
HAL Id: hal-04884945
https://hal.science/hal-04884945v1

Preprint submitted on 13 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust complex heterodimensional cycles
Sébastien Biebler

To cite this version:

Sébastien Biebler. Robust complex heterodimensional cycles. 2025. �hal-04884945�

https://hal.science/hal-04884945v1
https://hal.archives-ouvertes.fr


Robust complex heterodimensional cycles

Sébastien Biebler

January 13, 2025

Abstract

A diffeomorphism f has a heterodimensional cycle if it displays two (transitive) hyperbolic

sets K and K ′ with different indices such that the unstable set of K intersects the stable one

of K ′ and vice versa. We prove that it is possible to find robust heterodimensional cycles for

families of polynomial automorphisms of C3. The proof is based on Bonatti-Dı́az blenders.
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1 Introduction

The dynamics of uniformly hyperbolic systems such as the horseshoe introduced by Smale is partic-

ularly well understood. Such systems were originally conjectured to be dense in the 1960’s. However

it was soon realized that this is not true. There are two main mechanisms that yield robustly non-

hyperbolic behaviors: robust heterodimensional cycles (obtained by Abraham and Smale [AS]) and

robust homoclinic tangencies (this is the celebrated Newhouse phenomenon [Ne1, Ne2]). Later

Palis [Pa1, Pa2] conjectured that diffeomorphisms exhibiting either a heterodimensional cycle or a

homoclinic tangency are dense in the complement of the closure of the hyperbolic ones.

In this paper, we are interested in extending the phenomenon of robust heterodimensional cycles

to the setting of complex dynamics.

A compact invariant set K for a diffeomorphism f of a manifold is a hyperbolic basic set if

K is hyperbolic, transitive and locally maximal. Its index denotes the dimension of the unstable

1



manifold of any of its points (all unstable manifolds of points of K have the same dimension since

the hyperbolic set K is transitive).

Definition. Let f be a diffeomorphism of a manifold of dimension 3 or higher having two hyperbolic

basic sets K and K ′. We say that f has a heterodimensional cycle associated to K and K ′ if:

1. the indices of K and K ′ are not equal,

2. the stable setsW s(K) andW s(K ′) intersect respectively the unstable setsW u(K ′) andW u(K).

Bonatti and Dı́az showed in [BD3] that heterodimensional cycles of coindex 1 can be C1-

stabilized. In a recent breakthrough, Li and Turaev [LT1] solved this Cr-persistence problem

in any regularity r = 2, · · · ,∞, ω (one can also refer to [LT2, LLST]).

Let Aut(C3) and Autd(C
3) be the spaces of holomorphic automorphisms and polynomial au-

tomorphisms of degree at most d of C3. A polynomial automorphism of degree at most d is an

element of Aut(C3) whose component functions are polynomials of degree at most d. We endow

these spaces with the topology induced by local uniform convergence of the map and its inverse.

Our main result shows that we can find robust heterodimensional cycles for polynomial auto-

morphisms of C3:

Theorem. There exists a polynomial automorphism f of C3 such that every g ∈ Aut(C3) suffi-

ciently close to f displays a heterodimensional cycle associated to the hyperbolic continuations of a

hyperbolic basic set of index 2 and a saddle periodic point of index 1.

Corollary. There exists an integer d ≥ 2 and a nonempty open set Ud ⊂ Autd(C
3) such that every

g ∈ Ud displays a heterodimensional cycle associated to the hyperbolic continuations of a hyperbolic

basic set of index 2 and a saddle periodic point of index 1.

In particular, our results can be seen as an analogous of Buzzard’s work [Bu] on complex New-

house phenomenon (see also [Du2, ALZ]) for heterodimensional cycles instead of tangencies.

The main tool to obtain persistent heterodimensional cycles is a type of hyperbolic sets with

very special fractal properties called blender. Introduced by Bonatti and Dı́az in [BD1], blenders

admit several definitions. Here is one:

Definition. A hyperbolic basic set Kf for a diffeomorphism f of a manifold of dimension 3 or

higher is a cs-blender if there is a nonempty open set ∆ of embedded d-dimensional disks, with d

smaller than the index of Kf , such that for every C1-perturbation g of f , the stable set W s(Kg) of

the hyperbolic continuation Kg of Kf for g intersects any disk in ∆.

We will use the blender property to obtain in C
3 robust intersections between the one-dimensional

unstable manifold of a saddle periodic point of index 1, and the one-dimensional stable set of a

hyperbolic basic set of index 2, which was not expected a priori. Notice that blenders have many
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other powerful applications in dynamical systems, see for example [ACW, AST, Be1, Be2, Bi1, Bi2,

BD2, Du1, Ta, GTV].

