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Abstract11

To model the dynamics of neuron membrane excitability many models can be considered, from the12

most biophysically detailed to the highest level of phenomenological description. Recent works at the13

single neuron level have shown the importance of taking into account the evolution of slow variables such14

as ionic concentration. A reduction of such a model to models of the integrate-and-fire family is interesting15

to then go to large network models. In this paper, we introduce a way to consider the impairment of16

ionic regulation by adding a third, slow, variable to the adaptive Exponential integrate-and-fire model17

(AdEx). We then implement and simulate a network including this model. We find that this network was18

able to generate normal and epileptic discharges. This model should be useful for the design of network19

simulations of normal and pathological states.20

1 Introduction21

In the study of seizure dynamics at the single neuron level, experiments have shown the importance of ionic22

regulation. Indeed, elevation of external ionic potassium concentration leads to seizure-like behaviors of the23

cells. Biophysical models have shown underlying mechanisms responsible for such activities [Depannemaecker24

et al., 2022b,Bazhenov et al., 2004].25

Detailed biophysical network models have been developed to study seizure mechanisms [Rodrigues et al.,26

2015,Tejada et al., 2014,Santhakumar et al., 2005]. However, these models are complex with many parameters27

and variables, making their dynamics difficult to analyze. While seizures are typically seen as network events,28

similar dynamics can also be observed at the single-cell level in biophysical models [Bikson et al., 2003,Bragin29

et al., 1997, Chizhov et al., 2018, Cressman et al., 2009]. Phenomenological models, characterized by their30

minimal number of parameters and variables, enable comprehensive dynamical analyses and replicate many31

of the activities observed in experimental settings [Jirsa et al., 2014]. Some works integrate both approaches32

by reducing a detailed biophysical model to a lower-dimensional form, preserving the benefits of a generic33

model [Depannemaecker et al., 2022b].34

However, these models are based on the Hodgkin-Huxley formalism [Hodgkin and Huxley, 1952], where35

the action potential occurs thanks to the nonlinear dynamics of the gating variables. The stiffness of these36

gating variables requires to use of very small time steps in order to simulate them accurately. This limits the37

use of such models as building blocks of large networks for long simulations. To address this issue we propose38

to reduce some aspects of the dynamics captured by the biophysical detailed model by using a formalism39

based on an integrate-and-fire type model. The adaptive exponential integrate-and-fire (AdEx) [Brette and40

Gerstner, 2005,Naud et al., 2008] model extends the classical integrate-and-fire (IF) model by incorporating41
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two additional mechanisms: spike threshold adaptation through an exponential term and adaptation with42

an additional variable. In the AdEx model, the exponential term captures the subthreshold behavior of the43

neuron’s membrane potential. Specifically, the exponential term reflects the voltage-dependent conductance44

of the neuron’s membrane, which is a function of the difference between the neuron’s membrane potential and45

its threshold potential. The adaptation mechanism is modeled by an additional current term that reflects46

the neuron’s ability to adjust its firing threshold in response to the recent history of input. Specifically,47

this current term represents the activation of voltage-dependent potassium channels that contribute to the48

membrane’s afterhyperpolarization following a spike. The strength and time course of the adaptation current49

can be adjusted by the model’s parameters in order to reproduce a variety of observed neuronal responses.50

This adaptation variable enters as a current in the membrane voltage equation, which can create unrealistic51

values of individual membrane potential [Górski et al., 2021], but may not affect qualitatively the global52

dynamics at network levels [Depannemaecker et al., 2022a]. We thus introduce a third variable, which53

accounts for the effect of ionic impairment by modulating parameters that are conceptually associated with,54

or may be affected by ionic changes (e.g. reversal potential, spiking threshold).55

Such a model can then become the basis to build large networks [Depannemaecker et al., 2022a], and hence56

study not only seizure propagation but also the emergence of such pathological patterns at the network level.57

