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Abstract

BACKGROUND
Understanding patterns in mortality across subpopulations is essential for local health
policy decision-making. One of the key challenges of subnational mortality rate esti-
mation is the presence of small populations and zero or near zero death counts. When
studying differences between subpopulations, this challenge is compounded as the small
populations are further divided along socioeconomic or demographic lines.

OBJECTIVE
We aim to develop a model to estimate subnational age-specific mortality rates that ac-
counts for the dependencies in mortality experiences across subpopulations.

METHODS
We develop a Bayesian hierarchical principal components-based model that shows corre-
lations across subpopulations.

RESULTS
We test this approach in a simulation study and also use the model to estimate age- and
sex-specific mortality rates for counties in the United States. The model performs well in
validation exercises and the US estimates suggest substantial variation in mortality trends
over time across geographic lines.

1 Department of Biostatistics, University of Washington, Seattle, USA. Email: adharams@uw.edu.
2 Departments of Statistics and Sociology, University of Toronto, Toronto, Canada.
3 Department of Demography, University of California, Berkeley, USA.
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Démographiques, Aubervilliers, France.
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CONTRIBUTION
Our proposed model jointly estimates age-specific mortality rates for multiple subpopu-
lations at the subnational level. By sharing information across subpopulations, our model
improves on previous approaches that treat subpopulations as independent. Additionally,
we demonstrate that ancillary correlation parameters are a useful tool for studying the
convergence and divergence of mortality patterns over time.

1. Introduction

Reliable mortality estimates are crucial to support health policy design, implementation,
and monitoring. Historically, developments in both mortality modeling and understand-
ing mortality differences across populations have focused on national-level estimates for
cross-country comparisons. However, as demonstrated by a growing body of evidence
(Ezzati et al. 2008; Kindig and Cheng 2013; Dwyer-Lindgren et al. 2016; Sehgal et al.
2022), patterns in more granular subnational-level mortality rates are needed to facilitate
local-level decisions. This insight has led to a recent line of work focused on studying
disparities in mortality outcomes within countries at the subnational level. In the United
States, for example, researchers are analyzing differences in life expectancy across state
jurisdictions (Woolf and Schoomaker 2019; Montez et al. 2020; Harper, Riddell, and
King 2021). At the international level, the United Nations has recently moved to pro-
ducing estimates of key global health indicators, such as the under-five mortality rate,
at subnational levels alongside the longstanding national level estimates (Godwin and
Wakefield 2021). In addition, in recent years it has become increasingly clear that dispar-
ities in mortality outcomes along demographic dimensions, such as sex or gender, race
or ethnicity, or socioeconomic status, are growing (Hendi 2015; Crimmins and Zhang
2019; Gutin and Hummer 2021; Masters and Aron 2021). As an example, in the case
of child mortality risks, Bhutta (2016) argues that subnational determinants explain a
greater portion of mortality than country-level characteristics. In response, estimates of
subpopulation mortality risks are needed to identify and understand the mortality patterns
of vulnerable groups and track the effects of policy responses.

In this paper, we are motivated by sex differences in mortality and the patterns of
this difference across age, time, and geography. Differences in mortality patterns be-
tween males and females have long been documented. Women have had longer life
expectancy than men in every population and time period where and when female dis-
crimination has not been prevalent. The mortality gap is particularly large at young adult
ages, when mortality is mostly determined by external causes (particularly accidents and
homicides), but it remains high throughout all working ages. It closes progressively after
age 65 to 70 years but never disappears completely. Sex differences in mortality reached a
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peak in most high-income countries around 1975–1985 but have declined since, in large
part because of the convergence in male and female behavior (e.g., smoking) (Gjonça,
Tomassini, and Vaupel 1999). In these countries, the difference in life expectancy be-
tween men and women ranges from a low of around 3 years in Northern Europe up
to nearly 10 years in Eastern Europe. In the United States, the sex difference in life
expectancy increased throughout the 20th century to reach a maximum at 7.74 years in
1975 before declining to a low of 4.74 years in 2012. It has increased again since and cur-
rently (2021) reaches 5.75 years (Human Mortality Database 2023). The difference varies
across states, ranging from 3.7 years (in Utah) to 7.2 years (in the District of Columbia)
(United States Mortality Database 2023). Given that the gap between sexes in life ex-
pectancy is highly specific to location, it is of interest to further study the behavior of
sex-specific mortality risks at finer geographic resolutions, such as counties. Hence, there
is a need for methods that reliably estimate differential mortality risks between males and
females (and between other demographic subgroups) in small populations.

While the need for subnational estimates of mortality disaggregated by subpopula-
tion is clear, there are several challenges to obtaining reliable estimates. Although raw
death rates can usually be calculated, the natural variations lead to uncertain estimates.
It is well understood that subnational mortality estimates are more complex to construct
than national-level estimates given the large random fluctuations associated with small
numbers (Stevenson and Olson 1993). This problem is further compounded when ex-
amining mortality across subgroups within subnational areas, where inferring underlying
mortality risks from raw death rates is challenged by the erratic patterns over age.

Producing reliable estimates of mortality rates and measuring the associated uncer-
tainty requires statistical models that take the natural stochasticity in the data into ac-
count. In recent years, an increasing number of studies have demonstrated the usefulness
of the Bayesian approach in the construction of such models (see for instance Alexander,
Zagheni, and Barbieri 2017; Khana et al. 2018; Song and Luan 2022). Building on pre-
vious work, in this paper, we propose a general Bayesian model framework to estimate
age-specific mortality rates at the subnational level jointly for multiple populations. The
model incorporates characteristic shapes of mortality age schedules within a Bayesian hi-
erarchical framework, which allows information on mortality patterns to be shared across
populations. We extend previous approaches by accounting for correlation in mortality
experiences across subpopulations rather than assuming subpopulations are independent.
The model produces estimates and uncertainty for mortality rates for each sex. In addi-
tion, it estimates higher-level parameters. These parameters summarize trends in different
dimensions of mortality over time and show how similar or dissimilar the trends are across
groups. We illustrate the model with an application to estimating sex-specific mortality
by county in the United States. While we focus on sex-specific mortality, the modeling
framework is generalizable to population groups defined by other characteristics (such as
race/ethnicity).
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The contributions of our work are twofold. Methodologically, our proposal demon-
strates that subpopulation correlation structures are a useful tool for stabilizing small
population mortality estimates, and for gaining meaningful insights into the underly-
ing behaviors driving mortality changes. Substantively, the estimates of sex-specific US
county-level mortality rates produced in our data application have been released as part of
the United States Mortality DataBase (USMDB) (United States Mortality Database 2023)
and can now be used by demographers studying small-scale mortality in the United States.

