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Integrated rupture mechanics for slow slip
events and earthquakes

Huihui Weng 1,2 & Jean-Paul Ampuero 1

Slow slip events occur worldwide and could trigger devastating earthquakes,
yet it is still debated whether their moment-duration scaling is linear or cubic
and a fundamental model unifying slow and fast earthquakes is still lacking.
Here, we show that the rupture propagation of simulated slow and fast
earthquakes can be predicted by a newly-developed three-dimensional theory
of dynamic fracture mechanics accounting for finite rupture width, an essen-
tial ingredientmissing in previous theories. The complete spectrumof rupture
speeds is controlled by the ratio of fracture energy to energy release rate.
Shear stress heterogeneity can produce a cubic scaling on a single fault while
effective normal stress variability produces a linear scaling on a population of
faults, which reconciles the debated scaling relations. This model provides a
new framework to explain how slow slip might lead to earthquakes and opens
new avenues for seismic hazard assessment integrating seismological,
laboratory and theoretical developments.

Slow slip events (SSEs) have been observed in subductionmegathrusts
and crustal faults worldwide1–9 and may trigger large megathrust
earthquakes10–13, therefore understanding the physical mechanisms of
SSEs is of increasing importance. SSEs usually occur in an elongated
section of the deep plate interface and have rupture speeds much
slower than large megathrust earthquakes, whose ruptures are also
elongated (Fig. 1a). A compilation of rupture speeds of global SSEs14–16,
earthquakes17–21 and laboratory experiments22 illustrates that sponta-
neous ruptures span awide range of speeds, fromultra-slow speeds up
to the P-wave speed (Fig. 1b). Previous simulations show that SSE
ruptures can propagate steadily at a very slow speed if facilitated by a
frictional transition from rate-weakening at low slip rates to rate-
strengthening at high slip rates23–26 or by fault gouge dilatancy with an
associated change in fluid pressure27–30, both of which are observed
experimentally30–41. In addition, earthquake ruptures on long faults can
steadily propagate at supershear speeds (faster than S-wave speeds),
depending on the balance between fracture energy and energy release
rate42. Though laboratory experiments22,34,43,44 have suggested a con-
tinuum of rupture speeds, these experiments lack a finite rupture
width, an essential ingredient of large slow and fast ruptures onnatural
faults, and the general rupture mechanics controlled by such finite
rupture width is not completely understood. Empirical moment-

duration scaling relations14,45–52 have been used to compare the phy-
sical mechanisms of SSEs and earthquakes, yet it is still debated whe-
ther the scaling of SSEs is linear45,46 or cubic14,47,48 and a fundamental
model that integrates SSEs and earthquakes is still lacking.

Here, we show that the rupture propagation of SSEs and earth-
quakes on long faults, with elongated ruptures as widely observed
(e.g., refs. 14, 46, 53), can be predicted by the same theoretical equa-
tion ofmotion of the rupture tip and the debated scaling behaviours of
SSEs can be attributed to different types of fault heterogeneities.

Results
General mechanics for steady SSEs and earthquakes
Numerical and theoretical studies53,54 demonstrated that the energy
balance governing rupturepropagationon long faults with finite width
in a 3D elastic medium depends on the rupture width rather than on
the rupture length. In particular, Weng and Ampuero53 developed a 3D
theory of large ruptures that accounts for their finite rupture widthW.
Their theory yields a rupture tip equation of motion of the following
form (Methods):
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where Gc/G0 is the ratio between the fracture energy and the energy
release rate of steady-state ruptures, _vr is the rupture acceleration, the
time derivative of rupture speed vr, and F and M are known universal
functions. Here, the energy release rate of steady-state ruptures is
exactly equal to the static energy release rate and, in contrast with the
classical 2D fracturemechanics theory, it is independent of the rupture
length53: G0 =Δτ2W/(πμ), where Δτ is the static stress drop and μ is the
shearmodulus. These features ofG0 arisebecause thefinite faultwidth
W turns the rupture into a slip pulse with length smaller than W, and
are similar to those of a rupture in a 2D strip of thickness W
(refs. 55, 56). The finiteW, an essential ingredient for the study of large
earthquakes and SSEs, is missing in previous experimental and
theoretical studies of slow and fast ruptures43,44.

In general, both Gc and G0 can be functions of rupture speed vr
and depend on the friction behaviour of the fault57. In particular, under
certain rate-dependent friction laws, G0 depends on vr via the depen-
dence of static stress drop Δτ on slip rate, thus on vr. Especially for a
steady-state rupture, substituting _vr =0 into equation (1) yields the
energy balance condition: Gc(vr) =G0(vr). Weng and Ampuero53 pro-
posed that steady-state ruptures can propagate at any speed up to the
S-wave speed if the fracture energy increases with increasing rupture

speed. Further linear stability analysis (Methods) shows that the gen-
eral stability condition for steady-state ruptures can be written as

dðGc=G0Þ
dvr

>0: ð2Þ

Theopposite condition,d(Gc/G0)/dvr ≤0, predicts non-steady ruptures
that either accelerate (Gc/G0 < 1) or decelerate (Gc/G0 > 1). Generally,
equation (1) predicts that there are two types of ruptures on long faults
with finite width: steady and non-steady ruptures. The predicted
features of non-steady ruptures with speeds typical of regular
earthquakes (close to S-wave speed) have been numerically validated
in a previous study53, whereas the predicted steady-state ruptures of
both fast and slow speeds are validated by numerical simulations here.

Here, we further validate equation (1) for a continuum of steady
rupture speeds from arbitrarily-slow speeds up to the S-wave speed in
numerical simulations (Fig. S1a). This model considers a rate-and-state
friction law with rate-weakening behaviour at low slip rates and rate-
strengthening behaviour above a critical slip rate Vc (Methods), as
observed in laboratory experiments31–41. We find that the finite-width
fault, controlled by a rate-dependent friction, also turns the dynamic
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Fig. 1 | Slow and fast ruptures on a subduction zone and their rupture speeds.
a Sketch of subduction zone composed of tsunamigenic, seismogenic and SSE
zones with finite widths. Rupture propagation fronts of SSE (blue curves) and
earthquake (red curves) start at the hypocenters indicated by red stars. Topo-
graphy data is downloaded from the NOAA Data Catalog. b Symbols represent
estimates of rupture speed versus peak slip rate of observed SSEs14–16, laboratory
experiments22, tsunami earthquakes17–19 and regular earthquakes20,21 (error bar

