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Abstract: Vision Transformers (ViTs) have achieved impressive results in computer vision, excelling in tasks such as
image classification, segmentation, and object detection. However, their quadratic complexity O(N2), where
N is the token sequence length, poses challenges when deployed on resource-limited devices. To address this
issue, dynamic token merging has emerged as an effective strategy, progressively reducing the token count
during inference to achieve computational savings. Some strategies consider all tokens in the sequence as
merging candidates, without focusing on spatially close tokens. Other strategies either limit token merging
to a local window, or constrains it to pairs of adjacent tokens, thus not capturing more complex feature rela-
tionships. In this paper, we propose Dynamic Hierarchical Token Merging (DHTM), a novel token merging
approach, where we advocate that spatially close tokens share more information than distant tokens and con-
sider all pairs of spatially close candidates instead of imposing fixed windows. Besides, our approach draws
on the principles of Hierarchical Agglomerative Clustering (HAC), where we iteratively merge tokens in each
layer, fusing a fixed number of selected neighbor token pairs based on their similarity. Our proposed approach
is off-the-shelf, i.e., it does not require additional training. We evaluate our approach on the ImageNet-1K
dataset for classification, achieving substantial computational savings while minimizing accuracy reduction,
surpassing existing token merging methods.

1 INTRODUCTION

The advent of Vision Transformers (ViTs) (Dosovit-
skiy et al., 2020) has sparked significant advances
in computer vision, demonstrating robust perfor-
mance in image classification (Liu et al., 2021)(Tou-
vron et al., 2021), segmentation (Zhang et al.,
2022)(Strudel et al., 2021), and object detection tasks
(Carion et al., 2020)(Liu et al., 2024). Since the intro-
duction of the Vision Transformer (ViT), researchers
have successfully adapted Transformers, originally
designed for Natural Language Processing (NLP), to
process images by treating local patches of an im-
age as sequential tokens. Through the self-attention
mechanism, ViTs learn the relationships between
these tokens, achieving high-level visual understand-
ing across a range of applications.

Despite these successes, ViTs have a notable
limitation: their computational complexity scales
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Figure 1: Performance of DHTM against existing methods
on DeiT-Small (Touvron et al., 2021). We highlight in bold
the off-the-shelf strategies, i.e., when no further training is
required. We use the subscripts w/train and OTS for ToMe
(Bolya et al., 2023) to distinguish between the off-the-shelf
and the trained variants. The superscripts on DHTM de-
notes if the merging strategy is applied to all layers or em-
pirically selected ones. The vertical dotted lines show com-
plexity reduction ratio (FLOPs).



quadratically with respect to the number of tokens in
the sequence. This O(N2) complexity, where N is
the number of tokens, often limits their deployment
on resource-constrained devices. Therefore, reducing
the token sequence length has emerged as a practical
strategy to make ViTs more computationally efficient,
improving their adaptability to various hardware con-
straints while maintaining low accuracy reduction.

Among these, dynamic token reduction tech-
niques are particularly prominent, encompassing two
main strategies: token pruning and token merging.
Token pruning selectively removes less significant to-
kens from the sequence, while token merging com-
bines similar tokens, effectively fusing information
and reducing redundancy. Both methods reduce com-
plexity dynamically, i.e., at inference. This often re-
sults in a drop in accuracy, therefore, the main chal-
lenge is to find the optimal accuracy vs. complex-
ity tradeoff. While token pruning effectively reduces
computational load, it has two limitations. First, it
risks losing crucial information, which may degrade
model performance. Second, the variability in token
importance across different inputs complicates batch
processing. For these reasons, we focus on token
merging approaches in this work.

In this paper, we propose Dynamic Hierarchical
Token Merging (DHTM), a novel token merging strat-
egy. Rather than selecting a single, fixed reference
token and performing merging within a limited win-
dow, DHTM treats each token as a potential reference,
iteratively expanding its region by merging with the
most similar neighboring tokens in each Transformer
layer. Our method is grounded on Hierarchical Ag-
glomerative Clustering (HAC) (Ward Jr, 1963) and
applies clustering in a localized manner, preserving
essential information while minimizing information
loss when merging tokens. By progressively merging
tokens based on the highest similarities in each re-
gion, DHTM achieves efficient token reduction, sig-
nificantly improving computational efficiency while
minimizing accuracy reduction. As shown in Figure
1, DHTM effectively balances information loss with
computational gains, offering a selective and thor-
ough merging process that enhances model perfor-
mance on ImageNet-1K dataset. The main contribu-
tions of this work are as follows:

• We introduce a DHTM, a spatially-aware token
merging approach that iteratively combines simi-
lar neighboring tokens.