The remainder of the paper is structured as follows. We first give a brief overview
of recent developments in subnational mortality estimation. We begin our methods dis-
cussion by demonstrating that principal components derived from a set of reference mor-
tality curves capture structural differences in subpopulation-specific mortality patterns,
then follow with a formal statement of the model. Results from the model along with
validation exercises using simulated and real sex-specific US county-level mortality data
are then provided. Finally, we conclude with a discussion of our findings and identify
directions for future research.

2. Background

A large body of research exists on small-area estimation issues, and recently demog-
raphers have increasingly taken advantage of computational advances that make fitting
complex statistical models to small-scale mortality data feasible. In particular, there has
been a notable increase in the use of Bayesian methods in demographic estimation, es-
pecially for subnational estimation (for example Alexander, Zagheni, and Barbieri 2017;
Schmertmann and Gonzaga 2018; Lu, Hanewald, and Wang 2021; Lin and Tsai 2022).
Bayesian methods are particularly suited to demographic contexts as they provide a useful
framework to incorporate different data sources in the same model, account for various
types of uncertainty, and allow for information exchange across time and space (Bijak
and Bryant 2016).

One area of previous work has focused on estimating aggregate indicators at the sub-
national level, such as child mortality and life expectancy (Mercer et al. 2015; Ševčı́ková
and Raftery 2021). Models on aggregate indicators generally involve temporal and spatial
smoothing, allowing for information in mortality trends to be shared across these dimen-
sions. In some cases, models rely on covariates (such as education or income) to stabilize
mortality rate estimates from noisy data (Wang et al. 2013; Arias et al. 2018; Murray et al.
2006).

In addition to aggregate mortality indicators, research has focused on producing esti-
mates of age-specific mortality rates, which can form the basis of estimating subnational
life tables. Recent advances in this area build on classical demographic approaches of
model life tables and relational models, which identify key patterns in mortality over age
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across a wide range of populations and allow patterns to be shifted based on a reduced
set of parameters (Coale, Demeny, and Vaughan 1983). For example, TOPALS (tool for
projecting age patterns using linear splines) models consist of a standard age schedule
and population-specific deviations away from that standard, which are smoothed using
linear splines (de Beer 2012). TOPALS-type models have been used to produce subna-
tional estimates of migration and mortality in varying data quality contexts (Gonzaga and
Schmertmann 2016; Schmertmann and Gonzaga 2018; Dyrting 2020). TOPALS models
do, however, require selecting a single standard mortality curve. This is challenging when
studying multiple populations, as each may have a distinct mortality profile.

A related modeling approach derives a set of ‘principal components’ from reference
mortality curves, which are then used as the basis of a regression framework. This allows
a large set of plausible mortality curves to be estimated using a reduced set of param-
eters. This approach is in the spirit of the Lee–Carter model for mortality forecasting
and related work though in modern applications, multiple principal components are typ-
ically used (Lee and Carter 1992; Renshaw and Haberman 2003). For example, Clark
(2019) uses this approach to formulate a new set of model age schedules in data-sparse
contexts. In particular, this paper extends an earlier study by Alexander, Zagheni, and
Barbieri (2017), which introduces a Bayesian hierarchical framework that builds on prin-
cipal components derived from national mortality schedules for use at the subnational
level. In more recent work, Alexander and Alkema (2022) use a principal-components
approach to model mortality in the broader context of subnational population estimation
using a cohort component projection framework.

In general, most existing subnational mortality models inherently assume subpop-
ulations are independent. They model each population separately, then combine or in-
terpret after modeling. However, ideally we would model all subpopulations within a
single framework as mortality is generally correlated over groups. Existing joint mod-
els focus on modeling national or first subnational administrative division-level mortality
by sex as it is well understood that changes in male and female mortality are correlated
(Noymer and Van 2014). For example, Li and Lee (2005) extend the Lee–Carter model
to jointly forecast national-level mortality for both sexes. More recently, national-level
sex-specific life expectancy estimates have been produced by the United Nations using
gap-based approaches, such as in Raftery, Lalic, and Gerland (2014). Under this ap-
proach, female life expectancy is estimated with standard one-sex methods. Estimates
of male life expectancy are then constructed by modeling the gap between female and
male life expectancy. In the present case, we are interested in estimates of all age-specific
mortality rates, not just life expectancy, and a purely gap-based approach to this problem
at smaller scales is not appropriate because of the need to select an anchor or reference
population, such as females in the case of sex-specific modeling. Due to the small counts
in both areas and age groups, standard single-population mortality models may fail to
produce reliable estimates for the reference category, which then propagates downstream
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into the gap-modeling step. This issue is further compounded when studying variables
such as race or ethnicity that have dramatically different compositions across jurisdic-
tions, particularly if the reference population is near absent in certain regions.

At the subnational level, Rau and Schmertmann (2020) jointly model age- and sex-
specific mortality in regions across Germany using a Bayesian TOPALS approach. With
regards to sex differences, they obtain a typical pattern of age-specific sex differences
across aggregated regions of Germany, and then use this information as a basis for a
prior for differences at smaller scales, penalizing large deviations away from the observed
differences by sex. In this paper, we take a different approach and flip the viewpoint
from thinking about sex differences to thinking about covariation in mortality by sex (or
any other population subgroups), and explicitly allow for group mortality rates to move
together.