Remark that the degree of the maps we obtain is unknown since we used a Runge approximation

argument. It is then natural to ask:

Question. Is it possible to give an explicit degree d in the main Corollary ?

This paper is organized as follows. We define successively a polynomial p of C, then a Hénon

map H of C2 and finally a polynomial automorphism F1 of C3 which is a skew-product over H

displaying both a horseshoe of index 2 and a saddle point of index 1 (Section 2). Then we show that

this horseshoe satisfies an open covering property on the third coordinate and hence the blender

property (Section 3). Finally, we create an initial heterodimensional cycle and use the blender

property to make it robust (Section 4).

Aknowledgements. The author would like to thank Pierre Berger, Romain Dujardin, Johan

Taflin and Gabriel Vigny for many invaluable comments and discussions.

This research was partially supported by the ANR project PADAWAN, ANR-21-CE40-0012-01.

2 A skew-product polynomial automorphism

2.1 One dimensional dynamics

In this subsection, we introduce a polynomial p displaying a repelling Cantor set and a sink.

Let us start with a few notation. For every z ∈ C and r > 0, let D(z, r) ⊂ C be the closed disk

of center z and radius r. We set:

D := D(0, 1) .

We fix once and for all η := 10−4 and also define the following disks:

D0 := D(1/4, η) , D1 := D(i/4, η) , D2 := D(−1/4, η) , D3 := D(−i/4, η) ,

D4 := D(3, 1) , and D5 := D(3, η) .

For j = 0, 1, 2, 3, let ℓj be the expanding affine map of linear coefficient 1/η sending Dj bijectively

onto D. Let ℓ4 be the affine contraction of linear coefficient η sending D4 bijectively onto D5. In

particular, ℓ4 displays an attracting fixed point equal to 3 with multiplier equal to η.

Proposition 2.1. For every ε > 0, there exists a polynomial map p : C → C such that:

∀ 0 ≤ j ≤ 4 ,∀z ∈ Dj , |p(z)− ℓj(z)| < ε and |p′(z) − ℓ′j(z)| < ε .

Proof. This is an immediate consequence of the Runge’s theorem.

Remark 2.2. The polynomial p has an attracting fixed point close to 3 with multiplier close to η.

Corollary 2.3. For every δ > 0 small enough, p−1(D(δ, 1)) contains (at least) four connected

components ∆δ,j, j ∈ {0, 1, 2, 3}, which are topological disks close to Dj for the Hausdorff topology.

Moreover each ∆δ,j depends continuously on δ.
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2.2 Two dimensional dynamics

Here we define a Hénon map H from the polynomial p defined in the latter subsection. We take

ε > 0 small and a polynomial p as given by Proposition 2.1.

Let us take b ∈ C
∗ and let us consider the Hénon map:

H : (z, w) ∈ C
2 7→ (p(z) + bw, z) ∈ C

2 .

Recall that for b 6= 0 the map H is a polynomial automorphism of C2. When |b| > 0 is small

enough, by Corollary 2.3, the set H−1(D2)∩D
2 has (at least) four connected components Uj , with:

Uj :=
⋃

w∈D

∆−bw,j × {w} , j ∈ {0, 1, 2, 3} .

Recall that each ∆−bw,j is a topological disk close to Dj for the Hausdorff topology. Therefore Uj

is close to Dj × D.

Proposition 2.4. There exists bo > 0 such that for any b ∈ C
∗ satisfying |b| < bo, the Hénon map

H displays a hyperbolic basic set of saddle type

Ko :=
⋂

n∈Z

Hn(
⊔

0≤j≤3

Uj)

and an attracting fixed point So close to (3, 3) whose basin contains D(3, 1)2.

Proof. We first show that Ko is a hyperbolic basic set of saddle type (see Theorem 3.1

in [FS] for the proof of a very similar result). The set Ko is clearly compact, invariant by H and

locally maximal. We are going to show that Ko is a horseshoe in the sense of Definition 6.5.2 of

[KH]. The image Vj := H(Uj) is equal to:

Vj = H(Uj) = {(p(z) + bw, z) |w ∈ D , z ∈ ∆−bw,j} ,

which is close to the curve {(p(z), z) | z ∈ Dj} when b is small. Notice that the second coordinate

projection of Uj is equal to D. Also for every w ∈ D, the first coordinate projection of the restriction

of H to Uj ∩ (D × {w}) = ∆−bw,j × {w} is a bijection onto p(∆−bw,j) + bw = D. Therefore the

connected component Uj is full in the sense of Definition 6.5.1 of [KH]. We also have:

Uj ⊂ intD× D and Vj ⊂ D× intD .