indicates uncertainty when available; Methods). Dashed curves are theoretical
predictions (Methods). Δτp−r and μ are the peak-to-residual strength drop at the
rupture front and shear modulus, respectively. c Models for energy ratio Gc/G0

integrating multiple frictional mechanisms. Purple curve represents one example
of Gc/G0 for SSEs. Red dash and solid curves represent examples of Gc/G0 for
earthquakes. Grey arrows indicate the evolution of rupture speed controlled by
equation (1).
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rupture into a slip pulse (Fig. S6c, d), which is consistent with previous
quasi-dynamic simulations23. The critical slip rate is an important
quantity directly measured in laboratory experiments (Fig. 2d) and
such slip-rate-dependent frictionbehaviour has been suggested tobe a
universal mechanism for slow slip events31. Our numerical simulations
show that the steady rupture speed (vr/vs) can be controlled by two
nondimensional parameters (Fig. 2a) related to stress drop (Δτ/σ) and
critical slip rate (Vcμ/σvs). Here, the quantities are nondimensionalized
by the S-wave speed (vs), effective normal stress (σ) and shearmodulus
(μ)58. The steady rupture speed increasesmonotonicallywith the stress
drop and critical slip rate. Tuning these two nondimensional para-
meters produces rupture propagation at a continuum of steady rup-
ture speeds, including speeds of ultra-slow SSEs (≪ vs), tsunami
earthquakes17–19 ( ∼ 1

3 vs), and fast subshear earthquakes ( > 0.5vs). In all
the simulated steady models, Gc agrees with G0 within 3% (Fig. S2a),
which validates the steady-state version of equation (1). In addition, Gc

increases with vr (Fig. S2b) while G0 is independent of vr because, with
the friction law adopted here, the static stress drop is controlled by Vc

rather than by the peak slip rate (Methods & Fig. S2c).
The numerical simulations further show that the dependence of

steady rupture speed on stress drop is highly consistent for various
values of critical slip rate, except for the fast subshear ruptures

(Fig. S1b). The fast subshear ruptures deviate from the general trend of
the slow ruptures because of dynamic-wave effects. The effects of
dynamic waves on rupture propagation have been theoretically
investigated53 and characterised by a nondimensional Lorentz con-
traction factor, αs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðvr=vsÞ2

q
, a well-known function in earth-

quake dynamics59. In addition, fracture mechanics theory shows that
the analytical solutions of steady-state ruptures depend on (vr/vs)/αs
rather than vr/vs (Method). Therefore, the effects of dynamicwaves are
trivial when vr/vs <0.5 (that is vr/αsvs ≈ vr/vs), a speed range including
SSEs and tsunami earthquakes, and become significant as vr approa-
ches vs (that is vr/αsvs→∞). Accounting for the Lorentz factor, we find
all values of steady rupture speeds, after normalization by Vc, collapse
onto a universal curve (Fig. 2b), which is predicted by the 3D theory of
dynamic fracture mechanics of long ruptures (Methods). All values of
peak slip rate also collapse onto the theoretical curve (Fig. 2c). The
consistency of these parameters with the 3D theory shows that the
propagation of steady ruptures, for the complete spectrum of rupture
speeds from arbitrarily slow up to the S-wave speed, can be predicted
by the new 3D theory of dynamic fracture mechanics (equation (1)).
The validations of equation (1) for steady-state ruptures in this study
and for non-steady ruptures in a previous study53 prove that this
equation can be used to describe both SSEs and earthquakes in a same
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Fig. 2 | Steady rupture speeds predicted by theory. a Symbols represent steady
rupture speed as a function of stress drop from fully dynamic (stars) and quasi-
dynamic (diamonds) simulations, with colour coded by critical slip rate (legend in
b). vs and σ are the S-wave speed and effective normal stress, respectively. Each
symbol represents the result of one single-rupture simulation. b Comparison of
rupture speeds, divided by the Lorentz contraction factor αs, between numerical
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c Comparison of peak slip rates between numerical simulations and theoretical
prediction. d Symbols represent the observed critical slip rates Vcμ/σvs in labora-
tory experiments35–41 (error bar indicates uncertainty), where μ = 40GPa and vs =
3330m/s are assumed. Grey region marks the possible gap of Vcμ/σvs in natural
faults, whose bottomboundary is approximated based on the rupture speed of the
observed “fastest" SSEs, vr ~ 10 m/s.
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theoretical framework, provided the dependence of the energy ratio,
Gc/G0, on rupture speed, vr, is known. This fundamental theory can be
extended in the future to other models with additional complexities,
such as fluid effects and off-fault damage.

Integrated framework for both slow and fast ruptures
Gc/G0 is controlled by the specific frictional behaviour and the result-
ing stress states of the fault57. Because the slip rate and rupture speed
are positively correlated (Methods), rate-and-state friction law with
rate-strengthening at high slip rates, as observed in laboratory
experiments31–41, produces a V-shaped Gc/G0 as a function of vr that
decreases at low vr and increases at high vr (Fig. S2d). Other frictional
mechanisms, such as fault gouge dilatancy with an associated change
in fluid pressure27–30, also induce frictional strengthening at high slip
rates andmay produce a V-shaped Gc/G0. Moreover, fault friction may
dramatically decrease at higher seismic slip rates (e.g., > 0.1 m/s) due
to flash heating36–38,60 and thermal pressurization60,61. Flash heating,
dominant at small earthquake slips, is a rate-weakening mechanism
and thus is expected to produce a decreasing Gc/G0 as a function of vr.
At larger slips, previous studies suggested60–63 that the weakening
controlled by thermal pressurization or by off-fault inelasticity (bulk
plasticity or damage) may be slip-dependent, which remains to be
confirmed by future studies accounting for the finite rupture width.
Assuming these slip-dependent features, Gc/G0 is a function42 of the
final slip (D) independent of vr, Gc/G0∝Dn−2, where n = 2/3 for thermal
pressurization61 and n = 1 for off-fault inelastic dissipation63. Therefore,
considering that D is bounded by the interseismic slip deficit, given a
fault coupling map with sufficient resolution64, the larger the accu-
mulated slip deficit on the fault, the smaller Gc/G0 can be (as a worst-
case scenario). Combining the above mechanisms dominant at dif-
ferent slip rates and slips, we propose a conceptual model for Gc/G0

(Fig. 1c) that provides an explanation for the seismological
observations10–13 that show that SSEs may trigger large earthquakes in
their adjacent areas. Assuming a rupture starts in a low-coupling fault
segment where the rate-strengthening mechanism dominates (due to
insufficient slip deficit; purple curve in Fig. 1c), the rupture speed is
confined to a low and stable value and thus only forms an SSE. If this
steady SSE propagates into the adjacent fault segment where the
thermal weakening mechanism dominates (due to sufficient slip defi-
cit; red curves in Fig. 1c), it could transition to a non-steady earthquake
and accelerate toward the S-wave speed, which is consistent with 2D
cycle simulations with gouge dilatancy and thermal pressurization65.