The article is organized as follows. In Section 2, we present both the single-neuron and the network model58

that we are going to analyze. Then, in Section 3, we show a correspondence with another model based on59

the Hodgkin-Huxley formalism and study different possible network configurations leading to the emergence60

of different patterns associated with epilepsy. We show how the severity of the local impairment or the size61

of the cell population concerned, leads to different patterns and propagation profiles. Finally, in Section 4,62

we summarise our findings and propose a few perspectives for future work.63

2 Methods64

We present here the single-neuron model. Subsequently, we explain how such a model is used for large65

network simulations.66

2.1 Single-neuron models67

The model builds on the AdEx [Brette and Gerstner, 2005,Naud et al., 2008], whose equations read:68

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
− w + Is

τw
dw

dt
= a(V − EL)− w

(1)

together with the following after-spike reset mechanism:69

if V ≥ VD then

V → VR

w → w + b

. (2)

Based on this formalism, we added a third variable z with a slow timescale (with associated time constant70

ε) compared to the two other variables V and w. This variable z will phenomenologically aggregate the71

different impairments that may affect the ionic concentration regulation and thus the excitability of the72

neuronal membrane. Thus, this variable z modulates parameters (EL, VT ), which enter into the other73

variables’ equations. The EL parameter relates to the hyperpolarizing mechanism while the parameter VT74

relates to the opening of sodium channels [Brette and Gerstner, 2005]. Hence, VT may not be affected in75

the same way as EL, and it is thus scaled by parameter β. Furthermore, a counteractive term −gpz models76

phenomenologically the effects of the aggregate of biophysical mechanisms that are “working against the77

impairment” (e.g., the Na/K-pump, co-transporters, exchangers, etc...). Parameter gp is the global equivalent78

2



conductance resulting from all these mechanisms. Finally, parameter Z0 corresponds to the potential to which79

the system will be attracted (depolarized) due to the pathological impairment. Therefore, the extended AdEx80

model that will study takes the form:81

C
dV

dt
= gL((EL + z)− V ) + gL∆T exp

(
V − (VT − 0.5z)

∆T

)
− w − gpz + Is

τw
dw

dt
= a(V − (EL + z))− w

dz

dt
= ε(Z0 − V − z)

(3)

with still the after-spike reset mechanism:82

if V ≥ VD then

V → VR

w → w + b

. (4)

2.2 Network model83

The network we will be studying is made up of inhibitory fast-spiking cells (FS) and excitatory regular84

spiking cells (RS). It contains 10,000 cells, 80% of which are excitatory and 20% inhibitory, connected through85

a random and sparse (Erdős-Rényi type) architecture with a probability of 5%. A conductance-based model86

of synapses enables connections between cells, it typically takes the form of equation (5) below:87

Isyn = gE(EE − V ) + gI(EI − V ), (5)

where EE = 0 mV and EI = −80 mV are the reversal potential of excitatory synapses and of inhibitory88

synapses, respectively. Parameters gE and gI are the excitatory and inhibitory conductances, respectively.89

They are governed by equation (6), and they are increased by a quantity QE = 1.5 nS and QI = 5 nS for each90

excitatory and inhibitory incoming spike, respectively. The timescale of synaptic conductance is determined91

by τsyn = 5 ms.92

dgE/I

dt
= −

gE/I

τsyn
(6)

Parameter Value Parameter Value
Cm 200 pF gL 10 nS
Ee 0 mV a 1 nS

trefractory 5 ms b 60 pA
EL −65 mV VT −55 mV
Ei −80 mV Is 0 pA

Vreset −65 mV τw 0.5 s
ε 5·10−4 s-1 ∆T 2 ms
Z0 −40 mV τsyn 5 ms
gp 10 nS VD −40 mV

Table 1: Parameters values used (unless specified otherwise).