3. Methods

To estimate subnational mortality rates while also extracting patterns across key subpopu-
lations, we propose a Bayesian hierarchical model that builds on the principal component-
based approach of Alexander, Zagheni, and Barbieri (2017) by incorporating structures
that capture subpopulation interactions. Before defining the model equations, we first
discuss why principal components are an attractive modeling strategy in this context.

3.1 Principal components models

The use of principal components is motivated by the fact that age-specific mortality rates
tend to display strong regularities across different populations (Lee and Carter 1992; Ren-
shaw and Haberman 2003; Clark 2019; Alexander, Zagheni, and Barbieri 2017). This
means that systematic variation in mortality rates is well captured by a reduced set of
parameters that can be modeled in such a way that information is shared across space and
time.

To generate principal components, we compute the singular value decomposition
of a collection of regional log-mortality curves. The collection of log-mortality curves,
X, is a N × A matrix, where N is the number of region-subpopulation-years under
consideration and A is the number of age groups. For US sex-specific mortality, N =
6066 (60 years of state-level sex-specific data) and A = 19 (ages <1, 1–4, 5–9,..., 75–79,
80–84, 85+). Note that different age groups, such as one-year age groups, could also be
considered. The singular value decomposition of X is then

X = UΣV′, (1)
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where U is the 6066× 19 matrix of left singular values, Σ is a 19× 19 diagonal matrix
of scaling factors, and V is the 19 × 19 matrix of right singular values, which we term
‘principal components.’ These extract key patterns in mortality over age. As the X
matrix contains data from both male and female populations, the patterns captured by the
principal components are shared across sexes.

The first four principal component curves are plotted in Figure 1. Together, these
four principal components explain over 99% of the variation in the state-level data. Since
the singular value decomposition is computed using the uncentred data, the first principal
component explains the bulk of the variation. The choice to leave the data uncentred is
deliberate: Under this approach, the first principal component controls the overall level
of mortality, which is useful for capturing systematic shifts in mortality when modeling.
Following the first principal component, each successive component explains less varia-
tion. Note that to ease interpretation throughout the paper, we have inverted the first two
principal components and their associated coefficients.

Figure 1: First four state-level log-mortality principal components
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In practice, choosing the number of components is a balance between incorporating
components that pick up on only systematic patterns, while still allowing for enough flex-
ibility in the model (Sharrow, Clark, and Raftery 2014; Clark 2019). The set of principal
components that offer useful information on sex-specific mortality can be identified using
the U matrix. The left singular values in each row of the U matrix represent the contri-
bution of each principal component to the corresponding mortality curve in the X matrix.
If the ith principal component contains material subpopulation-specific differences, we
would expect the distributions of the values in the ith column of U to differ between
subpopulations. We thus separate the rows of U by sex and examine the resulting dis-
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tributions. Figure 2 displays the densities of the coefficients by sex for the first eight
principal components. We choose eight as the singular values suggest there is limited
additional information beyond eight.

Figure 2: Distribution of observed state-level left singular values by sex and
principal component
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The first four principal components demonstrate clear differences in the sex-specific
distributions. In particular, the location of the distributions are noticeably different, sug-
gesting structural differences between sexes. The distributions of the remaining principal
components, including those not presented in Figure 2, are largely similar. Beyond a vi-
sual inspection, simple t-tests suggest that aside from the fifth, all the first eight principal
components have location differences. Balancing these findings with the practical con-
sideration that each additional principal component leads to a significant computational
burden during model estimation, we suggest that at least three but ideally four principal
components should be used in modeling sex-specific mortality in the United States.

Considering Figure 1 and Figure 2 together offers insight into patterns of interest.
The first principal component has the characteristic J shape of log mortality. The higher
female coefficient values in the PC1 panel of Figure 2 indicate that female mortality is
generally lower than male mortality (to see this, note that the coefficients are multiplied
by the first principal component, which as seen in Figure 1 is composed of exclusively
negative values). Similarly, the PC3 panel implies that women experience lower mortality
through the middle-age adult years. In addition, the distribution of coefficients for PC2
and PC4 indicate higher young adult mortality in the male population than in the female
population, which is consistent with the ‘accident hump’ described in the broader mortal-
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ity literature, as males are more likely to suffer mortality due to risky behavior (Heligman
and Pollard 1980).

There is a substantial body of literature documenting the large and systematic ex-
cess mortality of men compared with women (see reviews of this literature in Gjonça,
Tomassini, and Vaupel 1999; Barford et al. 2006; Beltrán-Sánchez, Finch, and Crimmins
2015). As previously mentioned, the male disadvantage in the risk of dying is high at all
adult ages up to about 65 to 70 years, depending on the population, and it is particularly
acute in young adults. The finding that the principal components are recovering these
well-understood sex-specific differences motivates their use as the basis for a subpopula-
tion mortality model. Using principal components as a basis for a statistical model can
be robust in small population settings as the components allow plausible mortality rates
to be estimated even in the presence of high variability.

3.2 Model summary

We frame our proposed model for jointly estimating subnational mortality for multiple
populations in the context of US county-level mortality. The basic premise of our model
is to leverage the natural relationships between populations of interest in order to improve
the quality of mortality estimates for small populations. The model is designed to oper-
ate at the state-level, estimating age-specific mortality for all counties within a state, for
any number of years and some number of subpopulations of interest. While we are mo-
tivated by the United States context, our proposed specification can be easily applied to
other countries or administrative areas, substituting states and counties for the appropriate
analogs.

We begin by defining ya,s,c,t as the observed number of deaths in age group a,
subpopulation s, county c, and year t. Then, following Alexander, Zagheni, and Barbieri
(2017), we assume that

ya,s,c,t|λa,s,c,t ∼ Poisson (Pa,s,c,t · λa,s,c,t) , (2)

where Pa,s,c,t is the population corresponding to age group a, subpopulation s, county c,
and year t, and λa,s,c,t is the mortality rate to be estimated for age group a, subpopulation
s, county c, and year t.

