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A B S T R A C T

Users of geo-localized applications on mobile devices need protection to avoid threats to their privacy. Such
protection should vary in time, to cope with the dynamical nature of mobility data. We present a method
to protect the privacy of users of location-based services, based on Model Predictive Control techniques. We
employ three different predictors for future movements: an exact predictor, which serves as the baseline for
the best expected performance, and two additional predictors allowing for online implementation. One of these
predictors assumes the user is moving in a way that minimizes privacy, while the other is a linear predictor.
The method has been applied to two datasets, Privamov and Cabspotting, which contain mobility data collected
from real users when using a mobile device. The method demonstrated an improvement in privacy compared
to a state-of-the-art mechanism by approximately 12% increase for Privamov users and 5% for Cabspotting
users, while maintaining the same level of utility.
1. Introduction

The widespread use of smartphones and similar devices has gen-
erated a big amount of data relative to the users. This work is con-
cerned with mobility information data, that are shared to third parties
when using location-based services, such as navigation applications,
venue finders or sport tracking services. This information may reveal
some of the user’s Points Of Interest (POI), for instance, their home
or place of work (Hariharan & Toyama, 2004). Knowing the user’s
POIs, it is possible to infer privacy-sensitive information such as their
identity, social relationships, and even religious, political or sexual
orientations (Gambs et al., 2010).

To prevent malicious usages of this information, location privacy
protection mechanisms (LPPMs for short) have been proposed (Primault
et al., 2019). This work focuses on online use cases, i.e., when a
user repeatedly sends their location, and receives a continuous-like
service. In those cases, LPPMs work at every transmission time, and use
current and past locations. Most continuous LPPM are based on obfus-
cation (Jiang et al., 2021), that is, they modify the real location data be-
fore sending it to the service. Geo-Indistinguishability (Geo-I) (Andrés
et al., 2013) is the reference state-of-the-art obfuscation-based LPPM.
Inspired by the theoretical concept of differential privacy (Dwork,
2006), Geo-I consists in applying spatial noise to the location data
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before transmitting it. It has been extended to implement spatial adap-
tation (Chatzikokolakis et al., 2015; Koufogiannis & Pappas, 2016),
temporal adaptation (Cerf et al., 2023), semantic adaptation (Min
et al., 2024), and elasticity to protect isolated locations (Biswas &
Palamidessi, 2024).

This work is an extension of the method presented in Molina et al.
(2023a). It is based on optimization and model predictive control
(MPC) techniques. The principle is to transmit an obfuscated location
that maximizes the user’s privacy, while maintaining an acceptable
level of service usability, based on predictive information about the
future mobility of the user. In previous work (Molina et al., 2023a), the
hypothesis is made that one has access to the future position of the user.
While it allows to motivate the benefit of prediction, it is an unrealistic
assumption in practice. Further works (Molina et al., 2023b) relax this
assumption, considering worst-case future mobility, at the cost of losing
performance in terms of reachable privacy levels. Furthermore, the
optimal mechanisms presented in Molina et al. (2023a, 2023b) have
only been validated as a proof-of-concept, i.e., on the data of a single
user.

In this work, we introduce two novelties. First, we address the
limitation of previous work, which was to test the method under the
unrealistic assumption that the future position is known. To overcome
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this, we have designed a future mobility predictor. The second pro-
posed contribution is the comprehensive evaluation of the protection
mechanism performance over two real-life mobility datasets, Priva-
mov (Mokhtar et al., 2017) and Cab-spotting (Piorkowski et al., 2022),
gathering more than 630 users and more than half a million hours of
data transmissions.

The evaluation considers three methods that use different future
predictions: (i) using the real future position of a user (ii) assuming
a pessimistic case, i.e., considering the future locations that mini-
mize user’s privacy (iii) estimating the future locations using a linear
prediction-based method, developed for that purpose The presented
approach is applied on two real datasets, to evaluate its validity and
performance in ensuring a relevant privacy improvement compared to
the unprotected case and to Geo-I. While the prediction scenario with
exact knowledge serves as a baseline, the pessimistic scenario shows
to be adequate when considering long horizons in the MPC setup,
while the linear predictor is suited for short horizons. Additionally,
the average execution time of each instance presented in this work is
evaluated to ensure their online applicability.

Other optimal formulations of protection mechanisms have been
proposed (Bordenabe et al., 2014; Oya et al., 2017; Shokri et al.,
2012), some in a dynamical setup (Xiao & Xiong, 2015; Yu et al.,
2017) adaptive to influence factors (Niu et al., 2022), or in feed-
back (also referred to knowing-and-learning) (Ma et al., 2023). Such
approaches often result, however, in massive data distortion, leading
to a useless location-based service (Krumm, 2007). In this work, we
advocate using the property of predictability of the human mobility
to improve privacy protection without reducing too much the service
utility. While Chatzikokolakis et al. (2014) show it is a promising
approach, their work implements a decision that is binary (transmit
the predicted position or use Geo-I), and is repeated each time step.
Conversely, our approach provides a fine-tuned protection that is based
on an optimal mechanism, and uses mobility prediction on a horizon
of future steps, allowing for a better global optimality of the results.
Overall, our optimal predictive method uses a model that explicitly
takes into account the dynamic variation of mobility data. It allows
optimizing on a future horizon of several points, handling mobility
behavior that has an inertia of more than one sampling period. Let us
take an example: if the user has high speed (e.g. in a train) and start to
slow down, it can be predicted that the user will stop in a future horizon
(but not necessarily in the next timestep). In such case, the optimal
mechanism allows anticipation and thus improves the performance of
the protection mechanism. It is, to our knowledge, the first approach in
the literature that exploits this dynamic aspect, allowing to address the
challenges of practicality and personalization in location privacy (Jiang
et al., 2021). Note that we do not aim at protecting a user against an
attack consisting of predicting the user’s next locations, as in, e.g., Qiu
et al. (2023), Zhan et al. (2023), but rather use the mobility prediction
to improve the obfuscation.

The structure of the paper is the following. Section 2 gives a back-
ground on mobility data and protection mechanisms, formally defines
the optimal privacy problem, and presents the MPC-based control
solution. Section 3 describes the three alternative predictors used to
obtain the future position of a user. Section 4 gives the experimental
setup, and Section 5 presents the results of applying the MPC method in
both Privamov and Cabspotting datasets. Finally, Section 6 concludes
the paper.

2. Background

The problem under study consists of transmitting obfuscated posi-
tions to safeguard the privacy of a user of a location-based service while
preserving the usefulness of the transmitted positions.1 In this context,

1 In this paper, we consider the representation of positions as a
bidimensional vector in the plane.
2 
Fig. 1. Application of Geo-I to the mobility trace of a taxi user in San Francisco
(Cabspotting dataset Piorkowski et al., 2022). Actual position (in blue) v.s. obfuscated
ones with Geo-I (orange) for two different values of 𝜀. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

the term ‘‘privacy’’ is defined as the difficulty with which a user’s POIs
can be detected. Conversely, the term ‘‘utility’’ is defined based on the
hypothesis that if an application knows the user’s actual location, its
performance is optimal. Consequently, the greater the discrepancy be-
tween the actual and transmitted positions, the poorer the performance.
The following subsection will define both terms mathematically. We
note here that the notation (⋅, ⋅) denotes the concatenation of two (or
more) vectors, e.g. (𝑧, 𝑤) = [𝑧⊤ 𝑤⊤]⊤ for vectors 𝑧 and 𝑤.