3 Results93

Next, we present our findings in two distinct parts. First, we explore the behavior of our single-neuron94

model (3) in detail. This part will provide insights into how individual neurons function and react under95

various conditions, with a particular focus on the role of ionic regulation. In the second part, we delve into the96

dynamics of a large-scale neural network composed of 10,000 individual neurons. This investigation will help97

us understand how the characteristics of the extended AdEx model (3), discussed in the first part, influence98

the collective behavior and patterns that emerge within the network. This second part gives some insights99

into complex pathological phenomena such as seizure propagation.100
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3.1 Single neuron model101

The single-neuron model exhibits different patterns of spontaneous pathological activities upon an increase102

of the value of Z0, consistent with what is observed in biophysical descriptions [Depannemaecker et al.,103

2022b]. However, the integrate-and-fire type model proposed here captures the after-spike repolarization104

via a reset mechanism. Thus, this after-threshold reset does not allow for the existence of a fixed point105

for values corresponding to depolarized membrane potential. Therefore, it is impossible to capture events106

with depolarization blocks. In this model, spontaneous activity appears for values of Z0 > 48 mV, and an107

increase of frequency is observed at the onset of a sustained tonic spiking pattern. While increasing Z0 to108

values higher than 40 mV, the model exhibits a pathological bursting pattern that can be associated with109

seizures. Finally, for Z0 > 20 mV the model dynamics corresponds to sustained ictal activity associated with110

status epilepticus and consisting of a constant high-frequency spiking pattern. After intense spiking activity,111

the current w reaches very high values leading to a strong negative input in the variable V that may take112

non-realistic values. This problem has been solved previously [Górski et al., 2021]; however, it may not affect113

the global network dynamics, specifically in the case of seizures as shown in a previous work [Depannemaecker114

et al., 2022a].115

Figure 1: Spontaneous spiking patterns: (a) tonic spiking for Z0 = −45 mV, (b) pathological bursting
pattern for Z0 = −40 mV (c) Sustain ictal activity for Z0 = −20 mV. The three simulations start from the
same initial conditions, from which the (V,w) subsystem evolves to the specific pattern, driven by the effect
of the slow variable z.

In order to understand the different dynamics observed in system (3), we considered z as being the slowest116

variable, enabling the loss of stability that leads to spiking activity. We then consider z as a parameter—117

which amounts to taking the limit ε = 0 in system (3) and obtaining its so-called fast subsystem— and we118

investigate the bifurcation structure of the resulting 2D system (with reset). The Jacobian matrix (7) of the119

fast subsystem is given by:120

J =

 gL
C

(
−1 + exp

(
V−(VT−0.5z)

∆T

))
− 1

C

a
τw

− 1
τw

 (7)

Hence, the trace of J takes the form:121

tr(J) =
gL
C

(
−1 + exp

(
V − (VT − 0.5z)

∆T

))
− 1

τw
(8)

and its determinant reads:122

det(J) =
1

Cτw

(
−gL

(
−1 + exp

(
V − (VT − 0.5z)

∆T

))
+ a

)
(9)

Thus, based on the trace and determinant, we can study the loss of stability in the V − w subsystem123

considering z as a parameter. In the figure 2 (a), we show the evolution of the two fixed points of the sub-124

system V −w (similar to the classical AdEx [Naud et al., 2008,Brette and Gerstner, 2005]). With the evolution125
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Figure 2: Bifurcations and trajectories: (a) Poincaré diagram of the fixed point of the V −w subsystem,
the evolution of the slow variable z is considered as a parameter, the system loose stability crossing an
Andronov-Hopf bifurcation (b) Pathological bursting pattern simulation plotted in the variable spaces, the
trajectory does not exist in a single plane, the interaction between the three variables leads to this pattern.
(c) Phase-space representation of another bursting pattern Γ (in blue), together with the Nullsurface of v
(S0, in green, folded along the grey curve F), its intersection with the Nullsurface of w (S 0, in black), and
the reset plane R. The associated parameter values are: Z0 = −51.2, C = 100, gL = 10, EL = −65, α = 1,
β = 0.5, a = 1, b = 0.06, VD = −40, VR = −54, Is = 0, VT = −55, ∆T = 2, τW = 200, gp = 1, and
ε = 0.001.