The mortality rates λa,s,c,t are estimated on the log scale as follows:

log (λa,s,c,t) =

P∑
i=1

(βi,s,c,t · Yi,a) + γa,s,c,t, (3)
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where Yi is the ith principal component, P is the number of principal components, β
are the estimated coefficients, and γ is an overdispersion term. The number of principal
components, P , can be selected based on their contributions and differences between
groups. In the case of sex-specific mortality in US counties, we use the P = 4 principal
components plotted in Figure 1.

Equation (3) can be intuitively understood as constructing a log-mortality curve for
each age-sex-county-year as a linear combination of the four principal components plus
some additional age-specific variation. Different linear combinations of the principal
components (that is, different estimated values of the β coefficients) lead to different
plausible log-mortality curves. The overdispersion term accounts for the possibility that
deaths will be overdispersed relative to the patterns captured by the principal components.

3.2.1 Core model

For many counties, population and death counts are small and highly variable, which
would lead to uncertain estimates of β if each county and year were estimated indepen-
dently. As such, we propose a hierarchical model for β based on the nesting structure
of counties within states. Specifically, we assume that counties within each state are
more likely to share similar mortality patterns than counties in different states, and allow
high-data counties to share information with low-data counties in the same state. Similar
hierarchical structures have been used successfully in the mortality modeling literature
(Alexander, Zagheni, and Barbieri 2017; Lu, Hanewald, and Wang 2021; Lin and Tsai
2022). We note that while an analogous argument could be made to justify an additional
hierarchy where states are nested within the United States as a whole, we opt not to take
this approach as US states have large enough populations to produce reliable age-specific
mortality, implying that pooling across states will be of limited benefit.

Similar to the dynamic of counties within a state, while subgroups of the population
are expected to experience specific drivers of mortality due to their unique experience
within each county, they are also expected to jointly experience more general drivers,
whether those are due to policy, the environment, or other factors. For instance, regu-
lations regarding maternity leaves have an impact on women’s health, but natural catas-
trophes like heat waves or hurricanes affect everyone in the same area (albeit to various
extents). This structure suggests that β coefficients, and thus by extension log-mortality
curves, for all subgroups within a county should be modeled jointly, thereby allowing for
distinct mortality estimates in each group while also exploiting the dependence between
groups.

To capture geographic and subgroup dependence, we propose to model the vector of
β coefficients for all subgroups within each county jointly as multivariate normal with a
common state-level mean vector and covariance matrix:
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βi,1,c,t

. . .
βi,S,c,t

 =

µβi,1,t

. . .
µβi,S,t

+

ωi,1,c,t

. . .
ωi,S,c,t

 , i = 1, . . . ,P , (4)

ωi,1,c,t

. . .
ωi,S,c,t

∣∣∣∣∣∣σβi,t ,L
(β)
i,t ∼ N

(
0S ,σβi,t1SL

(β)
i,t L

(β)⊤
i,t 1Sσβi,t

)
, (5)

L
(β)
i,t L

(β)⊤
i,t ∼ LKJ(1), (6)

σβi,t
∼ N+ (0, 1) , (7)

where S is the number of subpopulations under consideration, µβi,s,t
is the state-level

coefficient for the ith principal component, subpopulation s, and year t, and ωi,s,c,t is the
county deviation for the ith principal component, subpopulation s, county c, and year t.

We discuss the two components of β in turn, starting with the state-level mean vector,
µβ . Information-rich observations from county subgroups with large populations are the
primary contributors to estimates of µβ for the corresponding subpopulation. Estimates
of β for small county subgroups with less informative observed death counts are then
partially informed by the high-data counties through the shared state-level means. This
pooling effect stabilizes estimates of β for small populations by pulling the estimates to-
ward the state mean. It is important to note that this effect occurs at the county-subgroup
level and not uniformly within a county: A large population county with an uneven sub-
group composition can experience stronger pooling effects in its smaller subgroups. This
is not particularly important for the application to sex-specific mortality as the popula-
tions are roughly balanced, but may be critical in other applications involving subgroups
defined by other demographic variables.

The ω vector models the specific deviations in the β vector for each county from
the state-level mean vector. By jointly modeling the deviations for all subpopulations
as in Equation (4), the model captures patterns in the dispersion of β by the principal
component in the correlation matrix L

(β)
i,t L

(β)⊤
i,t , where L(β)

i,t refers to the Cholesky factor
of the correlation matrix. This enables information sharing across subpopulations. In
counties where there is an imbalance in the number of nonzero death observations across
subpopulations, jointly generating β coefficients allows higher data groups to support
lower data groups. An example of such a county is given in Figure A-3 in Appendix B.

Regarding the prior specification for the covariance of the ω vector, we adopt a
separation strategy whereby the variance terms and correlation matrix are assigned inde-
pendent priors (Barnard, McCulloch, and Meng 2000). For each principal component,
we assume that the variance is constant across subpopulations but varying in time. The
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constant variance assumption is a simplifying choice predicated on the relative symmetry
of male and female subpopulations in our motivating context. In applications where such
an assumption may not be preferred, one can simply add an additional index for subpop-
ulation in Equation (7). For the correlation component, our goal is to recover patterns
from the data, not impose patterns on the data. As such, we choose to assign the unin-
formative LKJ(1) prior to the subpopulation correlation Cholesky factors (Lewandowski,
Kurowicka, and Joe 2009). The LKJ(1) prior is uniform over the space of all valid S × S
correlation matrices. We note that for S > 2, this is different from a marginal uniform
prior on each entry of the correlation matrix as the positive semidefinite constraint leads to
a higher marginal prior density on smaller correlations. However, in our context, where S
is expected to be fairly small, this difference is limited, and we can understand the LKJ(1)
prior as a generic uninformative choice for the correlation structure.

