blue to yellow, visually encodes the prediction values, where

blue indicates a prediction closer to 0 and yellow closer to 1.

Figure 9(c) illustrates the network behavior under Sce-

nario 3, where the network has successfully learned the XOR

problem without noise, showing a clear separation between

the classes. Figures 9(d) and 9(e) correspond to Scenar-

ios 3.1 and 3.2, respectively. These plots show the effects

of introducing simplified and more complex random noise

models during the testing phase, affecting the clarity and

definition of the predictive surface. Figures 9(a) and 9(b)

reflect Scenarios 1 and 2, where the network was exposed

to noise during the training phase, leading to less effective

learning outcomes as evidenced by the less defined predic-

tive surfaces, shown by a prominent valley.

IV.C The MNIST benchmark

Regarding to the MNIST problem, the analog SNN has

been trained over 10000 input images. During labeling

phase, the network is exposed to 15% of the last inputs used

during training. Figure 10 illustrates the training and testing

accuracy of analog SNN across different scenarios depicted

in Sec. III.C. As shown, Scenario 3 demonstrates the most

rapid learning, achieving a peak accuracy of 50.6%. How-

ever, this scenario learning plateaus after processing a few

thousand samples, indicating a limitation in further improv-

ing its accuracy with additional training data. Scenario 1,

using a simplified noise model, shows a slightly slower but

steady increase in learning, achieving an average accuracy
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Fig. 9: 3D visualization of XOR problem resolution by a

trained A-SNN, with inputs [x, y] mapped on the X and Y

axes and predictions color-coded from blue (0) to yellow (1)

on the Z-axis, for (a) Scenario 1, (b) Scenario 2, (c) Scenario

3, (d) Scenario 3.1, and (e) Scenario 3.2.
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Fig. 10: Training and testing accuracy of the analog SNN for

MNIST problem for different scenarios of noise incorpora-

tion in the eNeuron model.

nearly equivalent to Scenario 3 at 49.9%. In contrast, Sce-

nario 2, which applies a complete noise model, demonstrates

a poorer performance. This suggests that the full noise model

may be disruptive, avoiding the network effective training.

The boxplots on the right provide further insights into test-
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ing accuracy variations. Notably, there is a more significant

accuracy drop in Scenario 3.2, with an average decrease of

4.5% (indicated by the pink boxplot), compared to a minor

0.2% drop in Scenario 3.1 (shown by the yellow boxplot).

This highlights the impact of different noise considerations

on the network robustness in testing phases.

Figure 11 shows learning results for each scenario for a

network, as a tendency. Figure 11(a) illustrates the label-

ing distribution of the 1225 neurons. Scenario 2 (in red)

shows 1225 neurons all with the same label, which explains

why its accuracy is close to 10%, the neurons keep repeating

the same prediction. Scenarios 1 and 3 each have multiple

neurons labeled by digits, though distributed unevenly. This

means that the network has multiple neurons presenting a

maximum firing rate for each digit. Figure 11(b) represents

the receptive field of three labeled neurons per digit per sce-

nario. The excitatory synaptic weights are restructured (from

784 to 28x28), at post-training phase. Consistent with Fig.

11(a), the analog SNN in scenarios 1 and 3 has neurons la-

beled for each digit, whereas the analog SNN in scenario 2

has only neurons labeled as 1. As the neurons labeled for the

other digits do no exist, they are set as equal to 0 (dark blue).

The receptive fields in scenarios 1 and 3 tend to be shaped

as the corresponding labeled digit. However, one may notice

that some receptive fields are incorrect, such as the presence

of shapes resembling a 9 in neurons labeled as 4. This ex-

plains why the analog SNNs achieve accuracy well above the

chance level (10%), yet remain far from perfect.

IV.D Discussion

Previous results seemed to indicate that random noise in

spike timing significantly disrupted unsupervised training by

STDP-based learning. Analog SNNs with random noise,

as described by (10), failed to learn when faced with both

benchmarks. However, results on the MNIST benchmark

showed that when the random noise had a constant standard

deviation, the learning was slightly slower but almost as ef-

ficient as when the eNeurons were noiseless. This suggests

that it is not just any intrinsic random noise, but specifically

noise with a dynamic standard deviation dependent on in-

ternal eNeuron variables, that impacts and inhibits learning

through STDP. Further investigations could delve deeper into

the relationship between the reduction in the learning rate

and the standard deviation of noise to assess an acceptable

noise magnitude. Additionally, studying the impact of each

term in the dynamic standard deviation (9) on STDP-based

learning could help redesign an eNeuron model with intrin-

sic noise that is less inhibitory to learning.

The drop in accuracy caused by random noise in both sce-

nario 3.1 and 3.2 was below 5%. This result encourages

the development of an efficient learning method that enables

high accuracy with minimal impact, affected by only a few

percentage points.

Finally, the simulation of this type of SNNs was very

time-consuming and required substantial computational re-

sources. Indeed, Brian2 is well-suited for modeling biologi-

cal neurons but not for machine learning with precise models

of electronic neurons operating at high frequencies. The use

of interpolation functions significantly increases computa-

tion time. Libraries based on Torch, like BindsNet, including

a differential equation solver, could enable faster simulations

for further investigations [42].

V CONCLUSION

Recent advancements in neuromorphic hardware had

highlighted SNNs as a viable energy-efficient solution for

AI applications. This paper proposed unsupervised STDP-

based learning within an analog SNN using a complete

model of ML eNeuron and conductance-based synapses.

The analog SNN was tested on XOR and MNIST bench-

marks to assess the impact of noise on the temporal learning

STDP method employed. Preliminary results demonstrated

that the analog SNN did not learn as effectively as analog

SNNs with simplified or even neglected random noise mod-

eling, indicating that the eNeuron random noise significantly

impacted STDP learning. However, when random noise was

neglected during the training phase, the reintroduction of

noise modeling in the testing phase caused an average accu-

racy drop of only 0.2% for the simplified model of random

noise and 4.5% for the full model.
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