To be precise, obfuscation in this context means to modify the
real position by means of a protection mechanism. Consequently, the
obfuscated position is transmitted to the mobile application instead of
the actual one. In the state-of-the-art on this subject, we can identify
Geo-I (Andrés et al., 2013) as one of the most widely used. The Geo-I
obfuscation mechanism adds a spatial noise to the transmitted user’s
position in order to protect the real position. Given the actual position
𝑙 = (𝑥, 𝑦) ∈ R2, the transmitted position 𝑙 = (�̄�, �̄�) ∈ R2 for a
location-based service after applying Geo-I is obtained as follows:

𝑙 = 𝑙 −
𝑊−1(

𝛼−1
𝑒 ) + 1
𝜀

(

cos 𝜃
sin 𝜃

)

(1)

where 𝑊−1 is the −1 branch of the Lambert 𝑊 function, 𝑒 is Euler’s
number, 𝛼 and 𝜃 are drawn uniformly in [0, 1) and [0, 2𝜋) respectively.
The parameter 𝜀 > 0 allows one to manage the intensity of the
disturbance injected by the Geo-I mechanism.

Fig. 1 shows the mobility data of a user (in blue) and two instances
of the Geo-I mechanism (in orange). The image on the left uses a larger
𝜀 value than the one used in the image on the right, producing a
mobility trace closer to the actual one: its utility is greater. As shown
in Fig. 1, in this kind of mechanisms, it is possible to generate an
obfuscated position close to the actual one, maintaining a good level
of utility but not a good level of privacy (stopping points, i.e. POIs,
are fairly identifiable in the image on the left). On the contrary, it is
possible to generate a highly obfuscated trace preserving good levels
of privacy, but affecting the utility of the application because the
transmitted positions are far from the actual one, as shown in the
image on the right. Playing with the 𝜀 parameter allows leveraging both
the privacy and utility of the transmitted data. This trade-off between
utility and privacy in Geo-I was the focus of the method proposed
in Cerf et al. (2023). Going further, an optimal predictive formulation
for computing the obfuscated position is presented in Molina et al.
(2023a). The present paper is built on this formulation and control
method.

To assess an individual’s privacy level, the history of their move-
ments is typically utilized. For instance, a location is designated as a
Point of Interest (POI) if an individual spends at least 15 min at the
same location (see for example Cerf et al., 2023; Primault et al., 2019).
During this 15-minute period, the transmission times are not uniformly
distributed, and thus the number of transmitted points varies depending
on the selected time window. This variability can affect the privacy
measures and the implementation of protection mechanisms, as the
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transmission instants are not regular. It is particularly challenging for
PC techniques, which are typically employed to manage dynamical

ystems that have been uniformly discretized in time. Furthermore,
o predict future positions, fixing the time at which the position will

be predicted makes the prediction easier to manage. Therefore, for
the sake of simplicity, a uniform resampling is used. This entails the
utilization of synthetic temporal points, at which a user may or may
not transmit a position, with the duration between consecutive points
remaining constant.

The next section introduces the necessary tools and recalls the main
step in the formulation of the optimal predictive approach proposed
n Molina et al. (2023a); before, novel prediction techniques that
vercome the limitations of those presented in Molina et al. (2023a,

2023b), are presented in Section 3.

2.1. Optimal predictive obfuscation

Consider a time interval [0, 𝜏] uniformly discretized in 𝑀 points
{𝑡𝑘}𝑁𝑘=1, and 𝛥𝑡 ∶= 𝑡𝑘+1 − 𝑡𝑘 the time between two consecutive instants.
We denote by 𝑙(𝑘) = (𝑥(𝑘), 𝑦(𝑘)) ∈ R2 the actual user’s position and by
𝑙(𝑘) = (�̄�(𝑘), �̄�(𝑘)) ∈ R2 the transmitted one at time 𝑡𝑘. At that time,
the privacy is a function of the positions transmitted during the last 𝜏
units of time, specifically within the time window [𝑡𝑘−𝜏 , 𝑡𝑘]. We denote
by 𝑁(𝑘), with 0 ≤ 𝑁(𝑘) ≤ 𝑀 , the total transmitted positions in that
period and {𝑙(𝑘−𝑁(𝑘) +1),… , 𝑙(𝑘)} the respective transmitted positions.
The privacy measure corresponds to the following function 𝑝 proposed
in Cerf et al. (2023) and refined in Molina et al. (2023a):

𝑝(𝑘) = 1
𝑁(𝑘)

𝑁(𝑘)
∑

𝑖=1
‖𝑙(𝑘 −𝑁(𝑘) + 𝑖) − 𝑐(𝑘)‖2 (2)

where 𝑐(𝑘) is the centroid of {𝑙(𝑘 −𝑁 + 1),… , 𝑙(𝑘)} defined by:

𝑐(𝑘) = 1
𝑁(𝑘)

𝑁(𝑘)
∑

𝑖=1
𝑙(𝑘 −𝑁(𝑘) + 𝑖).

This function takes a low value (close to 0) when the user does not
ove significantly during 𝑁 time steps. Conversely, for a highly mobile
ser, it takes a high value. Thus, the user’s POIs, i.e., the points where
he user spends significant time, will exhibit a low privacy value and
ill then highlight the most important moments to protect.

We measure the utility loss of a transmitted position in terms of
its distance from the actual position. This follows the idea that the
positions transmitted to a location-based service that are closer to the
real one should produce more accurate information and/or recommen-
dations than those that are farther away, and therefore they have a
lower loss of utility. The utility loss function is expressed as:

𝑞(𝑘) = ‖𝑙(𝑘) − 𝑙(𝑘)‖2. (3)

At time 𝑡𝑘, the problem consists in obfuscating a position, maxi-
izing the privacy and minimizing the utility loss. This bi-objective
ptimization problem can be reformulated as:

𝑙∗(𝑘) = ar g max
𝑙(𝑘)∈R2

𝑝(𝑘) (4)

s.t. ‖𝑙(𝑘) − 𝑙(𝑘)‖2
2 ≤ 𝑞(𝑘)2,

where 𝑞(𝑘) is a parameter representing an upper bound on the utility
loss. Alternatively, a second formulation is also possible:

𝑙∗(𝑘) = ar g min
𝑙(𝑘)∈R2

‖𝑙(𝑘) − 𝑙(𝑘)‖2
2 (5)

s.t. 𝑝(𝑘) ≥ 𝑝(𝑘),

𝑝(𝑘) being a parameter corresponding to a lower bound of the privacy.
Both reformulations are non-convex optimization problems represent-
ng distinct approaches to address the bi-objective problem. In these
 i

3 
optimization problems, the bounds 𝑞(𝑘) and 𝑝(𝑘) are parameters that
ust be specified by the user based on the performance requirements.