By modeling correlations in principal component coefficients between sexes, it is
possible for subgroups to experience joint variation in certain parts of their mortality
curves but not in others. For example, the coefficients corresponding to the first princi-
pal component (i.e., baseline mortality) could experience strong correlation, leading to
a common trend in baseline mortality levels, but the coefficients on the second principal
component (i.e., the accident hump) may not, leading to differences by sex in young adult
mortality.

An illustration of the correlated principal component coefficients is provided in Fig-
ure 3. Each plot captures the patterns of one of the four principal component coefficients
for California in 2017. The red point represents the state-level value, the black points
represent each county, and the blue contours are the distribution of ω centered at the state
means. High correlation in the first principal component is expected, since when the gen-
eral conditions in a region improve, both sexes are positively impacted, leading to highly
correlated changes in baseline mortality. Similarly, the low correlation in the second prin-
cipal component is consistent with males experiencing an elevated level of mortality in
young adult ages (i.e., the accident hump) whereas females tend not to. High correlations
are recovered for the third and fourth principal components, suggesting that changes in
young adult and middle-age adult mortality experiences are similar across sexes.

The β specification is intended to be flexible. If there is only a small number of
years of data available or there is prior information suggesting that correlation structures
are time-invariant, one could reasonably omit the time index or share correlations across a
short time interval. Similarly, if certain correlations are known in advance, the correlation
matrices themselves could be constrained accordingly.
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Figure 3: Median posterior county-level principal component coefficients (β)
and the corresponding state-level mean (µβ) for California in 2017
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Notes: The contour plots display the recovered correlation patterns between the male and female populations.
Each panel corresponds to one principal component. The red and black points are the point estimates of the
state-level and county-level principal component coefficients, respectively. The blue contours indicate the
recovered correlation patterns between the two populations.
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3.2.2 Temporal smoothing

State-level means are smoothed over time by penalizing the second-order differences to
produce gradual changes (Alexander, Zagheni, and Barbieri 2017). In other words, we
assign a random walk 2 prior on the state-level means with flat priors on the first two
time points. Smoothing occurs at the state-level as opposed to the county-level to allow
the needed flexibility for counties to experience irregular mortality patterns driven by
localized events such as a natural disaster or a pandemic:

µβi,s,t
|µβi,s,t−1

,µβi,s,t−2
,σµβi

∼ N
(
2 · µβi,s,t−1

− µβi,s,t−2
,σµβi

)
, (8)

σµβi
∼ Log-Normal (−1.5, 0.5) . (9)

3.2.3 Overdispersion term

Finally, the γa,s,c,t term that allows for overdispersion of the log-mortality rate is modeled
similarly to ωi,s,c,t in a S-dimensional multivariate normal setup:

γa,1,c,t
. . .

γa,S,c,t

∣∣∣∣∣∣σa,L
(γ)
a,t ∼ N

(
0S ,σa1SL

(γ)
a,tL

(γ)⊤
a,t 1Sσa

)
, (10)

L
(γ)
a,tL

(γ)⊤
a,t ∼ LKJ(1), (11)

σa ∼ N+ (0, 0.25) . (12)

Relationships between subpopulation γ’s are captured using the age-year correlation ma-
trix L

(γ)
a,tL

(γ)⊤
a,t . An intuitive way of understanding this component of the model is that

the principal components produce the expected mortality derived from aggregate and lo-
cal patterns, while γ captures additional age-specific deviations. These deviations from
the expectation are often correlated across subpopulations, though this correlation may
differ across ages and over time. As with the principal component coefficient correla-
tions, here we also use an LKJ(1) prior. Given that the log-mortality values for different
age groups occur in substantially different parts of the log curve, we estimate a separate
scaling factor σa for each age group.
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3.3 Computation

The model described here is fit using a Bayesian framework. Posterior samples are drawn
using the No-U-turn sampling Hamiltonian Monte Carlo algorithm (Hoffman and Gelman
2014; Neal 2011) implemented in the Stan R package (Stan Development Team 2022).
In the US county-level mortality context, we execute the model once for each state using
4 chains with 500 iterations of burn-in and 2,500 iterations of samples each. All 10,000
samples for each state are retained. Convergence is diagnosed using trace plots, effective
sample sizes, and the Gelman and Rubin diagnostic (Gelman and Rubin 1992).

The runtime of the model is a function of both the computing setup and the number
of county-year-subpopulations of interest. Our analysis is run on a virtual machine (Xen
4) with memory ranging from 100GB up to 500GB and CPU cores ranging from 4 to
20 depending upon project demand. The VM runs Ubuntu 20.04TLS and is not directly
accessible from the internet. The underlying server is a Supermicro server with 768GB
of memory and 36 CPU dual cores (Xeon E5-2695 v4) (72 virtual CPUs). In the US
county-level mortality context, the model runs for Delaware, the state with the fewest
counties, and Texas, the state with most counties, took approximately 1 hour and 1.5
days, respectively.

3.4 Simulation study

We conducted a simulation study to test the ability of the model to simultaneously esti-
mate mortality rates and extract patterns in subgroup mortality. We generated 10 years
of population data for 25 simulated counties of various sizes. Each population is com-
posed of five subgroups ranging in size from 10% to 50% of the total population. We
then generated deaths for all subgroups using log-mortality rates constructed as the linear
combination of a pair of standard curves with coefficients subject to a variety of cor-
relation patterns. The goal of the simulation study was to recover the true correlations
and age-specific mortality rates when fitting the proposed model to the simulated data.
Specific details on the data-generating process are provided in Appendix A.