Note that there may be two admissible steady speeds if the two com-
peting frictional mechanisms are comparable (dash red curve in
Fig. 1c); but we propose that the rupture is more likely to accelerate
toward the S-wave speed, which remains to be confirmed in numerical
simulations. While the Gc/G0 model presented here is qualitative, it
serves as an example of how SSEs and earthquakes can be investigated
within the same theoretical framework that combines fracture
mechanics theory, laboratory, and seismological observations.

Along-strike rupture segmentation
Additional results of simulations of non-steady ruptures due to fault
heterogeneities demonstrate that non-steady SSEs can also be descri-
bed by the same theoretical equation of motion. When a steady rup-
ture propagates into a segment of higher shear stress, the rupture
jumps from one steady state to another via a transient (Fig. 3a). The
rupture speed transients of quasi-dynamic SSEs are very similar to
those of dynamic ruptures with vr/vs <0.5, while the transition dis-
tances of fast ruptures (close to S-wave speed) are quantitatively
longer due to the dynamic-wave effects.On the other hand, if the shear
stress of the segment is lower than the minimum for steady ruptures,
the segment behaves as a barrier so the rupture decelerates and finally
arrests after penetrating a certain distance (Fig. 3b). In general, the
arresting distance increases with the peak slip rate attained before the
rupture reached the barrier, and the arresting distances of fast rup-
tures are longer due to the dynamic-wave effects.

The reason why fast ruptures have longer transition and arresting
distances than slow ruptures can be understood by the 3D theory of
dynamic fracture mechanics of long ruptures (equation (1)). The
apparent mass, M(vr/vs), in the equation of motion is nearly constant
when vr/vs <0.5 and increases to infinity as vr approaches vs (Methods).
This is similar to the relativistic mass in Einstein’s theory of relativity,
which contains the same Lorentz factor with the S-wave speed
replaced by the speed of light. Because of this “inertial" effect, a larger
apparent mass makes fast ruptures (vr→ vs) harder to stop within a
barrier or to transition to another steady state, which explains why
they require longer transition and arresting distances.

Geophysical observations8,14,66 show that SSEs usually rupture
separate segments of the fault, but some occasionally bridge multiple
segments and reach larger magnitudes, which conceptually resembles
the supercycle behaviour of large megathrust earthquakes occurring
in seismogenic zones67,68. This supercycle-like behaviour of SSEs canbe
explained by the time-dependent evolution of SSE segmentation. Both
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the numerical simulations and theory demonstrate that there is a cri-
tical stress drop for steady SSEs (Fig. 2b & Methods), which is Δτsteady/
σ ≈0.01 for the rate-and-state frictional parameters used in this paper.
On dip-slip faults, a critical final slip is approximately related to the
critical stress drop42 by Dsteady = 2WΔτsteady/πμ, where W is the SSE rup-
ture width. Fault segments need to accumulate sufficient slip deficit,
that isDsteady =0.02Wσ/πμ, to be capable of accommodating steady SSE
ruptures, otherwise they act as barriers to stop rupture propagation.
Therefore the recurrence interval of steady ruptures can be estimated
by the ratio ofDsteady to the slip deficit rate on the fault segments during
the inter-SSE period. The observed slip deficit rates on SSE fault seg-
ments in subduction zones globally are diverse, ranging from< 10% up
to > 50% of the plate convergence rate8,69–71, which can be explained by
different values of fault properties in cycle simulations72. As
rough lower bound estimates, values of σ ~ 0.1 − 10 MPa, W ~ 40 km,
μ ~ 40 GPa, and 100% coupling at a plate convergence rate of
10−9m/s yield Δτsteady ~ 0.001 − 0.1 MPa and recurrence times
of ~ 0.2 − 20 months, which are comparable to the typical stress
drops of 0.001 − 0.2 MPa14,46,73 and typical recurrence times of
months to years8,74 of SSEs globally.

The recurrence intervals of large megathrust earthquakes68 are
much longer than those of SSEs. Laboratory experiments62 and theo-
retical models60,61 of thermal weakening show that rock friction
exponentially decays from a peak to a residual value, resulting in an
upper bound estimate62 of fracture energy:Gc ≈A(μp − μr)σ

1−B, where μp
and μr are the peak and residual friction coefficients, respectively, and
the coefficients A and B can be experimentally determined. The energy
release rate on a long fault assuming a constant stress drop is
G0 =Δτ2W/πμ (Methods), therefore the critical stress drop for runaway
earthquake ruptures, derived from the condition Gc/G0 < 1, is Δτ2/
σ1−B ≈Aπ(μp − μr)μ/W. Given A ≈ 3 − 78, B ≈ 1.18, and μp − μr ≈0.7 in
laboratory experiments62, and W ~ 40 km and μ ~ 40 GPa, we have
Δτrun ≈ (2.6 ~ 13)σ−0.09, which is virtually insensitive to σ because the
associated exponent is close to zero. Note thatΔτrun is an upper bound
estimate. For σ > 20 MPa, Δτrun ≈ 2 − 10MPa is comparable to the
average stress drop of ~ 4MPa of global large earthquakes75. The stress
drop of large earthquakes is close to Δτrun if runaway occurs at the first
possible moment. Then the fault strength during the interseismic
period increases from the residual value σμr to σμr +Δτrun, resulting in
an average apparent fault strength of σμr +0.5Δτrun given a constant
stressing rate. Note that the apparent fault strength is derived
based on the assumption of the thermal weakening with exponential

slip-weakening as observed in laboratory experiments62 and the com-
plexity of fault roughness76 is not considered. The apparent fault
strength is much smaller than the static fault strength of earthquake
ruptures (σμp) when σ > 50MPa, that is μr +0.5Δτrun/σ≪ μp, which can
explain why some crustal faults are much weaker than the predicted
static fault strength77. As a rough lower bound estimate of the recur-
rence interval, 100% coupling at a plate convergence rate of 10−9 m/s
yields ~ 40 − 200 years, which is comparable to the recurrence times of
tens to hundreds years of large earthquakes68. Large earthquake
supercycles are challenging to study due to their long recurrence
times, but the formal connections between regular earthquakes and
SSEs revealed here indicate that investigations of the kinematics and
dynamics of frequent SSEs leading to a comprehensive SSE supercycle
model can advance our understanding of the supercycle behaviour of
large devastating earthquakes.