2.2. Model predictive control approach

In this section we recall an approach, based on MPC theory, to
determine online the fictitious noise to be added to the current posi-
tion before its transmission to conceal the conflicting aims of privacy
preservation and utility loss reduction. In Molina et al. (2023a), the
roblem (4) was exploited to propose a method that maximizes the
urrent privacy using not only current and past positions, but also a

prediction in the future steps of a user. This MPC-based method uses a
transition system that stores the information about the previous 𝑁 time
steps at each time 𝑡𝑘. In addition, since a transmission might or might
not have occurred at any time, a binary variable 𝑛(𝑘) is introduced into
the transition system. This variable is defined as:

𝑛(𝑘) =
{

1 if the position was transmitted at time 𝑡𝑘
0 otherwise.

Thus, the state of the system is 𝐳(𝑘) = (𝐱(𝑘), 𝐲(𝑘),𝐧(𝑘)) ∈ R𝑁 × R𝑁 ×
0,1}𝑁 . Note that we use bold notation to refer to vectors. Vectors
and 𝐲 act as buffers, storing the last 𝑁 location states, and 𝐧 the

ast 𝑁 transmission occurrences. These buffers, in fact, contain the
equired past information that defines the privacy value and then can
e considered as the state of a system that updates at every instant.

The transition system for the state 𝐳 is then defined as:

𝐳(𝑘 + 1) =  ⋅ 𝐳(𝑘) +  ⋅ 𝑢(𝑘), (6)

where

 =
⎛

⎜

⎜

⎝

𝐴 0 0
0 𝐴 0
0 0 𝐴

⎞

⎟

⎟

⎠

,  =
⎛

⎜

⎜

⎝

𝑏 0 0
0 𝑏 0
0 0 𝑏

⎞

⎟

⎟

⎠

,

with 𝑢(𝑘) = (𝑥(𝑘 + 1), 𝑦(𝑘 + 1), 𝑛(𝑘 + 1)) and

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 … 0
0 0 1 … 0

⋮ ⋱ ⋮
0 0 0 … 1
0 0 0 … 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑁×𝑁 , 𝑏 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
⋮
0
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑁 ,

and, then, 𝐴 and 𝐵 are the matrices implementing a FIFO (first in first
out) access strategy to any of the three buffers. Note that as solution of
this system we obtain:

𝐱𝑖(𝑘) = 𝑥(𝑘 + 𝑖 −𝑁),

𝐲𝑖(𝑘) = 𝑦(𝑘 + 𝑖 −𝑁),

𝐧𝑖(𝑘) = 𝑛(𝑘 + 𝑖 −𝑁).

where 𝑖 is to the 𝑖th coordinate of the vectors 𝐱, 𝐲 and 𝐧.
Since we are considering that, in the last 𝑁 time-steps, the position

ould be transmitted or not, we have to adapt the definition of privacy
o only consider the transmitted positions in the measure. The privacy
unction written in terms of the state of the transition system is:

𝐩(𝐳(𝑘)) =
∑𝑁

𝑖=1((𝐱𝑖(𝑘) − 𝑥𝑐 (𝑧(𝑘)))2 + (𝐲𝑖(𝑘) − 𝑦𝑐 (𝑧(𝑘)))2) ⋅ 𝐧𝑖(𝑘)
∑𝑁

𝑖=1 𝐧𝑖(𝑘)
, (7)

with (𝑥𝑐 (𝑘), 𝑦𝑐 (𝑘)) the centroid calculated using

𝑥𝑐 (𝑧(𝑘)) =
∑𝑁

𝑖=1 𝐱𝑖(𝑘) ⋅ 𝐧𝑖(𝑘)
∑𝑁

𝑖=1 𝐧𝑖(𝑘)
, 𝑦𝑐 (𝑧(𝑘)) =

∑𝑁
𝑖=1 𝐲𝑖(𝑘) ⋅ 𝐧𝑖(𝑘)
∑𝑁

𝑖=1 𝐧𝑖(𝑘)
. (8)

The MPC method consists in solving, at each instant 𝑡𝑘 where a
position is transmitted (that is, when 𝑛(𝑘) = 1), the following non-
onvex optimization problem which uses the prediction of the position
n the 𝐻 future time-steps:
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max
(𝛿 𝑥𝑖 ,𝛿 𝑦𝑖)𝐻𝑖=1∈R

𝐻×R𝐻

𝐻
∑

𝑗=1
𝐩(�̃�(𝑘 + 𝑗))

s.t. �̃�(𝑘 + 𝑖) = �̃�(𝑘 + 𝑖 − 1) + �̄�(𝑘 + 𝑖 − 1), 𝑖 ∈ {1,… , 𝐻},

�̄�(𝑘 + 𝑖 − 1) =
⎛

⎜

⎜

⎝

𝑥(𝑘 + 𝑖) + 𝛿 𝑥𝑖
𝑦(𝑘 + 𝑖) + 𝛿 𝑦𝑖

𝑛(𝑘 + 𝑖)

⎞

⎟

⎟

⎠

, 𝑖 ∈ {1,… , 𝐻},

𝛿 𝑥2
𝑖 + 𝛿 𝑦2

𝑖 ≤ 𝑞2(𝑘 + 𝑖 − 1), 𝑖 ∈ {1,… , 𝐻},

�̃�(𝑘) = �̄�𝐻 (𝑘).

It consists in minimizing the average of the future privacy, re-
specting a maximal utility loss 𝑞(𝑘) at each time-step. The controls
(𝛿 𝑥𝑖, 𝛿 𝑦𝑖)𝐻𝑖=1 are the obfuscation signal to add to the real position (𝑥, 𝑦)
and therefore the second to last constraint imposes a bound 𝑞 on the
norm of this fictitious noise, defined as utility loss in (3), to be added
to the real position before transmission. The variables �̃� and �̄� are
introduced as auxiliaries of the optimization problem, related to 𝑧 and
𝑢 in (6) and finally �̄�𝐻 (𝑘) stores the transmitted position until time-
step 𝑘 − 1. The last constraint, indeed, is necessary to impose that the
predicted trajectory �̃� starts with the current state, namely the more
recent transmission data.

For more details, see Molina et al. (2023a). In the following, this
method will be referred to as 𝑀 𝑃 𝐶 −𝐻 .

3. Predictions of future positions

A key point of the method, which was not addressed in Molina et al.
(2023a), is the use of predicted positions: the better the prediction,
the better the algorithm behavior. For this purpose, we introduce in
this paper a linear predictor of future movements. We compare it to
two other predictors: future knowledge (Molina et al., 2023a) and
worst-case approach (Molina et al., 2023b). These three predictors are
described in the following subsections.