The model is run on the simulated data using the standard curves as the principal
components. To validate the results, we compare the estimated correlation matrices and
log-mortality rates to the corresponding true values. Figure 4b plots estimated correla-
tion matrices extracted from the model. When we compare corresponding facets against
Figure 4a, it appears that the model has successfully identified and extracted the patterns
observed in the data.
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Figure 4: Simulation study true and estimated posterior median correlation
matrices
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(b) Estimated correlation matrices
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Table 1 presents the coverage values for correlation and log-mortality rate parame-
ters at the 80%, 90%, and 95% nominal levels. Coverage is defined for correlation and
log-mortality rates as 1

n

∑n
i=1 1li≤θi≤ui , where n is the number of parameters, θi refers

to an individual parameter, and li and ui are, respectively, the lower and upper bounds of
the posterior credible intervals. For the correlation matrices, we compute entrywise cov-
erage values for the off-diagonal entries of the lower triangles of the correlation matrices.

Table 1: Simulation study coverage values for correlation and log-mortality
rates

Coverage (80%) Coverage (90%) Coverage (95%)

Correlations 0.78 0.90 0.94
Log-mortality rates 0.83 0.92 0.96

For both sets of parameters, the model’s coverage values are in line with the nominal
values at all levels, suggesting that the model is well calibrated.

86 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 52, Article 3

4. Application to age- and sex-specific mortality rates at the
county-level in the United States

We applied the proposed model to estimate sex- and age-specific mortality at the county-
level in the United States over the period 1982–2019. In the United States, relatively
high quality data are collected through vital registration systems. The National Center
for Health Statistics (NCHS) publishes detailed mortality records for each year included
in our series from which we can compile the mortality tabulations (National Center for
Health Statistics 2023). For the purposes of the present analysis, we obtained access to the
necessary protected data with individual death records from 1989 to 2019 from the NCHS
under a Data User Agreement as the publicly available data do not include geographic in-
formation. The United States Census Bureau publishes midyear population estimates by
county of residence, year, sex, and age (United States Census Bureau 2022). To comply
with our data agreement with the NCHS, counties are anonymized in all figures.

As stated previously, the model is applied to each state individually. Across all
states, we use the first four principal components plotted in Figure 1. Note that estimates
based on this model are now published as part of the USMDB and can be accessed at
https://usa.mortality.org/ (United States Mortality Database 2023).

As an illustration of the model outputs, in Figure 5 we plot the estimated sex-specific
log-mortality curves in 1982 and 2019 for a subset of US counties along with associ-
ated uncertainty intervals. The observed log-mortality rates for age groups with non-
zero deaths are presented as points, and the female and male county-level estimates and
95% credible intervals are presented in red and blue, respectively. The selected counties
represent settings with small, medium, and large populations (of approximately 13,000,
40,000, and 10,000,000 people, respectively). As expected, smaller counties, such as
County 1, have greater uncertainty as compared to larger ones, such as County 3, due to
the higher levels of noise caused by low or zero death counts. For County 3, modeled
estimates follow the data exactly.
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Figure 5: Examples of US county-level sex-specific log-mortality plots by
county-year-sex for three counties of varying sizes
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Note: Black dots represent observed values, coloured curves and regions indicate posterior medians, and 95%
credible intervals.

4.1 State-level patterns in sex-specific mortality

In addition to producing mortality rates for subnational areas, the proposed model spec-
ification contains a number of parameters that are useful in observing broad patterns in
mortality at the state-level. Specifically, changes in µβ describe broad, state-level trends
in mortality patterns over time, and the correlation matrices offer insight into county-level
trends.

In Figures 6 and 7, we plot posterior medians and 95% credible intervals of the
estimated state-level coefficients for the first and second principal components for male
and female populations in all states and years. Recall that higher values for the first
and second principal component coefficients correspond to lower overall mortality and

88 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 52, Article 3

a larger accident hump, respectively. States are organized roughly along their relative
geographic location.

The most notable finding is that in the plot for the first principal component, the gap
in the baseline mortality coefficients between men and women is shrinking over time.
This suggests a convergence in mortality across the sexes (Seligman, Greenberg, and
Tuljapurkar 2016). Geographically, we see that baseline mortality patterns differ sub-
stantially by state, suggesting evidence for a divergence in mortality across US states due
to stagnation or regression in some states and continuous improvement in others (Fenelon
2013). For example, states such as California and New Jersey experienced significant de-
clines in baseline mortality in both sexes. Others, such as Louisiana, experienced limited
improvement and have stagnated in the 2010s. Some states, such as Ohio, saw a deteri-
oration in baseline mortality in the 2010s. This trend reversal occurs across the eastern
half of the United States.

For the second principal component, increases are experienced across the United
States in both sexes with female values transitioning from negative to positive. As the
second principal component contains an accident hump shape, this suggests increasing
young adult mortality relative to the baseline. Our findings suggest that this trend accel-
erated in the 2010s for males in New Jersey, West Virginia, Ohio, and more broadly across
the Northeast and Midwest. This is consistent with the sharp increase in opioid overdose
deaths in these regions of the United States (Alexander, Kiang, and Barbieri 2018).

For the final two principal components (shown in Appendix B) there are again clear
geographic clusters of patterns over time. For the third principal component, which has
relatively higher mortality in middle-age adults, trends are generally declining, but stag-
nating more in the South, and there is evidence of a trend reversal in Kentucky and West
Virginia. Unlike the rest of the states, Alaska does not show any significant gap between
the two sexes in the third principal component, suggesting that the deviation to baseline
mortality associated with this component contributes similarly to male and female mor-
tality. However, it is important to recognize that the population in Alaska is small, leading
to large uncertainty in the extracted trends.