Observations of SSEs and earthquakes
The comparison of moment-duration scaling relations between SSEs
and earthquakes has been considered in discussions of their physical
mechanisms14,45–52. However, the moment-duration relation of SSEs
observed in a particular environment features a cubic scaling14 that is
radically different from the linear scaling observed in global compila-
tions from different fault environments45. Here, we show that the
debated scaling behaviours can be attributed to different types of fault
heterogeneities: heterogeneity of shear stress can produce a cubic
scaling, whereas heterogeneity of effective normal stress produces a
linear scaling. The relation between moment (M0) and duration (T) is
M0∝ΔτW2L for long ruptures78, where L = vrT is the rupture length and
Δτ and vr are the stress drop and rupture speed, respectively. Defining
Δτ∝ Lα and vr∝ Lβ leads to M0 / T

1 +α
1�β , where α and β are constant

coefficients. For a homogeneous model (Methods), ruptures with dif-
ferent values of uniform Δτ produce a linear moment-duration scaling
(Fig. 4a). However, if the shear stress distribution on the fault is het-
erogeneous, and in particular if it decays linearly away from the
nucleation area (Methods), the simulated models result in α =0.5 and
β = 0.5, which leads to a cubic scaling relation (Fig. 4a & S3) consistent
with the observations in theCascadia subductionzone (Fig. S3c&S3d).
Although this is one specific case of heterogeneity, it demonstrates
that a cubic scaling relation can be producedby heterogeneity of shear
stresswithin a particular fault, as also observed in anSSE cyclemodel52.

Moreover, such a cubic scaling curve, obtained under the
assumption of constant effective normal stress σ, is diagonally shifted
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and vsteadyr are the critical stress drop and rupture speed for steady SSEs,

respectively. b The arrow shows that the cubic scaling curve is diagonally shifted as
effective normal stress σ decreases, as predicted by the theory (Methods). A linear
envelope of moment-duration scaling (grey region) is shown assuming diverse
values of σ.
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if σ varies over a significant range, in a way that produces a linear
M0∝ T envelope (Fig. 4b). This is predicted by the theoretical relations
M0∝Δτ∝ σ and T∝ 1/vr∝ σ (Methods), which implyM0∝ Twhen only σ
is varied. Therefore, whenmixing data with diverse values of σ, a linear
envelope of the M0 − T scaling, different from that of regular earth-
quakes, can be obtained. This can explain the observed linear scaling
based on a global compilation of various slow earthquakes from dif-
ferent fault environments whose σ may span several orders of mag-
nitude, such as σ ~ 1 − 10 kPa on the deep San Andreas fault79 and σ > 1
MPa in the Izu-Bonin Trench16. The explanation based on the diverse
values of σ is also supported by the diverse values of stress drop of the
observed SSEs, which span at least 3 orders of magnitude (Fig. S3c).
None of the other parameters of the model produce a linear envelope
when varied, which would require M0 and T to have the same scaling
dependence on that parameter.

To explore the scaling relation of rupture speeds that can be
directly compared with fracture mechanics theory, we compiled and
calculated the rupture speeds and peak slip rates of global SSEs,
earthquakes and laboratory ruptures (Fig. 1b & Methods). In general,
the observed rupture speed increases with the observed peak slip rate,
enveloped by two theoretical predictions with peak-to-residual
strength drops of Δτp−r/μ = 10−6 and Δτp−r/μ = 10−4 at the rupture tip
(Fig. 1b). Assuming the stress drops of SSEs are approximately the
minimum value of steady ruptures, as suggested by cycle
simulations23, the effective normal stress of the SSEs can be con-
strained by the theoretical relation, σ ≈Δτp−r/0.07 (Methods). Given
μ = 40 GPa, the constrained σ of the SSEs and lab experiments lies
between ~ 0.6 and 60 MPa. In addition, another theoretical relation,
Vc=σ≈v

steady
r =50μ (Methods), can constrain the critical slip rate:

Vc ~ 3 × 10−9 − 3 × 10−4 m/s, which is consistent with the reported values
10−9 − 10−2 m/s in laboratory experiments35–41. Note that the uncertainty
in constraining Vc alone is larger than that for the ratio Vc/σ, because
the former requires estimates of both rupture speed and peak slip rate
whereas the latter only requires estimates of rupture speed.

Although a continuum of rupture speeds has been reported in
laboratory experiments22,34, there exists an observation gap of rupture
speeds in natural faults between 10 − 1000m/s (Fig. 1b). The numerical
models show that a continuum of rupture speeds can be obtained by
tuning two nondimensional parameters, Δτ/σ and Vcμ/σvs (Fig. 2a).
Conversely, a gap of rupture speeds is expected ifΔτ/σ and Vcμ/σvs are
not sufficiently diverse. SSE cycle simulations23 showed that Δτ/σ of
SSEs is close to the minimum value of steady ruptures Δτsteady/σ, and
thus it is reasonable to assume that rupture speed is mainly controlled
by Vcμ/σvs, that is vr/vs ≈ 50Vcμ/σvs (Methods). Here, we propose two
explanations for the gap of rupture speeds in natural faults. The first
one is that the maximum Vcμ/σvs in natural faults is much smaller than
themaximumvalue reported in laboratory experiments on natural and
synthetic fault gouges (Fig. 2d). If Vcμ/σvs < 10−4 in natural faults then
Gc/G0 is expected to be an increasing function of vr for vr < 10m/s and a
decreasing function for vr > 10 m/s. The former produces steady SSEs
with vr < 10m/s (grey area inFig. 1c) and the latter producesnon-steady
earthquakes with an average rupture speed of vr > 1000m/s (pink area
in Fig. 1c). The second explanation is that values of Vcμ/σvs > 10−4 are
possible in natural faults (grey area overlaps with pink area in Fig. 1c),
but are very rare so that we have not yet observed events within the
intermediate speed range. This explanation can be justified by obser-
vations in laboratory experiments22 that show that events with rupture
speeds between 10 and 1000 m/s are rarer than slower ruptures.
However,morework is needed either to explain why Vcμ/σvs in natural
faults is not as diverse as observed in laboratory experiments or to fill
the observational gap of rupture speeds in natural faults, by capita-
lizing on advances in rock mechanics, geodesy and seismology.