3.1. Exact future prediction

The first predictor corresponds to an oracle that provides the real
future position. While not realistic in practice, this is an important
case for comparison as it has no uncertainties regarding the future,
and making it the best scenario in terms of prediction. Despite the fact
that this case is not admissible in an online implementation since the
future positions are not known in advance, the results obtained using
this prediction in an offline implementation should represent an ideal
approach and provide an upper bound on the possible privacy gain
achievable by using the MPC method.

3.2. Pessimistic prediction

The second approach provides a prediction of the position that
minimizes the privacy function, using the information from the last
𝑁−1 time steps. That position is solution of the following optimization
problem:

min
𝑙𝑁∈R2

1
𝑁

𝑁
∑

𝑘=1

‖

‖

‖

‖

‖

‖

𝑙𝑘 −

∑𝑁
𝑗=1 𝑙𝑗
𝑁

‖

‖

‖

‖

‖

‖

2

which solution can be expressed in terms of the MPC variables, as
demonstrated in Proposition 1 in Molina et al. (2023b), by the follow-
ing formula:

𝑙𝑤𝑐 (𝑧(𝑘)) =

𝑁−1
∑

𝑖=1
(𝐱𝑖(𝑘), 𝐲𝑖(𝑘)) ⋅ 𝐧𝑖(𝑘)

𝑁−1
∑

𝐧𝑖(𝑘)

. (9)
𝑖=1

4 
Fig. 2. Academic example demonstrating the application of piece-wise linear approxi-
mation to mobility data.

The pessimistic predictor assumes that the user will move, in all
𝐻 future instants, towards the positions that minimize the privacy
function. Eq. (9) is then iteratively applied at each step. This prediction
should be beneficial in cases where the user’s privacy is significantly
low, although in the other cases, this approach may be very conserva-
tive because this worst-case prediction may often be inaccurate. The
use of (9) allows an online implementation of this scenario, with a
reasonable computation time for calculating the prediction.

3.3. Linear prediction

The third predictor is a linear method to estimate the future posi-
tions. In the literature, it is possible to find several works dedicated to
the characterization of human mobility, mainly using machine learning
techniques. One of the goals of this characterization is to estimate the
future movement of an individual. A comprehensive review of existing
methods is available in Toch et al. (2019).

In our mobile context, it is necessary to have a lightweight and
fast predictor that can be implemented in a smartphone or similar
device. For this reason, we decided to use a linear method instead of a
more powerful method based on, e.g., neural networks. The Fast Linear
Interpolation (FLI) algorithm presented in Raes et al. (2024) is therefore
used for this purpose.

This method is a piecewise linear approximation technique that was
originally developed to increase the storage capacity of mobility data
on mobile devices. Although its original purpose was not intended for
predicting the future spatial evolution of an individual, we can take
advantage of its linear structure to infer future positions.

Given a set of positions, the original algorithm generates, for each
coordinate, a sequence of linear affine functions 𝑓 𝑖

𝑥(𝑡) = 𝑆𝑥 ⋅ (𝑡− 𝑡𝑖) + 𝑥𝑖
and 𝑓 𝑗

𝑦 (𝑡) = 𝑆𝑦 ⋅ (𝑡 − 𝑡𝑗 ) + 𝑦𝑗 , where (𝑓 𝑖
𝑥, 𝑓 𝑗

𝑦 ) are the approximated
positions at time 𝑡, 𝑆𝑥 and 𝑆𝑦 the slope of the current 𝑥 and 𝑦 segments
respectively, 𝑥𝑖 and 𝑦𝑗 the horizontal and vertical position at times 𝑡𝑖
and 𝑡𝑗 respectively.

Fig. 2 shows an example of such linear interpolation, where the
position values are represented in blue while in orange are depicted the
linear functions obtained for each coordinate. There are two functions
for the 𝑥 coordinate and three for the 𝑦 coordinate.

The number of linear functions in each sequence is determined by
the algorithm. This number depends on a parameter noted 𝛾, which
determines when it is necessary to switch to another function. For
lower values of 𝛾 the algorithm may lead to an overfitting model, while
higher values may lead to an underfitting model. In our numerical
experiments, we set 𝛾 = 0.05.

Note that this predictor assumes a user moving in a piece-wise
straight line for short periods of time. The linear prediction assumes
that the user will continue moving in the same direction (e.g., we do
not predict any turns), with a speed that is dependent on its current
movement.
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Table 1
Statistics per user of Privamov database.
Indicators Elapsed

time (h)
Number of points Period (s) Period (s) using 95%

Raw Resampled Raw Resampled Raw Resampled

mean 2285.3 81 330 28 090 303.4 870.6 10 30.4
std 2578.8 174 185 60 295 526.5 1491.8 0.2 2.3
min 0.853 126 48 10.3 30.4 10 30
25% 299.1 5111 1791 47.7 136.7 10 30
50% 1221.5 19 639 6843 129.4 375.0 10 30
75% 3409.5 81 105 27 615 303.2 865.7 10 30
max 9818.5 1 123 719 388 575 3255.2 9060.2 11.8 51.8
Table 2
Statistics per user of Cabspotting database.
Indicators Elapsed

time (h)
Number of points Period (s) Period (s) using 95%

Raw Resampled Raw Resampled Raw Resampled

mean 530 20 932 19 835 125.8 133.5 54.9 56.6
std 101.2 6204 5789 614.6 1672.5 2.9 3.8
min 3.6 59 54 40.7 52.4 33 30
25% 556.4 18 721 17 836 79.6 84 53.7 55.2
50% 560 22 813 21 591 87.5 92 54.5 57.1
75% 561 25 037 23 748 101.1 106.5 55.6 57.5
max 575.4 49 367 38 339 14 380.9 15 627 92.3 94
s
t
m

p

u

h
o

Online linear prediction. The linear interpolation algorithm presented
so far is an offline modeling method, requiring the complete dataset
to give the linear models. Our setup differs in two aspects: (i) the
prediction is online, and only requires past data, (ii) the model is used
or prediction, that is future positions are drawn from the current linear

function. In detail, to estimate future positions, we apply the linear
prediction method to 𝐱(𝑘) and 𝐲(𝑘), that is the data from the past time
window, and use the last linear function in the sequence to do the
prediction. Although this prediction approach is relatively simple, it can
be remarkably effective for short prediction horizons. Moreover, this
method has already been implemented in iOS and Android, although
in the offline setting, showing that the implementation of this scenario
on a real mobile device is possible. It is very important to note here that
the goal is not to have the most accurate prediction, but to show that
the proposed algorithm performs better even with a slightly inaccurate
future prediction.

4. Evaluation setup

This section describes and characterizes the datasets utilized in the
numerical simulation, along with the metrics employed to assess the
performance of the methods. The datasets employed are presented
first, together with the compared obfuscation methods, which results
are detailed in the subsequent sections. To conclude this section, we
evaluate the performance of the two predictors.