• We validate the effectiveness of our approach
through extensive experiments on the ImageNet-
1K dataset, showcasing that our method can re-
duce computational complexity while minimizing
accuracy reduction.

• We evaluate the performance of DHTM against
recent state-of-the-art token merging techniques,
including global candidate evaluation and local
window token merging strategies.

• We validate the merging criteria, i.e, the co-
sine similarity measure, through an ablation study
against random merging.

2 RELATED WORKS

Vision Transformers (ViTs) traditionally process im-
ages by dividing them into a uniform grid of patches,
with each patch treated as a token. However, not all
regions of an image equally contribute to task per-
formance, highlighting the need for efficient token
management strategies. This section reviews Vision
Transformers and state-of-the-art token merging tech-
niques.

2.1 Vision Transformers

The flexibility of ViTs in handling variable-length in-
puts is a key feature that allows them to process mul-
tiscale visual inputs without requiring different sets of
parameters. Each input image is divided into patches,
projected to a latent space, and treated as tokens.
While the number of tokens can vary depending on
the image resolution or scale, the Transformer archi-
tecture is designed to handle this variability. The em-
bedding size of each token is fixed, denoted as de, en-
suring that each token is represented as a vector of the
same dimensionality. Therefore, the input sequence
of N tokens can be expressed as follows:

T = {t1, t2, . . . , tN} where ti ∈ Rde (1)
Each token ti is projected into three distinct repre-

sentations: the query (Q), the key (K), and the value
(V). The query Q encodes how much focus a token
should receive, the key K encodes its relevance to
other tokens, and the value V represents the con-
tent to be attended to. These projections are com-
puted as Q = TWQ, K = TWK , and V = TWV , where
WQ,WK ,WV ∈ Rde×dk are learnable weight matrices,
and dk is the dimensionality of the query and key vec-
tors.

The Multi-Head Self-Attention (MHSA) mecha-
nism processes tokens pairwise by calculating atten-
tion scores for every token pair, as defined by the fol-
lowing equation:

MHSA(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2)
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Figure 2: Overview of the DHTM method. Starting with an initial token set, we iteratively identify the most similar adjacent
token pairs between ti and its neighbors C. Then, we merge the most similar adjacent pair based on their cosine similarity,
offering more flexibility than methods that restrict merging to local windows, while incorporating locality compared to ap-
proaches that merge distant tokens. Our strategy lies in the middle, leveraging both properties.

Similarly, the Multi-Layer Perceptron (MLP)
layer that follows self-attention processes each to-
ken independently, applying the same transforma-
tion across all tokens due to their fixed embedding
size. This design allows Transformers to generalize
over varying input sizes while maintaining param-
eter efficiency. However, despite their advantages,
ViTs exhibit quadratic complexity relative to the num-
ber of tokens, which increases the computational de-
mand. The total number of Floating Point Operations
(FLOPs) for a single Transformer layer can be ex-
pressed as follows:

ΦL(N,de) = ΦMHSA(N,de)+ΦMLP (3)

= 12Nd2
e +2N2de (4)

This quadratic complexity highlights the need for
efficient token processing methods to mitigate the
computational burden associated with larger input
sizes. To address this challenge, researchers have pro-
posed various token reduction strategies. The follow-
ing subsection reviews state-of-the-art of token merg-
ing techniques, focusing on their strengths and limi-
tations.