Earthquake ruptures on long faults can steadily propagate at
speeds higher than 1

3 vs if Vcμ/σvs > 6 × 10−3, which provides a possible

new mechanism to explain the anomalously slow tsunami
earthquakes17–19,80. Given σ = 20 MPa, μ = 40 GPa and vs = 3330 m/s,
values of Vc are required to be larger than 10−2 m/s, which is the upper
bound of the observed values in laboratory experiments35–41. As the
frictional strength may change from rate-strengthening to rate-
weakening at slip rates higher than 0.1 m/s due to thermal weaken-
ing mechanisms that facilitate fast earthquakes36–38, the narrow range
of rate-strengthening behaviour between 10−2 and 0.1 m/s may explain
the scarcity of tsunami earthquakes. Alternative explanations for tsu-
nami earthquakes are low rigiditymaterials81 and inelastic deformation
around the fault82, and the density and size of asperities83, which
remain to be confirmed by further investigations.

Discussion
While rock frictional behaviour may be controlled by different
mechanisms, the rupture propagation of both slow and fast events on
long faults canbepredictedby the same3D theory of dynamic fracture
mechanics and the rupture speed is quantitatively controlled byGc/G0.
Integrating laboratory and theoretical developments of frictional
mechanisms in quantifying Gc/G0, this basic model would enable a
quantitative description of both the short-term slow ruptures and the
long-term supercycle behaviours associated with large earthquakes
within the same theoretical framework. This fundamental model
integrates slow and fast ruptures, reconciles the debated scaling
relations, and thus opens new avenues for assessing the future seismic
hazard through integration of observations and models of frequently
occurring SSEs and devastating earthquakes.

Methods
Estimates of rupture speed and peak slip rate
To explore a universal scaling relation in global SSEs, earthquakes and
laboratory experiments, we compiled datasets of events from the
literature14,16–19,22 and online databases15,20,21 and calculated their rup-
ture speed and peak slip rate. For SSEs and earthquakes, we estimated
rupture speeds as vr = L/T, with an uncertainty of a factor of 2 for
bilateral ruptures, where L and T are the rupture length and duration,
respectively. The peak slip rate is estimated byVp = γ�D=τrise, where �D is
the average slip, τrise is the rise time, and γ is an empirical ratio that links
the peak and average slip rates. For ruptures with aspect ratios ≥1, the
rise time is approximately estimated by τrise = TW/L, where W is the
rupture width. L, W, �D, and T of SSEs are constrained by geodetic
observations14–16. L, W, and �D of earthquakes are constrained by finite
fault rupture models17–20; T of three tsunami earthquakes is con-
strainedby finite fault rupturemodels17–19 andTofother earthquakes is
constrained by source time functions21. γ ≈ 20 is assumed for both SSEs
and earthquakes based on the results of numerical simulations
(Fig. S4). The uncertainty of γ affects the values of peak slip rate, but
not the values of rupture speeds. The rupture speed in laboratory
experiments22 is directly measured from strain gauge array data and
the peak slip rate is estimated based on the direct measurements of
dynamic stress drop and rupture speed.

General conditions for steady ruptures on long faults
For subshear mode III (dip-slip), rupture propagation on long faults
with finite width (W) in a 3D elastic medium can be predicted by a
theoretical rupture-tip equation of motion53

FðGc=G0Þ=MðvrÞ � _vr , ð3Þ

where

FðGc=G0Þ= 1� Gc=G0,

MðvrÞ=
W
v2s

γ
AαP

s
,

ð4Þ
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Gc and G0 are the fracture energy and steady-state energy release rate,
vr is the rupture speed, _vr is the rupture acceleration, vs is the S-wave
speed, αs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðvr=vs Þ2

p
is the Lorentz contraction factor, and γ, A, and P

are known coefficients53. In general, this equation of motion can be
expressed as

F
GcðvrÞ
G0ðvrÞ

� �
=MðvrÞ � _vr , ð5Þ

where G0(vr) and Gc(vr) are functions of vr that depend on the specific
friction law considered57.

For steady-state ruptures, _vr =0, thus thefirst condition for steady
ruptures is

Gcðvr Þ=G0ðvrÞ: ð6Þ

For the stability analysis, we define

f ð _vr , vrÞ �
1�MðvrÞ _vr
GcðvrÞ=G0ðvrÞ

, ð7Þ

where the function f can be written as a linear expansion near the
steady-state solution _vr =0

f ð _vr , vr Þ≈ f ð0, vrÞ+
∂f ð0, vrÞ

∂ _vr
d _vr +

∂f ð0, vr Þ
∂vr

dvr = 1: ð8Þ

If a positive perturbationof vr is applied to the steady-state rupture tip,
that is dvr >0, the rupture can be stable only when the response of _vr is
negative, that is d _vr <0. Therefore the stability condition for a steady
rupture is

∂f
∂ _vr

� ∂f
∂vr

>0: ð9Þ

Because ∂f =∂ _vr / �MðvrÞ<0, a steady-state rupture requires

∂f ð0, vrÞ
∂vr

<0: ð10Þ

Since Gc(vr) > 0 and G0(vr) > 0, we have

dðGc=G0Þ
dvr

>0: ð11Þ

Considering f(0, vr) = 1, equation (11) yields

dGcðvrÞ
dvr

>
dG0ðvrÞ
dvr

: ð12Þ

Some 2D analog laboratory experiments22,34,43,44 have suggested a
continuum of rupture speeds. However, to our knowledge, there are
no laboratory experiments yet on long ruptures with zero-slip condi-
tions beyond a finite widthW that could have addressed our problem.
The conditions for steady-state rupture in existing experiments,
without W effect, are radically different. In existing 2D analog experi-
ments, the energy release rate is a function of rupture speed, rupture
length and stress drop: G(vr, L,Δτ). Because this G does not depend on
dvr/dt (a property often described as “the crack tip has no inertia"),
without W effect the steady-state condition cannot be obtained by
setting dvr/dt =0 into the equation of motion. Moreover, Gc needs to
be proportional to rupture size L to compensate the linear growth ofG
with L in order to maintain a steady rupture speed vr. In addition,
because the dependency of G on vr is negligible when vr≪ vs, very fine
tuning of dGc/dL is required to obtain a variety of steady slow rupture

speeds. Therefore, in the absence of theW effect, steady ruptures can
occur only under restricted mathematical conditions. Those features
of previous theories and experiments are in striking contrast to the
results of our modelling accounting for the W effect.