Datasets. To evaluate the performance of the method, we use Priva-
mov (Mokhtar et al., 2017) and Cabspotting (Piorkowski et al., 2022),
that are two large datasets containing mobility traces of real users.
A mobility trace refers to a time series of one or more spatial points
(e.g., latitude and longitude tuples in our case) along with an identifier
(e.g., actual position transmitted or not in our case) and/or application-
specific information (Bhati & Eckhoff, 2019). Privamov contains the
mobility traces of 96 users living, working or studying around Lyon
city, France. The data were collected using a crowd-sensing application
installed on smartphones that the volunteers used as their primary
phone. The application collected data each time the system was used
e.g., change of location, new Wi-Fi scan, etc.). Cabspotting comprises

the mobility traces of 536 taxis collected over 30 days in the San
Francisco Bay Area. Each taxi was equipped with a GPS receiver
that sent location updates (timestamp, identifier, geo-coordinates) to
a central server. In the next two subsections and in Tables 1 and 2,
 u

5 
we provide more details on both datasets. In particular, we present
tatistical information that demonstrates the variability between the
wo datasets. This will help us to conclude on the robustness of the
ethod.

Sampling. Since the time between two consecutive transmission points
is not constant, i.e., the discretization of [0, 𝜏] is not uniform, we resam-
led the transmission traces using a uniform time discretization with a

time step of 30 s, i.e. 𝛥𝑡 = 30. As it is shown in the columns of Tables 1
and 2 relative to raw data, the two datasets have different transmission
periods. For Privamov this value is 10𝑠 and for Cabspotting it is around
55𝑠. Therefore, for the sake of consistent application of the method,
we have chosen 30𝑠, since it is an intermediate value for both sets
of data. The resampling was computed as follows: for a time 𝑡𝑘 in
the uniform discretization, we assign to (𝑥(𝑘), 𝑦(𝑘)) the mean of the
positions transmitted in [𝑡𝑘, 𝑡𝑘 +𝛥𝑡). If no position has been transmitted
in this period, we set 0 to 𝑛(𝑘), otherwise it takes the value 1. To ensure
reasonable runtimes for applying the method to every user, we limit the
analysis to the first 20000 seconds of each user in both datasets.

Competitors. We evaluate the performance of the MPC method in com-
parison with the unprotected case, that is, a user transmitting only the
actual positions, and also in comparison with Geo-I mechanism. We
arbitrarily set 𝜀 = 0.03 in Eq. (1), which generates a high disturbance
for Privamov’s users but a low disturbance for Cabspotting’s users. To
make a fair comparison, we first run Geo-I for each user, and then,
using the new positions generated by Geo-I, we compute their utility
loss using Eq. (3). Finally, we use this value as an upper bound for the
tility loss in the MPC method, i.e., we assign these values to 𝑞(𝑘). This

method insures fairness in comparing privacy values, as it allows for
the same utility loss.

Other parameters. In our simulations, we vary the horizon of the pre-
diction 𝐻 , from 1 to 7. This means that we use a prediction between 0.5
and 3.5 min. Since we already observe a tendency for each predictor
when 𝐻 = 7, and given the low predictability of mobility over large
orizons, higher values of 𝐻 are not studied. Note that 𝐻 = 1 means to
ptimize only the current time, then the results for this horizon will be

the same for the three predictors used. Regarding the buffer dimension,
we set 𝑁 = 30, so we calculate the privacy value based on the last
15 minutes. This value corresponds to that given in Cerf et al. (2023),
Primault et al. (2019) for the definition of a POI (the place where the
ser stays for at least 15 min).
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Fig. 3. Histogram of the number of positions sent and the average real privacy of
rivamov users. This information corresponds to the first 20,000 s of resampled data.

4.1. Privamov dataset

We present statistical information that highlights the differences
between Privamov users and Cabspotting users. This diversity allows
us to demonstrate the robustness of the method applied to two datasets
with different user characteristics. The total number of transmitted
positions in this database is 7807730. Looking at the information per
user, the average number of transmitted positions is 81330, with a high
dispersion as shown in Table 1. In fact, the user with the lowest number
f transmissions shared 126 data points, and the user with the highest
umber of transmissions shared 1123719 points, which is 4 orders of
agnitude larger.

The elapsed time between the first and the last transmitted position
s also a parameter with a high dispersion. The average per user is 2285
ours, but the user with the smaller recording time did so only for about
 minutes, while the user with the highest time recording positions was
514.4 h, which is approximately 396 days.

Regarding the transmission period, we calculate the time differ-
ence between two consecutive transmissions for each user at each
ransmission point. The average obtained per user is 303𝑠, i.e., each
ser transmits its position every 303 s on average. However, if we take

for each user the lower 95th percentile of the differences between two
consecutive points, the average drops to 10.02 s. This is explained
y the fact that the transmission period when a user has activated

the application is 10 s, but when the application is turned off, it can
ake a long time to turn it on again, affecting the overall average.
he summary of the above statistical information, along with other

measures of dispersion, is shown in Table 1 columns labeled Raw.
After resampling, the total number of transmitted points was re-

uced to 2696695, which is 65.5% less. The values in the Raw columns
re updated and displayed in the Resample columns of the Table 1.

In the interval [0,20000] over which we apply the method, there
re a total of 27414 transmitted positions, which corresponds approxi-
ately to 228.5 h of continuous transmission, or 9.5 days. For the same
eriod of time, each user has a different number of transmitted points.
e removed 3 users that have less than 7 points after re-sampling as

the transmitted data is too few and scattered to apply the method.
n the end we have 93 users and the average number of positions
ransmitted per user is 289. The user who transmitted the smallest
umber of positions did so 8 times, and the user who transmitted the
ost did so 660 times. The variance of this data is large, as shown in

Fig. 3. Regarding the average privacy computed for each user, before
applying a protection mechanism, we observe in Fig. 3 that the majority
f the values are lower than 100, and half of the users have a privacy
ower than 35. This can be explained as Privamov users have a higher
iversity of transportation means with low speed as walking or biking.
herefore, in 15 min, they cover less territory than a Cabspotting user
ho is only moving by car.

The statistical information reveals that each user is fairly repre-
sented in the dataset. Additionally, it is possible to note that Privamov
users have low real privacy, and therefore, we expect a significant gain
in privacy by applying the 𝑀 𝑃 𝐶 −𝐻 method.
6 
Fig. 4. Histogram of the number of positions sent and the average real privacy of
abspotting users. This information corresponds to the first 20,000 s of resampled

data.

4.2. Cabspotting dataset

We now present a statistical description of the Cabspotting dataset,
highlighting two important differences between Cabspotting and Pri-
vamov users: the average period between two transmissions and the
nherent privacy levels.

Cabspotting dataset (Piorkowski et al., 2022) contains 536 users and
11219955 transmitted positions. Although this dataset has 5 times more
sers than Privamov, it just contains 1.5 times more mobility data.
he average of transmitted positions per user is 20932, which is lower
han with Privamov. The dispersion of these data is also lower than
n Privamov. The average period of transmission is 55𝑠. The statistical
escription of the dataset is shown in Table 2 Resampled columns.