For the fourth principal component, a transition from positive to negative coefficient
values is found across the United States. The interpretation of this trend is similar to
that of the second principal component. An inverted fourth principal component implies
relatively higher early adult mortality, which is again consistent with the opioid crisis.
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Figure 6: Posterior medians and 95% credible intervals for the state-level
coefficients for the first principal component (µβ)

HI TX FL

OK LA MS AL GA

AZ NM KS AR KY TN SC NC

CA NV CO NE MO IN WV VA MD DE

OR UT WY SD IA IL OH PA NJ CT

WA ID MT ND MN WI MI NY MA RI

VT NH

AK ME

1990 2010

1990 2010 1990 2010

1990 2010

1990 2010 1990 2010 1990 2010 1990 2010

1990 2010

1990 2010

1990 2010

24

27

24

27

24

27

24

27

24

27

24

27

24

27

24

27

year

M
u_

B
et

a 
(P

C
 1

)

sex female male

90 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 52, Article 3

Figure 7: Posterior medians and 95% credible intervals for the second principal
component (µβ)
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Figure 8 plots the posterior values of the between-sex principal component coeffi-
cient correlations extracted from L

(β)
i,t L

(β)⊤
i,t for a subset of states over time. Plots for all

states are given in Appendix B. Each series includes the associated uncertainty intervals
along with a horizontal line at zero. Across states, the first principal component has high
correlation between the two sexes, reinforcing the notion that the baseline mortality for
both sexes moves together. In contrast, the posterior distributions of the second principal
component correlation terms mimic the corresponding uniform priors: They cover nearly
the whole (−1, 1) range for all states and years, suggesting that the data contain little
information to support a relationship between sexes for this component. This is consis-
tent with the idea that the accident hump is a predominantly male phenomenon, which
would imply weak correlation between sexes. The third and fourth principal component
correlations deviate by state. For Alaska, the relationships are weak at best; for Califor-
nia and Texas, there are strong or growing correlations; and New Jersey has declining
correlations.

Figure 8: Time-series of posterior principal component correlations for seven
states
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In Figure 9, we plot the posterior medians and 95% credible intervals for the between-
sexes correlations in the overdispersion terms captured by L

(γ)
a,tL

(γ)⊤
a,t for California as an

example. We find that patterns vary substantially by age group. For the 85+ category,
consistent high correlation is found. However, in the youth age groups, the posteriors
again cover the whole range, suggesting that there is no meaningful evidence of correla-
tion in the data. The most interesting patterns are those in the middle-age adult groups,
where transitions from limited correlation to strong positive correlation are found.
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Figure 9: Posterior medians and 95% credible intervals for γ correlation over
time by age group for California
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4.2 Validation

To formally evaluate the model, we perform out-of-sample validation exercises compar-
ing the present model with the model proposed by Alexander, Zagheni, and Barbieri
(2017). By comparing these two models, we can isolate the contributions of the between-
subpopulation correlation matrices introduced. The validation exercises focus on five
states (Alaska, California, Louisiana, New Jersey, and Texas) that capture the diversity in
population size and number of counties across the United States.

For each state, we leave out 20% of the observed age-sex-year death counts for each
county in the years 1982–2019 as an out-of-sample dataset, then execute the model on
the remaining in-sample dataset. We then generate a distribution of deaths for all left-out
observations using the posterior log-mortality rates for the corresponding county-age-
sex-years. Finally, we calculate coverage at the 80%, 90%, and 95% nominal levels for
the death uncertainty intervals as well as mean squared errors (MSE) and mean absolute
deviations (MAD) between the median death estimates and the observed deaths. In Table
2, the results of this exercise by state are presented. Note that the model introduced in this
paper is labeled as the ‘joint’ model and the version in Alexander, Zagheni, and Barbieri
(2017) with independent sex modeling is denoted ‘independent’.
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Table 2: Out-of-sample coverage and errors

State Model Cov80 Cov90 Cov95 MAD MSE

Alaska independent 0.884 0.943 0.973 1.931 14.447

Alaska joint 0.887 0.946 0.974 1.899 12.614

California independent 0.843 0.920 0.961 9.747 2004.650

California joint 0.846 0.923 0.963 8.568 1194.914

Louisiana independent 0.873 0.939 0.970 3.054 40.795

Louisiana joint 0.874 0.940 0.972 2.921 30.257

New Jersey independent 0.843 0.925 0.963 8.388 298.082

New Jersey joint 0.850 0.930 0.964 7.838 238.458

Texas independent 0.878 0.940 0.970 3.232 92.449

Texas joint 0.879 0.941 0.970 3.030 61.618

The joint model consistently outperforms the independent model on the out-of-
sample set across metrics. The level of outperformance is most pronounced in the larger
states, notably California. The outperformance of the joint model on the out-of-sample
set suggests that the subpopulation correlation structures materially improve subnational
mortality estimation in this context. Further, as the out-of-sample exercises replicate
an incomplete registration setting, it suggests that our model may have uses beyond the
US county context for estimating subnational mortality by subpopulation in jurisdictions
without complete data.

5. Discussion

In this paper we extended principal component-based methods to jointly estimate subna-
tional mortality across subpopulations. This approach leverages the inherent structural
mortality patterns associated with the individual principal components and extracts cor-
relations between groups to offer insight into the joint movements of mortality trends
across groups. The model centers on a regression-based framework with four principal
components that allow core patterns in age-specific mortality to be captured. The princi-
pal component coefficients are modeled hierarchically to allow for information exchange
within states. County-specific effects on each component are assumed to be correlated
across subgroups within a county. Our approach is validated using both a simulation
study and with out-of-sample exercises using real subnational mortality data. We find
that the proposed model is well calibrated and that its errors are smaller than those of the
independent model in out-of-sample exercises.
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We illustrate the model through estimating US county-level sex-specific mortality
rates. An investigation into the parameters of the model highlights general trends in US
mortality as well as state specific patterns. Notably, while movements in baseline mortal-
ity tend to manifest in both sexes simultaneously, specific features of the mortality curve,
such as elevated young adult mortality, appear independent by sex. These results can
offer direction to those working to reduce mortality pressures. For example, when cor-
relations are high, aggregate policies may be effective. However, in jurisdictions where
correlations are low or zero, more targeted policies may be necessary. State-level param-
eter estimates also highlight clear geographic clustering of mortality patterns over time.
Notably, there is evidence of stagnation in parts of the country with increasing early adult
mortality particularly in the eastern states, and no improvement in middle-age mortality
in the southern states.