2.2 Token merging

Token merging combines tokens based on a sim-
ilarity measure to improve efficiency. DPC-KNN

(Zeng et al., 2022) determines clusters by evaluat-
ing token density and merging those with minimal
distance to higher-density points. SiT (Zong et al.,
2022) and Sinkhorn (Haurum et al., 2022) use assign-
ment matrices derived from learned queries to com-
bine tokens. PatchMerger (Renggli et al., 2022) uses
a dot-product softmax operation with preset queries
for clustering. K-Medoids (Marin et al., 2023) ap-
plies a hard-clustering algorithm that iteratively min-
imizes Euclidean distances within clusters, using at-
tention scores from the CLS token to initialize clus-
ter centers. In ToMe (Bolya et al., 2023), tokens are
split into two groups, with each token in one group
paired and merged with its closest match in the other
group by averaging their representations. Finally,
LoTM (Haroun et al., 2024) constrains the merging to
pairs of horizontally-adjacent tokens, relying on co-
sine similarity.

While these methods advance token merging, they
have several limitations. PatchMerger (Renggli et al.,
2022) and ToMe (Bolya et al., 2023) operate by
evaluating all tokens globally as potential merging
candidates, allowing distant clusters to be merged
without emphasizing spatial relations, as spatially
close tokens tend to share more semantic informa-
tion than distant ones. Other approaches use a fixed
local window around a predefined reference token,
referred to as a centroid in these papers, to merge
the most similar tokens within that window (Zeng
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Figure 3: A 2D illustration of neighbor connectivity types.
Left: 8-connectivity with all 8 neighbor tokens; Right: 4-
connectivity, restricted to four horizontal and vertical neigh-
bors. In DHTM, we use the 8-connectivity setting, as we
test for all possible neighbors without restrictions.

et al., 2022)(Marin et al., 2023). Although promis-
ing, this constrained approach hinders the benefits of
locality by setting rigid priors, such as reference to-
kens and the merging window. Lately, strategies like
LoTM (Haroun et al., 2024) restrict merging candi-
dates to two horizontally adjacent tokens, which is an
extreme case in local merging between a pair of candi-
dates. This restriction may hinder the method’s ability
to capture more complex relationships and features
among tokens. In contrast, our approach, consid-
ers all tokens as potential references and selectively
merges only the most similar neighboring tokens in
each Transformer layer, thus striking a balance be-
tween unrestricted and restrictive strategies.

3 METHODOLOGY

3.1 Token merging

Let Z ∈ RN×de denote the output token sequence
from the Multi-Head Self-Attention (MHSA) layer,
depicted in Eq (2), where N is the number of tokens
and de is the embedding dimension.

We define a similarity measure S : Rde ×Rde →
R for pairs of tokens. This similarity measure can
be expressed as the inverse of the Euclidean distance,
the inverse of the norm, or simply cosine similarity,
although the latter is most commonly used.

Next, let I ⊆ {1, . . . ,N} represent a set of indices
of tokens identified for merging based on a predefined
threshold of similarity. The merging operation is de-
fined as follows:

zmerged = avg merge({Zi | i ∈ I}) = 1
|I |∑i∈I

zi (5)

where merge(zi,z j) represents the average merge
of zi and z j. After determining the merging results for
selected pairs of tokens, the new token sequence can
be expressed as follows:

Data: Set of tokens T = {t1, t2, . . . , tN},
Number of selected Transformer layers
L, Number of merges per layer Nmerge

Result: Final set of merged tokens T ′

1 Initialize T ′← T ;
2 for each selected layer l = 1 to L do
3 M← 0; // Merge count
4 σ← []; // Similarity score
5 C← []; // Neighbors
6 while M < Nmerge do
7 for each token ti ∈ T ′ do
8 C←C+get neighbors(ti,T ′);
9 σ← σ+get similarities(ti,C);

10 end
/* Get the most similar pair

*/
11 (t1, t2)←C[argmaxk(σ[k])];
12 tm← avg merge(t1, t2);
13 T ′← (T ′ \{t1, t2})∪{tm} ;
14 M←M+1;
15 end
16 end
17 return T ′ ; // len(T ′)< len(T )

Algorithm 1: DHTM algorithm

Z′ = {Zk | k /∈ I}∪{zmerged} (6)

In this formalization, Z′ represents the updated to-
ken sequence after the merging operation, which re-
duces the sequence length.