Quasi-dynamic SSE rupture simulations
We consider a 3D dip-slip rupture problem on an infinitely long fault
with finite seismogenic width, W, embedded in a full-space, linear
elastic, homogeneous medium. This 3D elongated rupture problem
has been successfully approximated by a reduced dimensionality
(2.5D)model, which accounts for the elongated featureswhile having a
low computational cost23,53. To facilitate a comprehensive comparison
between numerical simulations and fracture mechanics theory, we
investigate the rupture propagation of SSEs and earthquakes using
2.5D single-rupture simulations with prescribed initial conditions. The
simulations of SSEs are quasi-dynamic, while the simulations of
earthquakes are fullydynamic. The shearmodulus andS-wave speedof
the medium are denoted μ and vs, respectively.

The frictional strength, τ, of faults is assumed to be controlled by a
rate-and-state friction law with rate-weakening behaviour at low slip
rates and rate-strengthening behaviour at high slip rates84, which has
been used to investigate the rupture propagation of SSEs23–25,85

τ = f *σ +aσ ln
V

V *

� �
+bσ ln

Vcθ
Dc

+ 1
� �

, ð13Þ

where σ is the effective normal stress, f * and V * are arbitrary reference
values, Dc is the characteristic slip distance, a and b are nondimen-
sional parameters, V is the slip rate, θ is the state variable, and Vc is a
critical slip rate. A fault exhibits rate-weakening frictional behaviour
when a − b <0, and the critical slip rate Vc controls the transition from
rate-weakening to rate-strengthening23 (Fig. S6a). The evolution of
state θ is described by the aging law86

_θ= 1� Vθ
Dc

, ð14Þ

where _θ is the time derivative of θ.
For each single-rupture model, one of the primary parameters

that affects the rupture propagation is the initial shear stress τi, which
is prescribed by the values of initial slip rate Vi and state θi

τi = f
*σ +aσ ln

Vi

V *

� �
+bσ ln

Vcθi

Dc
+ 1

� �
, ð15Þ

The nondimensional parameters, a/b andW/Lc, also affect the rupture
propagation23, where the size of the weakening process zone is

Lc =
μDc

bσ
: ð16Þ

In this study, we fix the nondimensional ratios of a/b = 0.8 and
W/Lc = 400, and systematically vary τi and Vc. The specific values of
the frictional parameters are prescribed as: σ = 20 MPa, b =0.015,
W = 40 km, Dc = 10−3 m, f * = 0.6 and V * = 10−9 m/s. The choice of these
values does not affect the conclusions of this paper, because both the
computational and analytical results are presented in nondimensional
form. The increase in fault stress due to plate convergence is small
during the short time of rupture propagation and thus we ignore it.

We smoothly nucleate unilateral ruptures by prescribing a
nucleation zone of length 0.5W with higher slip rates (≥ 10Vc), which
slowly loads its surrounding region. Outside the nucleation zone
rupture propagation is spontaneous. A stronger nucleation, such as
the overstressed nucleation condition, results in slight oscillations of
rupture speed in the fully dynamic rupturemodels, but does not affect
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the steady rupture speed (Fig. S5). We use the boundary element
softwareQDYN87 for the quasi-dynamic SSE simulation, where the fault
is infinitely long and the fault slip is horizontally periodic with a pre-
scribed length of 11W. To avoid the interaction of the periodic fault
segments, we set a buffer segment of length 5.5W with rate-
strengthening frictional behaviour (a > b). Sufficient numerical reso-
lution is guaranteed by setting a small grid size Δx = Lc/8. We set the
simulated time long enough to capture the whole rupture propaga-
tion. For each single-rupturemodel, we determine the rupture time on
each fault node by a slip rate threshold of 10Vi, and compute the
rupture speed as the inverse of the along-strike gradient of the
rupture time.

Fully dynamic earthquake rupture simulations
We conducted 2.5D fully-dynamic single-rupture simulations of
earthquakes with the spectral element software SEM2DPACK88. For a
quantitative comparison between SSE and earthquake simulations, the
same friction law and parameters are assumed in the dynamic earth-
quake rupture simulations, except for larger values of Vc and the
additional thermal weakening60,89 at slip rate > 0.1 m/s is not con-
sidered. Previous theoretical studies53 have suggested that thermal
weakening canaffect the rupture speedsby controlling thedissipated61

and potential89 energies on faults, which remains to be quantitatively
investigated in 2.5D in the future. For simulations with rupture speeds
close to the S-wave speed, we set a sufficiently large computational
domain to avoid effects of waves reflected from domain boundaries
within the simulated time. For simulations with slow rupture speeds,
the seismic radiation is relativelyweak and can bewell absorbed by the
default absorbing boundaries in SEM2DPACK, and therefore, the
simulated times are allowed to be several times longer than those for
fast rupture speeds. We set the time step based on the Courant-
Friedrichs-Lewy stability condition and the grid size is the same as in
the quasi-dynamic SSE simulations, Δx = Lc/8.

Energy balance of steady SSEs and earthquakes
For SSE and earthquake ruptures on long faults with finite width W,
the energy release rate and dissipated fracture energy can be
derived in the theoretical framework of 3D dynamic fracture
mechanics. The steady energy release rate G0 is the rate of
mechanical energy flow into the rupture tip per unit rupture
advance for steady ruptures. For dip-slip faulting, G0 depends on
the static stress drop (Δτ) and fault width:

G0 =
λΔτ2W

μ
, ð17Þ

where λ is a geometrical factor, with λ = 1/π for a deeply buried fault53.
The energy release rate is dissipated by fracture energy Gc, which
depends on the strength evolution on the fault90:

Gc =
Z D

0
½τðδÞ � τðDÞ� � dδ, ð18Þ

where τ(δ) is the fault strength as a function of fault slip, δ, andD is the
final slip. Equations (17) and (18) are the generic definitions of energies
of ruptures on long faults, regardless of the specific friction law. Below,
we propose an approach to estimateG0 andGcunder the framework of
he V-shape rate-and-state friction law.