of z, the spiking activity appears through a loss of stability by crossing an Andronov-Hopf bifurcation. The126

two fixed points then rapidly collapse and disappear, leading to the repeated spiking pattern. In the case of127

the pathological bursting pattern, the oscillation emerges from the interaction between the three variables128

V , w, and z (see figure 2 (b)). We thus separate two mechanisms leading to healthy or pathological bursts.129

Indeed, we should mention that the AdEx model is capable of generating bursting activity, as shown in detail130

in previous work by Naud et al. [Naud et al., 2008]. The original AdEx model requires an external input to131

spike (or specific parametrization that would lead to permanent steady-state spiking activity). In the model132

presented here, the spiking patterns appear through the interaction with the slow variable z.133

To understand the role of the slow variables we can plot the NullSurface into the phase space, and, project134

one trajectory of a simulation where the system exhibits bursting activity (see Fig. 2 (c)). We thus visualise135

the structure enabling the emergence of the bursting pattern.136

The loop for bursting emerges with a concomitant effect of w and z, as shown by the trajectory in Fig. 2137

(c), that exists in a surface in the diagonal on the w − z plan. The loss of stability at the onset of the burst138

occurs through a saddle-node bifurcation at the folding of the v-nullsurface (S0, in green in Fig. 2 (c)). The139

offset of the burst occurs through a (nonsmooth) homoclinic bursting, where the reset surface (grey) and the140

v Nullsurface (green) meet. The intersection of the v- and the w-nullsurfaces forms a curve S0 traced on S0,141

which the bursting dynamics would follow if z was the only slow process in the model. However, Fig. 2 (c)142

shows that the bursting pattern rather follows the surface S0 and much less the curve S 0. This indicates143

that w should also be considered as a slow process. Further analysis would be required to follow up on such144

considerations, which are an interesting topic for future work. For more elements about slow-fast bursting145

dynamics in IF models, we refer the reader to [Desroches et al., 2021,Desroches et al., 2024].146
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3.2 Network model147

In this section, we detail how the severity of local impairment or the size of the affected cell population148

influences the emergence of distinctive patterns and propagation profiles in the context of epilepsy. To149

implement this analysis we performed a large parameter exploration, with a focus on the parameter Z0, which150

determines the level of local impairment, and the parameter NSC which defines the number of impaired cells151

within the system. The results of the analysis are presented in Fig. 3 I. In panels a) to c) we show the152

maximum firing rates obtained during an 8-second simulation of the network as a function of Z0 and NSC .153

In panels d) to f) we show examples of the different dynamics obtained from the network. We see from this154

figure that the system’s behavior can be generally divided into three regions. In the first region (high Z0155

and low NSC) the activity of the system remains in an asynchronous irregular (AI) regime with the impaired156

cells firing at a higher rate compared to healthy excitatory neurons but remaining within physiologically157

functional values. In the second region (intermediate values of Z0 and NSC), the firing rates of impaired cells158

exhibit already pathological dynamics with an oscillatory activity of large amplitude (up to 150Hz). In this159

second regime, the activity of the inhibitory cells follows the abnormal activity of the impaired cells, with160

the emergence of high-amplitude oscillations. This response of the inhibitory cells is enough to prevent the161

propagation of the pathological activity towards the healthy excitatory cells, which remain within normal162

values of firing rates with only moderate alteration in their dynamics. Finally, in the third region (low Z0 and163

high NSC), the pathological activity also propagates to the healthy excitatory population. For the example164

shown in panel f) of the figure we see that in the third regime, the entire system exhibits an alternation of165