3.2 Dynamic Hierarchical Token
Merging (DHTM)

In this section, we provide additional information
about the proposed DHTM strategy, which is de-
scribed in Algorithm 1, in addition to the impor-
tant steps. DHTM operates on an initial set of to-
kens T = {t1, t2, . . . , tN}, obtained from the outputs of
multi-head self-attention. The algorithm initializes a
working set of tokens, denoted as T ′, which serves as
the basis for merging operations.

In each Transformer layer, DHTM first retrieves
the spatial neighbors of each token ti ∈ T ′:

C = get neighbors(ti,T ′) (7)

This operation ensures that the token merging pro-
cess is local, focusing on nearby tokens, while test-
ing all possible adjacent pairs of the sequence T ′,
without predefining hard merging windows or refer-
ence tokens, as shown in Figure 3 where we use the
8-connectivity setting for DHTM. Additionally, our



method also supports an alternative type of neighbor
connectivity, which is the 4-connectivity, where we
constrain the connectivity to horizontal and vertical
neighbors. After obtaining the neighbors, the algo-
rithm evaluates the similarity between the token ti and
each of its neighbors t j ∈ C using a similarity mea-
sure:

σ = get similarities(ti,C) (8)
This similarity measure quantifies how alike the to-
kens are, allowing for a more informed merging de-
cision. While DHTM uses cosine similarity, other
similarities or distance measures can be used, such
as Euclidean distance, Manhattan distance or KL-
divergence.

The algorithm then selects the neighbor with the
highest similarity score and returns the best pair to
merge:

(t1, t2) =C[argmax(S)] (9)
This selection process ensures that, in each itera-

tion, DHTM merges only the most similar token pairs,
maintaining meaningful semantic information. Once
the best neighbor is identified, the algorithm performs
the average merging of the tokens:

tm = avg merge(t1, t2) (10)
The merged token tm then replaces the original to-

kens in T ′, effectively reducing the sequence length.
As shown in Figure 2, this merging process continues
iteratively until the specified number of merges Nmerge
is reached for the current layer.

4 EXPERIMENTS

4.1 Dataset, Benchmarks and
Comparison

We conduct our experiments on the ImageNet-1K
dataset (Deng et al., 2009), a widely used bench-
mark for evaluating image classification models.
ImageNet-1K contains over 1.2 million training im-
ages across 1.000 classes, with a validation set of
50.000 images, providing a diverse and comprehen-
sive dataset to assess model performance.

To validate the effectiveness of our proposed Dy-
namic Hierarchical Token Merging (DHTM) method,
we use the DeiT (Touvron et al., 2021) model as
a backbone. Specifically, we evaluate our approach
on three variants: DeiT-Tiny, DeiT-Small, and DeiT-
Base. For comparison, we consider state-of-the-art
token merging techniques on the same backbone.

4.2 Evaluation Metrics

The performance of our method is evaluated using
two primary metrics: computational complexity and
classification accuracy. We report the computational
complexity in terms of Floating Point Operations
(FLOPs), which is a standard measure for model ef-
ficiency, which we measure using the fvcore1 library.
We evaluate classification performance using the top-
1 accuracy on the ImageNet-1K validation set, reflect-
ing the percentage of correctly classified images.

4.3 Implementation details

As mentioned above, DHTM is designed to integrate
into existing Transformer architectures without re-
quiring additional training. During the evaluation, the
batch size was set to 1. Additionally, in each selected
layer, we iteratively merge k times, where k is prede-
fined.

4.4 Experiment results

For a comprehensive comparison, we benchmark
DHTM against several state-of-the-art token reduc-
tion methods, including SiT (Zong et al., 2022),
Sinkhorn (Haurum et al., 2022), PatchMerger (Reng-
gli et al., 2022), K-Medoids (Marin et al., 2023),
DPC-KNN (Zeng et al., 2022), ToMe (Bolya et al.,
2023), and LoTM (Haroun et al., 2024), based on the
evaluation metrics depicted above.

Figure 1 depicts the performance of DHTM
against state-of-the-art techniques on DeiT-Small
(Touvron et al., 2021), given various computa-
tional budgets. We observe that for aggressive
merging ratios exceeding 39%, DHTMall performs
better than DHTM{4,7,11}, K-medoids, and SiT,
while slightly trailing behind DP-KNN. Furthermore,
DHTM demonstrates a key advantage by enabling
higher compression ratios compared to other strate-
gies, such as ToMe.