G0 is a function of the static stress drop, the difference of shear
stress before and after the ruptures

Δτ = τi � τf , ð19Þ

where τi are τf are the initial shear stress and final shear stress,
respectively. Rupture simulations of V-shape rate-and-state friction23

show that the fault strength approximately drops to the minimum
steady-state strength within a distance from the rupture tip shorter
thanW (Fig. S6c, d) and stays there until the end of the rupture, which
is a feature different from the regular rate-and-state friction with aging
law91. The minimum steady-state strength23 is

τf = f
*σ +aσ ln

b� a
a

Vc

V *

� �
+bσ ln

a
b� a

+ 1
� �

: ð20Þ

Combining equations (15) and (19) with (20) yields the following close-
form expression of static stress drop:

Δτ =aσ ln
aV i

ðb� aÞVc
+bσ ln

Vcθi
Dc

+ 1
a

b�a + 1
: ð21Þ

Equation (21) predicts the numerical values of Δτ well in all the simu-
lated steadymodels (Fig. S2c). Substituting equation (21) into equation
(17) yields the theoretical energy release rate

G0 =
λb2σ2W

μ
� a

b
ln

aVi

ðb� aÞVc
+ ln

Vcθi
Dc

+ 1
a

b�a + 1

2
4

3
5
2

: ð22Þ

The main feature in equation (22) is that G0 only depends on the
prescribed parameters and is independent of the peak slip rate Vp. As
only τi and Vc are systematically varied in this study, G0 can be written
as G0(τi,Vc).

Gc is an integral function of the fault strength τ(δ) over the slip δ.
The numerical simulations show that fault strength governed by
V-shape rate-and-state friction has two weakening stages: the first
stage accounts for the fast weakening process and the second stage
accounts for the slow weakening process (Fig. S6b). This friction law
produces a persistent and non-linear slip weakening similar to that
caused by the lab-observed thermal weakening92, which obviously
differs from the nearly-linear slip weakening produced by the regular
rate-and-state friction with the aging law91. The resulting ruptures are
pulse-like and we find that the slip rate in the tail of the pulse decays
exponentially with distance (Fig. S6e, f), which is fundamentally dif-
ferent than the power law decay that signals unconventional singula-
rities in the 2D models by Brener and Bouchbinder93, even with a
similar friction law. In the first weakening stage, the strength drop, Δτp
−r, and the critical slip-weakening distance, dc, can be predicted well by
the theoretical equations23

Δτp�r = bσ ln
Vcθi

3Dc
+ 1

� �
� ln

3Vc

Vp
+ 1

 !" #
,

dc = Dc ln
Vcθi

3Dc
+ 1

� �
� ln

3Vc

Vp
+ 1

 !" #
,

ð23Þ

where Vp is the peak slip rate and the factor 3 is an approximation of
the non-uniform slip rate within the first weakening stage, which was
proposed to be 2 by Hawthorne and Rubin23. Thus, we estimate the
fracture energy caused by the first weakening stage as

Gc1 =
1
2
dcΔτp�r =

1
2
bσ Dc ln

Vcθi

3Dc
+ 1

� �
� ln

3Vc

Vp
+ 1

 !" #2
: ð24Þ

The contribution of fracture energy of the second weakening stage
also needs to be considered. Here, we account for this part of the total
fracture energy by

Gc2 =
1
2
ðdc +DÞðτr � τf Þ, ð25Þ
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whereD is the final slip, τf is the final fault strength after rupture arrest
and τr is the fault strength at the tail of the first weakening stage

τr = f
*σ +aσ ln

Vp

3V *

� �
+ bσ ln

3Vc

Vp
+ 1

 !
, ð26Þ

τr � τf =aσ ln
aVp

3ðb� aÞVc

� �
+ bσ ln

3Vc
Vp

+ 1
a

b�a + 1

0
@

1
A: ð27Þ

For ruptures on long faults with finite width W, the final slip, D, is
proportional to the static stress drop, Δτ, that is42

D =
2λW
μ

� Δτ: ð28Þ

Substituting equations (21), (28), (23), and (27) into equation (25) yields
the close-form expression of the second part of the fracture energy,
Gc2. The close-form expression of the total fracture energy is given by
Gc =Gc1 +Gc2. As Gc depends on τi, Vc, and the undetermined peak slip
rate Vp, it can be written as Gc(Vp, τi, Vc).

For steady ruptures, the energy release rate shall be balanced by
the dissipated fracture energy:

GcðVp,τi,VcÞ=G0ðτi,VcÞ: ð29Þ

Equation (29) shows that the peak slip rate, Vp, of steady ruptures can
be uniquely determined from the energy balance condition of V-shape
rate-and-state friction.Wefind that equation (29) predicts the relations
among Vp, Δτ, G0, and Gc well in all the simulated steady ruptures
(Fig. 2c & S2), which demonstrates that the twoweakening stages shall
be considered as a whole cohesive zone in calculating the fracture
energy. The steady rupture speed, vr, monotonically depends on Vp

(equation (34)), thus equation (29) can also be written as:

Gcðvr ; τi,VcÞ=G0ðτi,VcÞ: ð30Þ

Relation between peak slip rate and rupture speed
A linear relation between peak slip rate and rupture speed for steady
SSEs has been proposed by Hawthorne and Rubin23

Vp =
vr
C

� Δτp�r

μ
, ð31Þ

whereC ≈0.5 −0.55 is an empirical geometrical factor. But this relation
does not include the effects of dynamic waves when the rupture speed
approaches the S-wave speed. Alternatively, Gabriel et al.63 have
provided a theoretical relation between peak slip rate and rupture
speed for 2D strike-slip faulting earthquakes whose rupture speeds are
close to the S-wave speed. Here, we extend their 2D strike-slip relation
to a dip-slip relation for the 3D long rupture problem, which physically
incorporates equation (31), as explained below.

Weng and Ampuero53 demonstrated that if the cohesive zone size
on long faults ismuch smaller than fault width, Lc≪W, then the energy
release rate has the following form:

Gtip =
1
2μ

Aðvr ÞK2
tip, ð32Þ

where A(vr) = 1/αs, αs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðvr=vsÞ2

q
is the Lorentz contraction term

and Ktip is the stress intensity factor. By removing the strike-slip term
1 − ν and replacing A(vr) by 1/αs in equation (18) in Gabriel et al.63, we
obtain the dip-slip relation between peak slip rate and rupture speed,

similar to a classical 2D result94

Vp =
vr
αs

� 2Δτp�r

μ
, ð33Þ

where the correction of a factor of 2 is made to fit the numerical
results. If vr≪ vs, then the Lorentz term αs = 1, and equation (33) is the
same as equation (31) proposed for SSEs by Hawthorne and Rubin23.
Note thatΔτp−r is a function of Vp/Vc (equation (23)), and thus equation
(33) can be written as

Vp

Vc
=

vr=αsvs
Vcμ=vsσ

� 2Δτp�r

σ
, ð34Þ

Equation (34) describes the relation betweenpeak slip rate and rupture
speed. By combining equations (34) and (29), we obtain a relation
between stress drop and rupture speed for both SSEs and earth-
quakes (Fig. 2).