After the resampling, the statistical indicators do not change much,
as shown in the Resampled columns of Table 2. This could be explained
y the fact that the average transmission time (54.9 s using 95%)

is greater than the period imposed by the resampling (30 s). The
transmitted positions are reduced to 10631783, which is only 5.25%
less than before resampling.

We take the positions of each user in the first 20000s (the same
windows of time taken for Privamov’s users). In this period we apply
the method to 123340 positions, which corresponds to 1027.8 h or 42.8
days of uninterrupted transmission. The distribution of the number of
transmitted positions per user is shown in Fig. 4. The histogram of the
average privacy per user reveals high privacy values for the majority of
users. On average, the privacy values are 50 times higher than those of
Privamov users. This is consistent with the fact that Cabspotting users
are always moving by car, and therefore at a higher speed.

Similar to the Privamov dataset, all users are fairly represented
when applying the method. An important difference is the privacy level.
For Cabspotting’s users, privacy is already high, and then we do not
xpect a significant gain in privacy as for Privamov’s users. Moreover,
fter comparing the transmission periods, it was found that Privamov’s
sers have an average period of 10 s, while Cabspotting’s users have

an average period of 55 s. For this reason, we applied a 30-second
resampling to standardize the method.

4.3. Metrics

We now describe the metrics used to evaluate and compare the
different protection strategies in the two datasets.

We denote by 𝑝𝐻𝑣 (𝑘) the privacy of a user 𝑣 at time-step 𝑡𝑘 after
applying the MPC method with a time horizon 𝐻 using one of the
three predictors. Analogously, we denote the privacy in the unprotected
case and after applying Geo-I by 𝑝𝑣(𝑘) and 𝑝𝐺𝑣 (𝑘), respectively. We then
introduce two metrics, that measure the percentage gain at time 𝑡𝑘 of
the MPC method over the unprotected case and Geo-I. These correspond
to:

𝑔 𝑎𝑖𝑛𝑣(𝑘, 𝐻) = 𝑝𝐻𝑣 (𝑘) − 𝑝𝑣(𝑘)
𝑝𝑣(𝑘)

, 𝑔 𝑎𝑖𝑛𝐺𝑣 (𝑘, 𝐻) = 𝑝𝐻𝑣 (𝑘) − 𝑝𝐺𝑣 (𝑘)
𝑝𝐺𝑣 (𝑘)

.
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Fig. 5. Distance errors in future locations using Pessimistic and FLI predictors on the
Privamov dataset.

We remark that in some instances, 𝑝𝑣(𝑘) could be 0 if a user did
not move for 𝑁 consecutive time-steps. In that case 𝑔 𝑎𝑖𝑛𝑣(𝑘, 𝐻) would
be infinite, then, for statistical purposes we only use the times 𝑘 when
𝑝𝑣(𝑘) > 0.

To evaluate the total performance of the method for each user, we
use:

𝑔 𝑎𝑖𝑛𝑣(𝐻) = mean{𝑔 𝑎𝑖𝑛𝑣(𝑘, 𝐻) ∶ 𝑘 ∈ {1,… , 𝑀}, 𝑛(𝑘) = 1}, (10)

𝑔 𝑎𝑖𝑛𝐺𝑣 (𝐻) = mean{𝑔 𝑎𝑖𝑛𝐺𝑣 (𝑘, 𝐻) ∶ 𝑘 ∈ {1,… , 𝑀}, 𝑛(𝑘) = 1}, (11)

that is, the average of the gains obtained at each time that a position
is transmitted. With these expressions, we identify the variability of
the results depending on the user. To evaluate a general performance,
independent of the user, we use:

𝑔 𝑎𝑖𝑛(𝐻) = mean{𝑔 𝑎𝑖𝑛𝑣(𝑘, 𝐻) ∶
𝑣 a user, 𝑘 ∈ {1,… , 𝑀}, 𝑛(𝑘) = 1}, (12)

𝑔 𝑎𝑖𝑛𝐺(𝐻) = mean{𝑔 𝑎𝑖𝑛𝐺𝑣 (𝑘, 𝐻) ∶
𝑣 a user, 𝑘 ∈ {1,… , 𝑀}, 𝑛(𝑘) = 1}. (13)

These expressions can be interpreted as the privacy gains that an arbi-
trary user should expect, in average, when using the method 𝑀 𝑃 𝐶 −
𝐻 .

In Section 5, we employ the previous metrics and show the obtained
results.

4.4. Validation of predictors

Fig. 5 illustrates the performance of the two predictors on the
Privamov dataset. This figure depicts the errors (in meters) obtained
after applying each predictor to cases 𝐻 = 2 and 𝐻 = 7. Both
predictors perform well for short time horizons, but the linear predictor
(FLI) becomes less accurate as the time horizon increases. However,
the prediction errors are almost all below 200 m, which is acceptable
for many mobile applications. Note that the prediction accuracy is not
the main objective of our approach: privacy protection is thoroughly
evaluated in Section 5.

The performance of the predictors on the users of Cabspotting
dataset is presented in Fig. 6. The figure shows errors that are reason-
able for a good performance of many mobile applications. It is noted
that the errors are larger than those observed in the Privamov dataset.
However, this is to be expected given that Cabspotting users are always
moving in a car and cover longer distances, and the sampling frequency
of data is lower, which leads to larger errors. While these results
allow for a better analysis of our MPC-based protection mechanism,
prediction performance is not our main objective.
5. Experimental results

This section presents the results obtained by applying the MPC
method with three different predictors and on two datasets. Section 5.1
illustrates the effect on a single user. Section 5.2 shows the average
7 
Fig. 6. Distance errors in future locations using Pessimistic and FLI predictors on the
Cabspotting dataset.

Fig. 7. Mobility trace for user 7 of Privamov.

privacy gains independently of the user. Section 5.3 presents the re-
sults obtained per user. Section 5.4 presents the gain distribution for
horizon 𝐻 = 3, followed by the runtime results in Section 5.5. Experi-
ments and analysis presented are reproducible using our openly avail-
able Python code https://github.com/ox217/Validation_MPC_optimal_
location_privacy.

5.1. Example over a single user

To demonstrate the efficiency of the method on an arbitrary user,
we present the outcomes of 𝑀 𝑃 𝐶 − 5, employing the predictor that
provides precise future information, on user 7 in the Privamov dataset.
In this specific instance, a comparison is also made with the PI-PC (Pro-
portional Integral with Pre-Compensation) controller proposed by Cerf
et al. (2021), for which the code is available for comparison purposes.
The objective of this obfuscation mechanism is to maintain the privacy
function around a target value, fixed at 75 for the present user. It is
worth noting that the comparison with this approach cannot be fair
and is thus only indicative, as the PI-PC has no constraint on its utility
budget. In the following sections, we will only make a comparison
with Geo-I. It should be noted that Geo-I serves as a benchmark of
comparison for most works in the mobility privacy field, consequently,
it represents an appropriate point of comparison for our work. Fig. 7
shows the real position for this user and the results after applying Geo-I,
PI-PC and the MPC method. It is possible to see the effect of obfuscation
by noting how the transmitted locations spread out in space.