Since DHTM{4,7,11} shows higher performance
than DHTMall for reduction ratios below 39%, we
will use this configuration for the next experiments.
Therefore, we will refer to it simply as DHTM for
clarity.

Table 1 shows the performance of DHTM on three
DeiT variants (Tiny, Small, and Base) with varying
k values, illustrating the trade-off between accuracy
and FLOPs. The results indicate that increasing k
reduces FLOPs across models, with the largest re-
ductions for higher k values, while the top-1 accu-

1https://github.com/facebookresearch/fvcore



Table 1: DHTM performance comparison on DeiT (Touvron
et al., 2021) models at different k values, where k denotes
the number of merges applied in each selected layer. k =
0 represents the baseline, and k = 56 represents the most
constrained configuration.

DeiT-Tiny
k Top-1(%) FLOPs(G)

0 72.20 1.26
10 72.17 1.16
20 72.10 1.07
30 71.95 0.97
40 71.66 0.88
48 71.28 0.81
56 69.98 0.75

DeiT-Small
k Top-1(%) FLOPs(G)

0 79.82 4.65
10 79.80 4.21
20 79.77 3.92
30 79.64 3.63
40 79.46 3.26
48 79.01 2.90
56 77.11 2.60

DeiT-Base
k Top-1(%) FLOPs(G)

0 81.85 17.60
10 81.84 16.54
20 81.72 15.48
30 81.55 14.43
40 81.11 13.97
48 80.68 12.34
56 80.10 11.74

Table 2: Performance evaluation of DHTM against existing
methods for a reduction ratio of 30% in terms of FLOPs, we
highlight Top-1 accuracy and FLOPs. W/o train means off-
the-shelf variants, i.e., no additional training required, and
w/train depicts variants that require training.

Method Top-1(%) FLOPs(G)

w
/t

ra
in

DeiT-Tiny 72.20 1.26
Sinkhorn 53.19 0.88
PatchMerger 66.81 -
SiT 68.99 -
DPC-KNN 70.10 -
K-Medoids 69.90 -
ToMe w/train 71.74 -

w
/o

tr
ai

n ToMe OT S 70.94 -
LoTM 70.76 -
DHTM 71.66 -

w
/t

ra
in

DeiT-Small 79.82 4.65
Sinkhorn 64.02 3.26
PatchMerger 75.80 -
SiT 77.52 -
K-Medoids 78.74 -
DPC-KNN 78.85 -
ToMe w/train 79.63 -

w
/o

tr
ai

n ToMe OT S 79.18 -
LoTM 79.19 -
DHTM 79.46 -

w
/t

ra
in

DeiT-Base 81.85 17.60
Sinkhorn 63.36 12.34
PatchMerger 74.52 -
SiT 76.63 -
DPC-KNN 79.06 -
K-Medoids 79.98 -
ToMe w/train 81.05 -

w
/o

tr
ai

n ToMe OT S 80.75 -
LoTM 80.01 -
DHTM 80.68 -

racy exhibits only a slight decline. Besides, we no-
tice that the decrease in accuracy is less pronounced
in the more complex DeiT-Base model, which has a
larger embedding dimension (de = 384) twice that of
DeiT-Small (de = 768) and four times that of DeiT-
Tiny (de = 192). Larger embedding reduces the sen-
sitivity to token merging, which allows more aggres-
sive merging in DeiT-Base with minimal performance
loss. This allows us to optimize computation effi-
ciently while preserving accuracy, especially in larger
models.

In table 2, we show the performance of DHTM
against various state-of-the-art methods across three
different models: DeiT-Tiny, DeiT-Small, and DeiT-
Base. DHTM is an off-the-shelf method that re-
quires no training and can be easily integrated into

any model, offering a plug-and-play solution, as are
LoTM and ToMeOT S. In contrast, ToMew/train (Bolya
et al., 2023) requires training from scratch for 300
epochs, which increases computational cost. Finally,
the results presented in the table are for k = 40, cor-
responding to a 30% reduction in complexity com-
pared to the baseline. In the following paragraphs, we
analyze the performance of our model on three DeiT
variants compared to existing methods.