Critical stress drop and strength drop for steady ruptures
Here we derive the critical stress drop for steady ruptures, Δτsteady/σ,
under a V-shape rate-and-state friction law, where G0 and Gc can be
written as (above equations)

G0 =
λW
μ

Δτ2,

Gc =
λW
μ

Lc
2λW

Δτ2p�r +
Lc

2λW
Δτp�r +Δτ

� �
ðτr � τf Þ

� �
:

ð35Þ

For steady ruptures, the energy balance condition G0 = Gc based
on equation (35) is

Δτ
bσ

� �2

=
Lc

2λW
Δτp�r

bσ

� �2

+
Lc

2λW
Δτp�r

bσ
+
Δτ
bσ

� �
τr � τf
bσ

: ð36Þ

It is possible to analytically solve forΔτsteady/bσ in equation (36), however
the resulting expression is complex and lengthy and does not provide
additional physical insight, therefore we only solve it numerically. Con-
sidering W/Lc≫ 1, equation (36) can be simplified approximately as

Δτsteady

bσ
=
τr � τf
bσ

=
a
b
ln

aVp

3ðb� aÞVc

� �
+ ln

3Vc
Vp

+ 1
a

b�a + 1

0
@

1
A: ð37Þ

Hawthorne and Rubin23 noted that the critical stress drop for steady
ruptures can be estimated assuming Vp/Vc ≈ 15(b − a)/a. Here, we use
the approximate value of Vp/Vc ≈ 30(b − a)/a and calculate Δτsteady/bσ
fromequations (36) and (37). Both solutions can explain the simulation
results with an uncertainty of a factor of 2 (Fig. S7). Given the values of
a/b =0.8, b = 0.015, and W/Lc = 400 used in this paper, the critical
stress drop for steady ruptures is about Δτsteady/σ ≈0.01. Substituting
these values into equations (23) and (34) yields vsteadyr ≈ 50αsV cμ=σ
and Δτsteadyp�r =σ ≈0:07.

Moment-duration scaling relations of SSEs
We simulate single-rupture models by prescribing different values of
initial shear stress to obtainmoment-duration scaling relations of SSEs.
The other model parameters are fixed and are the same as those
described above, except for a smaller W/Lc = 100 to reduce the com-
putational cost and thus allow for a longer simulated fault, 20W. For
the homogeneous shear stress model, the stress drop is always lower
than the steady stress drop, Δτsteady, which only results in self-arresting
ruptures. For the linearly decaying shear stress model, the initial shear
stress is largest near the nucleation zone and linearly decreases to zero
at the other side of the fault. To smoothly nucleate unilateral ruptures,

Article https://doi.org/10.1038/s41467-022-34927-w

Nature Communications |         (2022) 13:7327 9



we prescribe a minimum nucleation length, 0.1W, with higher slip
rates. For each rupture model, we determine the rupture length, L, by
the final position of the rupture tip, and we estimate the SSE duration,
T, based on a slip rate threshold, 0.1Vc. Note that the SSE duration is
slightly longer than the rupture time by a rise time. As the prescribed
initial shear stress increases, the rupture length, L, moment, M0, and
duration, T, of the SSEs increases accordingly. In the homogeneous
shear stress model, L and M0 increase toward infinity as stress drop
asymptotically approaches Δτsteady.

For long ruptures, the moment is M0 ~ΔτW2L, where L is the rup-
ture length and Δτ and vr are the average stress drop and rupture
speed, respectively. The rupture duration is T ≈ L/vr. The theory and
numerical simulations predict two characteristic quantities for steady
SSEs in above equations: Δτsteady ≈0.01σ and vsteadyr ≈50Vcμ=σ. There-
fore, the moment and duration can be normalized as

M0

ΔτsteadyW 3 ∼
Δτ

Δτsteady
� L
W

T

W=vsteadyr

∼
vsteadyr

vr
� L
W

:

ð38Þ

In the numerical simulations, L/W, Δτ/Δτsteady, and vr=v
steady
r are calcu-

lated. Defining Δτ/Δτsteady∝ (L/W)α and vr=v
steady
r / ðL=W Þβ leads to

M0

ΔτsteadyW 3 ∼
T

W=vsteadyr

 !1 +α
1�β

: ð39Þ

In the homogeneous shear stress model, if Δτ >Δτsteady, ruptures
steadily propagate through the entire fault with Δτ and vr independent
of rupture length L, that is α =0 and β =0. If Δτ <Δτsteady, self-arresting
ruptures decelerate and gradually stop for various values of Δτ, which
roughly results in α =0.25 and β = −0.25 (Fig. S3). Therefore, both
steady and self-arresting ruptures in the homogeneous stress model
produce a linear moment-duration scaling relation. However, in the
linearly decaying shear stress model, the simulated models result in
α = 0.5 and β =0.5 (Fig. S3), which leads to a cubic scaling relation.

Because Δτ∝ σ and vr∝ 1/σ (equations (21), (34), and (23)), the
dimensional analysis of equation (38) shows that α and β are inde-
pendent ofσ,M0∝Δτsteady∝ σ, andT / 1

vsteadyr

/ σ, which is also validated
by numerical simulations that are not shown here. Therefore, as σ
systematically varies, the cubic scaling curve betweenM0 and Tmoves
diagonally in the M0 − T space (Fig. 4b).

In addition, a similar dimensional analysis shows that M0 is inde-
pendent of Vc and T ~ 1/Vc. As Vc systematically varies, the scaling curve
moves vertically in the M0 − T space, that is T∝ 1/vr∝ 1/Vc, which can
reconcile the separation between the cubic scaling of SSEs and
earthquakes.

Data availability
Thenumericaldata havebeendeposited in theZenododatabaseunder
accession code 10.5281/zenodo.7228123 [https://doi.org/10.5281/
zenodo.7228123]. The theoretical data are presented in the Methods.
Other data are previously published and available in the references
cited in the figure captions.

Code availability
The open source softwares SEM2DPACK and QDYN used in the fully
dynamic and quasi-dynamic rupture simulations are available at
https://github.com/jpampuero/sem2dpack and https://github.com/
ydluo/qdyn, respectively.
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