Fig. 8 shows the temporal evolution of the privacy value for these
positions, with Geo-I and 𝑀 𝑃 𝐶 − 5 both using the same utility loss.
We can see that, for this user, the privacy value obtained using the
MPC method is almost always higher than the real and Geo-I methods.
However, with regard to PI-PC, there are instances where the MPC

https://github.com/ox217/Validation_MPC_optimal_location_privacy
https://github.com/ox217/Validation_MPC_optimal_location_privacy
https://github.com/ox217/Validation_MPC_optimal_location_privacy
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Fig. 8. The first image shows privacy for user 7. The bottom plot shows the utility
loss from Geo-I, which is also used in the MPC method.

method exhibits considerably higher values, while in other instances,
the values are markedly lower. A comparison of the utility loss reveals
that the utility loss for Geo-I and PI-PC is similar, except in a few cases
where the PI-PC controller has a very high peak.

In this example, the average privacy value in the unprotected case is
10.13 while with Geo-I it is 63.48. The metrics (10) and (11) computed
for this user are 𝑔 𝑎𝑖𝑛7(5) = 8.52 and 𝑔 𝑎𝑖𝑛𝐺7 (5) = 0.12 respectively. This
means that using 𝑀 𝑃 𝐶 − 5, the average privacy gain over the real
positions is 852% and 12% over Geo-I.

Fig. 9 illustrates the privacy of a second user (1 of Privamov) using
the exact predictor. A noteworthy phenomenon occurs between 5400
and 5600 s. It can be observed that the Geo-I method is capable of
surpassing MPC 𝐻 = 7. This can be interpreted as an anticipatory
period during which the MPC method sacrifices some instances with
lower privacy in order to subsequently achieve a superior level of
privacy. Note that the anticipation can reach longer horizons than
those set in the MPC algorithm (𝐻 = 7) due to the recomputation
of the optimization at each timestep in the MPC. The effects of this
phenomenon are evident between 5600 s and 6200 s, where the MPC
also outperforms Geo-I. During this period, the user velocity decreases
(seen here through a reduction of the real privacy metric, e.g. measure
of dispersion of the positions). This example illustrates the advantage
of MPC and its dynamic approach to privacy management, anticipating
future positions. This advantage is statistically validated in the fol-
lowing sections, which show that MPC exhibits superior performance
compared to Geo-I on average but not on all data points, and performs
better as the horizon increases (with the real predictor). Note that,
however, the privacy with the MPC is always higher than that of
unprotected data (real points).

The results of these two users are a proof of concept that our
MPC-based solution allows to gain privacy compared to state-of-the-
art solutions, with the same utility preservation. In the following, we
will consolidate these results with extensive experimentation on two
full datasets, and study the impact of the choice of the predictor.

5.2. Average privacy gain

Starting from this section, we present the results obtained with
the three different predictors on both datasets when we apply the
8 
Fig. 9. Privacy for user 1 between 5200 s and 6200 s.

Fig. 10. Comparison using three predictors on Privamov (top line) and Cabspotting
(bottom line) datasets. Left plots show 𝑔 𝑎𝑖𝑛(𝐻) (average privacy gain against real data
using all users, see Eq. (12)) and right plots present 𝑔 𝑎𝑖𝑛𝐺(𝐻) (average privacy gain
Geo-I data using all users, see Eq. (13)).

MPC method to every user of both datasets over the first 20,000 s of
each user. In this section, we present the values obtained using the
metrics 𝑔 𝑎𝑖𝑛(𝐻) and 𝑔 𝑎𝑖𝑛𝐺(𝐻), which summarize the performance over
all users and instances executed per user. The results are shown in
Fig. 10. This figure summarizes the performance of the method for each
predictor and dataset with respect to the horizon 𝐻 used. It is worth
noting that the gain over real data is in a different order of magnitude
than the gain over Geo-I. This is expected because the unprotected
case has a larger margin for improvement than Geo-I, which is also
a protection mechanism. When comparing the datasets, it was found
that the gains obtained using Privamov users were approximately 2.5
times larger than those using Cabspotting users. This is not surprising
because, as shown in Section 4.2, the privacy of Cabspotting users in
the unprotected case is much greater than that of Privamov users.

In terms of the protection mechanism, the predictor that accurately
predicts the future performs the best in both datasets. Its performance
improves as 𝐻 increases, and the difference between this predictor and
the other two becomes bigger. While this is not a realistic solution, it
demonstrates that the more we know about the future, the greater is the
benefit of using the MPC method. In Fig. 10, it can be observed that the
linear predictor performance is better than the pessimistic predictor for
𝐻 from 1 to 4, except in one case, and worse for 𝐻 from 5 to 7. This
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Fig. 11. Histograms of privacy gain per Privamov user using three predictors.
Fig. 12. Histograms of privacy gain per Cabspotting user using three predictors.
s

𝐻

can be explained by the fact that the linear predictor is more accurate
for lower values of 𝐻 , and becomes less accurate as 𝐻 increases. This
highlights the fact that improvement of the predictor performance is
a promising research direction to further improve privacy gains. In
contrast, the pessimistic predictor remains relatively constant regard-
ess of 𝐻 . Despite these differences, both predictors have similar gain
alues. Additionally, for short prediction horizons, their performance is
omparable to that of the exact predictor.

To conclude this section, we note from Fig. 10 that the horizons 𝐻 =
3 or 𝐻 = 4 would be the best to choose in an online implementation.
The exact predictor demonstrates that, in the ideal case, performance
increases with 𝐻 . However, for 𝐻 ≥ 4, the linear predictor starts to
9 
perform worse and the pessimistic predictor has the same performance,
ometimes even better, but requires more computational resources.

These indicators demonstrate the effectiveness of our method, con-
sistently yielding positive results. The following section provides fur-
ther details on the gains achieved for each individual user.

5.3. Results analysis by user

In this section, we present statistical results per user. For this
purpose, we use the metrics 𝑔 𝑎𝑖𝑛𝑣(𝐻) and 𝑔 𝑎𝑖𝑛𝐺𝑣 (𝐻) with 𝐻 = 1 and

= 7. Figs. 11 and 12 displays the frequencies of the values of
these metrics among the users of each dataset. Each figure represents a
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different dataset. The first row of each figure shows the gain over the
unprotected data, and the second row shows the gain over Geo-I. Each
column corresponds to a different predictor used: exact, pessimistic
and linear respectively. Each histogram was fitted with a lognormal
istribution, represented by a solid line in each image.