For the DeiT-Tiny model, the resource-
constrained variant of DeiT, DHTM achieves
71.66% accuracy with 0.88G FLOPs at k = 40.
DHTM outperforms Sinkhorn, PatchMerger, SiT,
DPC-KNN, and K-Medoids by more than 1.5%. In
addition, it slightly outperforms LoTM by 0.90%,
indicating that restricting the merge to only two
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Figure 4: Comparison of DHTM with random token merg-
ing on DeiT-Small. The results clearly show that the ran-
dom merging approach (in blue) experiences a significant
drop in performance, particularly under more constrained
scenarios as the number of merging candidates increases,
while DHTM (in orange) maintains superior performance.

adjacent tokens may not fully capture the complexity
of feature similarities. Finally, DHTM outperforms
ToMeOT S, an off-the-shelf variant of ToMe by 0.72%,
and performs almost identically to ToMew/train, with
a minimal difference of just 0.08%.

For the DeiT-Small model, DHTM achieves
79.46% accuracy with 3.26G FLOPs at k = 40.
DHTM outperforms Sinkhorn, PatchMerger, SiT by
2% or higher, and K-Medoids, DPC-KNN by at least
0.61%. In addition, it slightly surpasses ToMeOT S
and LoTM by 0.28% and 0.27%, respectively, demon-
strating the best performance for off-the-shelf mod-
els. Although it falls short by 0.17% compared to
ToMew/train, this difference is minimal considering
DHTM’s off-the-shelf deployment capability, unlike
ToMe, which requires training.

Finally, DHTM achieves 80.68% accuracy with
12.34G FLOPs at k = 40 for DeiT-Base model.
DHTM significantly outperforms Sinkhorn, Patch-
Merger, SiT, by more than 4.5%, and DP-KNN, K-
Medoids by more than 1%. Furthermore, DHTM out-
performs LoTM by 0.67%, but trails ToMeOT S and
ToMew/train by 0.07% and 0.37% respectively.

These results demonstrate that DHTM outper-
forms most off-the-shelf methods except for ToMe on
DeiT-Base and most training-dependent algorithms,
where it trails slightly behind ToMew/train. This mi-
nor gap is offset by DHTM’s advantage of requiring
no additional training.

4.5 Ablation study

To validate the merging decision in DHTM, we as-
sess how well the cosine similarity-based merging
compares to random merging of token candidates.
Figure 4 demonstrates that our similarity-based to-
ken merging method preserves higher accuracy than
random merging at equivalent FLOPs levels for both
DHTM. Specifically, similarity-based merging con-
sistently outperforms random merging, given all the
configurations of k. For example, DHTM achieves
79.01% accuracy at 2.9 GFLOPs, whereas random
merging achieves only 75.87%.

5 CONCLUSION

We introduced DHTM, an off-the-shelf dynamic to-
ken merging strategy that uses cosine similarity as the
basis for merging decisions. Unlike existing methods
that rely on a fixed centroid token, i.e., reference to-
kens to merge around, or constrain merging within a
limited window, our approach iteratively aggregates
spatially adjacent tokens by evaluating all neighbors
of each token and selecting the most similar pair to
merge in each step. This process progressively ex-
pands regions of similar tokens, effectively reducing
computational overhead.

We designed the model based on two main intu-
itions: first, that merging decisions should prioritize
spatially adjacent tokens, as these are more likely to
convey similar information, corresponding visually to
nearby patches. Second, our approach evaluates all
spatially close token-merging candidates, iteratively
selecting the most similar pairs. This removes the
spatial restrictions imposed by some of the previous
methods, allowing for a more flexible and compre-
hensive aggregation process, while relying on adja-
cent tokens. Our approach demonstrates minimal in-
formation loss compared to existing state-of-the-art
methods on the ImageNet-1K dataset and achieves su-
perior performance over most of these methods.

As a perspective, DHTM could be made even
more flexible by enabling variable merging layerwise,
with a threshold imposed on similarity instead of a
fixed number of k merges per layer. Besides, the
approach can be extended to dense prediction tasks,
such as semantic segmentation and object detection,
where token merging can enhance model efficiency
and performance, particularly given the high com-
plexity demands of these tasks.
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