periods of normal dynamics and periods of global increases in the firing rates. We notice that the pattern166

of activity observed in the third regime depends on the specific values of Z0 and NSC and that the network167

model exhibits a large repertoire of possible patterns and dynamics. For completeness, we show in Fig. 3 II168

three different patterns obtained from different combinations of parameters.169
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Figure 3: I- Propagation of pathological activity in a network model. a)-c) Maximum firing rates of
the impaired cells (a), inhibitory cells (b), and excitatory cells (c) as a function of Z0 and NSC (defining the
severity of local impairment and number of impaired cells respectively. d)-f) Examples of different neuronal
dynamics illustrate the effect of an increasing number of impaired cells NSC leading to qualitative changes in
the propagation of the pathological activity. For each case, the corresponding raster plot and average firing
rate of each cell population is shown (impaired cells in blue, inhibitory cells in red, and excitatory cells in
green). The plots correspond to the parameters Z0 = −50mV and NSC = 500, 100, and 4000 respectively (the
corresponding parameters are indicated with green rectangles in panels a,b,c).II- Examples of different
activity patterns for the propagation of pathological activity. The network model exhibits a large
repertoire of patterns of activity dependent of specific system parameters. We show in the figure the average
dynamics obtained for three different sets of parameters: Z0 = −10mV , NSC = 4000 (a); Z0 = −10mV ,
NSC = 7500 (b) and Z0 = −40mV , NSC = 7500 (c). The color code is the same as in I.

These network dynamics can be related to experimental observation [Wenzel et al., 2019]. Indeed, the170

propagation of seizure-like activities from one population of impaired cells to the rest of the network, follows171

a dynamics which resembles previous experimental observation. In Figure 3 we observe a threshold effect,172

where the propagation to healthy population is comparable to the phenomenon observable shown in Fig. 6173

of the work of Wenzel et al. [Wenzel et al., 2019].174

4 Discussion175

Finally, this article has explored the dynamics of single neurons with an additional variable to account for176

ionic regulation impairment leading to pathological behavior. Experiments have highlighted the critical role177

of ionic regulation at the single neuron level, particularly in inducing seizure-like behaviors through elevated178

external ionic potassium concentrations. Biophysical models, although informative, have their limitations179

due to the Hodgkin-Huxley formalism, which necessitates small time steps and restricts their applicability in180

large network simulations [Cressman et al., 2009,Depannemaecker et al., 2022b]. To address this challenge, we181

have proposed an approach that simplifies certain aspects of the biophysical model using the adaptive expo-182

nential integrate-and-fire (AdEx) formalism, which includes subthreshold behavior modeling and adaptation183

mechanisms. This approach enables to capture different patterns emerging spontaneously from ionic changes.184

We show how the model captures these dynamics and their impact on neuronal responses. Furthermore, our185

exploration extends to the study of network configurations and their associations with epilepsy patterns,186

demonstrating how local impairment severity and cell population size influence patterns and propagation187

profiles.188

If it is a simple model for seizure generation, it has some limitations in terms of dynamical repertoire. In-189
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deed, a pattern associated with sustained depolarization (depolarization block, or permanent depolarization)190

can not be captured by this model due to the reset mechanism and thus the impossibility of the existence of a191

stable fixed point for high values (depolarized) of the membrane potential variable. In case of interest in these192

specific patterns, other models are more appropriate [Depannemaecker et al., 2023]. Such behaviors appear193

in mean-field approximation [Bandyopadhyay et al., 2021] of biophysically neuron models [Depannemaecker194

et al., 2022b].195

Our approach proposed here is interesting to model large network dynamics and to capture the overall196

emergent dynamics. This simple model is thus a good candidate for building a mean-field model [Carlu et al.,197

2020,Alexandersen et al., 2024, Stenroos et al., 2024] capturing epileptic focus dynamics and which can be198

integrated into large-scale models of pathological brain states.199
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