Both figures confirm the significant privacy gain of the 𝑀 𝑃 𝐶 − 𝐻
method compared to the unprotected case, particularly for Privamov
users. The privacy gains for Cabspotting users are more concentrated in
lower values. The reason for this has already been discussed in previous
sections. Compared to the competitor Geo-I, the gain is not as high, but
t is always positive regardless of the predictor and horizon used. This
vidence indicates that, on average, the 𝑀 𝑃 𝐶−𝐻 method outperforms
he Geo-I method for each user.

Regarding the predictor used, the gain difference over unprotected
ata is unclear. In fact, Fig. 10 shows that the relative difference among

predictors for this case is not as significant as for the Geo-I case. When
examining the gain over Geo-I distributions, the effect becomes clearer,
which supports the conclusions of Section 5.2. In fact, in both datasets,
the exact predictor performs best when 𝐻 = 7. This conclusion is based
on the fact that the respective histograms are skewed to the right. This
onfirms the effect of the prediction horizon on the gain, as it shifts

to the right when transitioning from 𝐻 = 1 to 𝐻 = 7. The pessimistic
and linear predictors exhibit similar performance, with only a slight
difference. When passing from 𝐻 = 1 to 𝐻 = 7, the effect is almost
imperceptible when using the pessimistic predictor, but for the linear
one, the gain is more concentrated to the left. This is confirmed when
examining the lognormal curves. In Figs. 11 and 12 images (b) and
e) show almost identical histograms and lognormal curves for the two
alues for 𝐻 . However, in images (c) and (f), the lognormal curve of
= 7 has a higher peak than the curve for 𝐻 = 1.

5.4. Results analysis along time

In this section, we present the results that have the highest level of
granularity. For every user 𝑣 and instant 𝑘, we compute the values of
𝑔 𝑎𝑖𝑛𝑣(𝑘, 𝐻) and 𝑔 𝑎𝑖𝑛𝐺𝑣 (𝑘, 𝐻). Fig. 13 presents the distribution of these
values, independent of the users. As mentioned above, the optimal
choice for online implementation would be to set 𝐻 to either 3 or 4.
Therefore, we will only present the results for 𝐻 = 3.

When comparing the gain over unprotected data and Geo-I in
Fig. 13, differences in magnitude can be observed. The main differ-
ence is that the gain over unprotected data is almost always positive
Fig. 13(a) and (c)), but for the gain over Geo-I, there are non-negligible
nstances where the gain is negative (Fig. 13(b) and (d)). There is a
ossible explanation to this effect: a negative gain value over unpro-
ected data is due to a non-convergence of the optimization solver.
his assertion is supported by the fact that the deobfuscation option

s always feasible and that it always yields a gain of 0, while the
egative gain values observed over Geo-I can be attributed to the
ature of the underlying algorithm. Given that our algorithm relies
n future predictions, it may sacrifice some instances that achieve a
odest degree of privacy improvement in favor of significantly higher

mprovements in the future. It is also important to note that knowing
nly three steps may provide short-term privacy benefits, but as the
orizon of prediction is not so large, it may result in the generation
f a trace that is not optimal for the minimization of privacy in the
edium term. This is because using a large horizon allows producing
 trace that better predicts future scenarios with low privacy.

For a horizon 𝐻 = 3, there is no significant difference between
the predictors. When comparing the results in both datasets, it is
again verified that the privacy improvements are more important for
Privamov users than for Cabspotting users.
10 
Fig. 13. Comparison using three predictors and horizon 𝐻 = 3. The two plot at the
top correspond to Privamov users, and the two at the bottom to Cabspotting users.

5.5. Comparison of execution times

To conclude the results section, we present a box plot in Fig. 14
comparing the statistics of runtime taken by the method when applied
t a singular time 𝑡𝑘. We compare the execution times between the

different predictors. For Privamov, they take similar execution times
(Fig. 14(a), (b) and (c)), while for Cabspotting, the method using the
exact predictor (Fig. 14(d)) takes notably less time than the others
(Fig. 14(e) and (f)). Slowest cases for Privamov dataset are around 1
s and for Cabspotting around 1.5 s. From the same figure, it is possible
o note that in general, the average runtime for Privamov is lower
han that for Cabspotting. Finally, it is possible to conclude that the
xecution time is increasing with the horizon 𝐻 , which is expected

from the fact that when increasing 𝐻 , the optimization problem solver
increases the number of variables and constraints. Overall, since the
execution times are significantly lower than the time between two
transmission positions (30 s), so they are reasonable for our setup.

6. Conclusion

In this paper, the problem of obfuscating a mobility position, max-
mizing privacy and minimizing the utility loss, has been considered.
his work presents an extension of Molina et al. (2023a), wherein

the method was tested on a single user, assuming the implausible
case that the future positions were known. This paper presents an
extensive evaluation of its performance on two datasets, Privamov
and Cabspotting, which contain mobility data traces from real users
of mobile devices. Both datasets define two types of users. While
Privamov contains mobile users employing various means of transport,
Cabspotting contains only users moving by car. This difference affects
both the speed and spatial distortion of data, and therefore their privacy
risk and their need for protection vary. Additionally, this paper also
employs three predictors to forecast the users’ movements. The first
predictor provides the precise future location and, although it cannot
be implemented online, it serves as an upper bound on the amount of
privacy that can be gained. The second predictor assumes that the user
is moving towards positions that minimize privacy, while the third one
uses a linear method to estimate future positions. Both the second and
the third approaches could be implemented in a realistic scenario.
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Fig. 14. The figure displays box plots that present statistical information on the runtime of the method applied at singular times 𝑡𝑘. Each line represents a dataset and each
column represents a predictor.
Evaluation results, conducted using the metrics proposed in section
4.3, demonstrate that the MPC-based method enhances the privacy by
at least 580% on average, in comparison to the unprotected position
and by between 12% and 17% in relation to the competitor Geo-I, for
users of the Privamov dataset. For users of the Cabspotting dataset,
he average privacy gain is at least 221% over the actual privacy
nd between 4% and 6% over using Geo-I. The significant difference
etween the results of both datasets can be attributed to the fact

that Cabspotting users tend to have higher speeds, resulting in higher
privacy levels; thus, the protection mechanism generally has lower
effects.

Regarding the three predictors used, it is clear, in both datasets,
hat using exact knowledge of the future, the MPC performance in-
reases as more information about the future is employed. However,
he other two predictors also show promising results. In fact, for a
hort prediction horizon, their performance is close to that of the exact

predictor. Assuming pessimistic future movements results in an average
rivacy value that is almost constant with respect to the prediction
orizon. Using a linear predictor for future positions shows that a
rade-off is to be found on the horizon to be considered. Indeed, while
PC performance benefits from a longer horizon, the precision of the

rediction decreases for points farther in the future as expected. The
earch for a more accurate predictor with low execution time and
omplexity is planned for future work. Additional future work could
xplore adapting the method to preserve additional user characteristics
hat enhance privacy, such as movement velocity and acceleration.
mplementation of the approach on a real smartphone application
hould be additionally considered.
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