We identify two directions for future extensions to this work. The first is to study
how the model performs in real-world circumstances similar to the simulation study
where there are more than two subpopulations and the composition of the population
is not approximately balanced across groups – for example, race/ethnicity-based mortal-
ity data in US counties. Many counties are dominated by one subgroup, and thus the
frequency of low or zero death data is significantly higher than with aggregate or sex-
specific data. The second direction is to apply the model in contexts where there are
differences in mortality data collection or death registration coverage. In many countries,
complete mortality data, such as the US county data used here, are not available and
death registration coverage can vary substantially by sex, geographical area, or time (Per-
alta et al. 2019; Basu and Adair 2021). Typically, male coverage is higher than female
coverage. By studying relationships between sexes in the years and regions with higher
quality data, one may be able to support estimation of female mortality rates by using the
male data and the modeled correlations.

The code used for the simulation study and data analysis is available at https://github.
com/AmeerD/joint-mortality. As we cannot share the US county-level mortality data, an
illustrative sample dataset is provided.
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Appendices

A. Simulation study details

To illustrate the model’s ability to estimate mortality rates and extract mortality patterns
across subgroups, we simulate population and death data for populations composed of five
subgroups of varying sizes. The simulation study data includes population and mortality
data for 10 years, 25 subnational areas, and 5 population subgroups. For each year-area-
age subgroup, we construct the population data as follows:

1. The total population in year 1 in each area is set as 100,000 times the area index,
which ranges from 1 to 25.

2. The total population in each area in subsequent years is computed by increasing
the total population in each area by 1% annually.

3. Total populations in each year-area are allocated to the 19 age groups using a jit-
tered version of the age distribution of Los Angeles County in California.

4. Each year-area-age population is then disaggregated into the 5 subgroups using the
following proportions: 50% in Group A, 20% in Group B, and 10% in Groups C,
D, E.

To generate corresponding mortality data for the populations in each year-area-age
subgroup, we first construct true log-mortality curves for each year-area subgroup. The
mortality curves are constructed using a linear combination of two standard curves: the
first representing a baseline mortality curve, and the second containing an accident hump.
Plots of the standard curves are given in Figure A-1.

Figure A-1: Simulation study mortality curve components
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The log-mortality curves are then constructed with the following steps:
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1. The baseline mortality curve is multiplied by a random coefficient sampled from a
5-dimensional multivariate normal distribution with mean 15 and a year-dependent
covariance matrix. The covariance matrix describes the dependence between the
5 subgroups. It is assigned a constant variance of 0.12 and one of the correlation
structures plotted in Figure 4a. In years 1 to 3, the independent correlation matrix
is used. In years 4 to 6, the exchangeable correlation matrix (i.e., constant off-
diagonal values) is used. In years 7 to 10, the unstructured correlation matrix based
on state-level observed race/ethnicity-based US mortality is used.

2. An accident hump is added to the mortality curve by adding the accident hump
standard curve multiplied by random coefficients sampled from a 5-dimensional
multivariate normal distribution with mean 05, and covariance matrix with a con-
stant variance of 0.52 and one of the correlation matrices plotted in Figure 4a. The
matrices used in each year mirror those used for the baseline mortality standard.

Finally, observed deaths for each year-area-age subgroup are generated from the log-
mortality curves using a Poisson likelihood with rate equal to the corresponding popula-
tion multiplied by the exponential of the corresponding log-mortality rate.

Examples of simulated data in two subnational areas are given in Figure A-2. Points
correspond to log-mortality observations (i.e., the log of observed deaths divided by pop-
ulation). Note that zero death observations are encoded as –10 on the log-scale.

Figure A-2: Examples of simulated log-mortality observations
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B. Additional results

Figure A-3 plots two county-years where the amount of nonzero death data varies by
sex. The observed log-mortality rates for age groups with nonzero deaths are presented
as points, the estimated state means for each sex are denoted by the gray lines, and the
male and female county-level estimates and 95% credible intervals are presented in blue
and red, respectively. In both county-years, the majority of age groups had zero female
deaths in the year whereas the male data is nearly complete. As opposed to defaulting
to the female state-level means, estimates for female mortality are also informed by the
behavior of male mortality relative to the male state-level means.

Figure A-3: Examples of US counties with limited female but sufficient male data
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Figures A-4 and A-5 plot maps of the posterior medians and 95% credible intervals
of the estimated state-level coefficients for the third and fourth principal components for
male and female populations for all years.

Figures A-6, A-7, A-8, and A-9 plot the posterior medians and 95% credible inter-
vals for the principal component coefficient correlations between sexes over time. As ex-
pected, strong correlation in the first principal component is found in most states whereas
there is negligible correlation in the second principal component. Patterns in the third and
fourth principal component coefficient correlations vary regionally with some evidence
for stronger correlations in the fourth principal component coefficients in the Great Lakes
region and surrounding states.
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Figure A-4: Posterior medians and 95% credible intervals for the third principal
component (µβ)
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Figure A-5: Posterior medians and 95% credible intervals for the fourth principal
component (µβ)

HI TX FL

OK LA MS AL GA

AZ NM KS AR KY TN SC NC

CA NV CO NE MO IN WV VA MD DE

OR UT WY SD IA IL OH PA NJ CT

WA ID MT ND MN WI MI NY MA RI

VT NH

AK ME

1990 2010

1990 2010 1990 2010

1990 2010

1990 2010 1990 2010 1990 2010 1990 2010

1990 2010

1990 2010

1990 2010

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

year

M
u_

B
et

a 
(P

C
 4

)

sex female male

http://www.demographic-research.org 105

http://www.demographic-research.org


Dharamshi et al.: Jointly estimating subnational mortality for multiple populations

Figure A-6: Time-series of posterior medians and 95% credible intervals for the
first principal component correlations
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Figure A-7: Time-series of posterior medians and 95% credible intervals for the
second principal component correlations
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Figure A-8: Time-series of posterior medians and 95% credible intervals for the
third principal component correlations
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Figure A-9: Time-series of posterior medians and 95% credible intervals for the
fourth principal component correlations
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