We now define the two following constant cone fields:

χu = {(v1, v2) ∈ C
2 : |v2| ≤ 10−3 · |v1|} and χs = {(v1, v2) ∈ C

2 : |v1| ≤ 10−3 · |v2|} .

Notice that at any point (z, w) ∈ ⊔0≤j≤3 Uj the differential DH is equal to:

(

p′(z) b

1 0

)
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with p′(z) close to 1/η = 104 by Proposition 2.1. Therefore, if b is small enough, any non zero

vector in χu is sent into intχu and expanded by a factor larger than 103 by DH. Also at any point

(z, w) ∈ ⊔0≤j≤3 Vj the differential DH−1 is equal to:

(

0 1

1/b −p′(w)/b

)

with p′(w) again close to 1/η = 104. Therefore, if b is small enough, any non zero vector in χs is

sent into intχs and expanded by a factor larger than 103 by DH−1. Then Ko is a horseshoe in the

sense of Definition 6.5.2 of [KH]. According to the discussion following this definition, Ko is also

hyperbolic (this is an immediate consequence of the cone field criterion (Corollary 6.4.8 of [KH])

and topologically conjugate to a shift. In particular, it is transitive and therefore a hyperbolic basic

set (of saddle type).

Now we show that H displays a sink. Recall that p displays a sink of period 1 close to 3

by Remark 2.2. Hence the map (z, w) 7→ (p(z), z) has a fixed point close to (3, 3). Therefore by

the implicit function theorem, for b small, the map H displays the continuation of a fixed point So

close to (3, 3). The differential of H at any (z, w) ∈ D(3, 1)2 is equal to:

(

p′(z) b

1 0

)

where p′(z) is close to η = 10−4 and b is small. Therefore the two eigenvalues of the differential of

H at So are smaller than 1 in modulus and thus So is a sink for H. Since p(D4) is close to D5 and

since b is small, D(3, 1)2 is sent into itself by H. Also the differential of H2 at any (z, w) ∈ D(3, 1)2

is close to:
(

10−8 0

10−4 0

)

Then, by the mean value inequality, the distance ofH2(z, w) to So is smaller than half the distance of

(z, w) to So, hence H
n(z, w) tends to So when n is large. Thus the basin of So contains D(3, 1)

2.

2.3 Three dimensional dynamics

In this subsection, we define a polynomial automorphism F1 of C3 which is a skew-product over

the Hénon map H. We start with the following one-dimensional intermediate result:

Lemma 2.5. For every ζ > 0, there exists a polynomial map q : C → C such that:

∀ 0 ≤ j ≤ 3 ,∀ z ∈ Dj , |q(z) − 1

10
ei

jπ

2 | < ζ and |q′(z)| < ζ ,

∀ z ∈ D4 , |q(z) + 1

3
| < ζ and |q′(z)| < ζ .

Proof. This is again an immediate application of the Runge’s theorem.
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Let us fix once and for all:

λ :=
10

9
.

We take ζ > 0 small and a polynomial q as given by Lemma 2.5. We consider the Hénon map

H given by Proposition 2.4. The following map is a polynomial automorphism of C3 for b 6= 0:

F1 : (z, w, t) ∈ C
3 7→ (H(z, w), λt + q(z)) = (p(z) + bw, z, λt + q(z)) .

We set:

J := {0, 1, 2, 3} .

Notice that D3 ∩ F−1
1 (D3) displays (at least) four connected components Rj(F1), j ∈ J , close to:

Dj ×D× 1

λ
· (D− 1

10
ei

jπ

2 ) .

For every F close to F1, for every j ∈ J , we denote by Rj = Rj(F ) the connected component of

D
3∩F−1(D3) which is the continuation of Rj(F1). Its image F (Rj) is close to {(p(z), z) | z ∈ Dj}×D.

Let us consider the two following constant cone fields:

Cu := {(v1, v2, v3) ∈ C
3 : |v2| ≤ 10−3 · ‖(v1, v3)‖2}

and Cs := {(v1, v2, v3) ∈ C
3 : ‖(v1, v3)‖2 ≤ 10−3 · |b| · |v2|} .

Proposition 2.6. For every automorphism F close to F1, any non zero vector in Cu is sent into

intCu and expanded by a factor larger than 1+λ
2 by D(z,w,t)F for any (z, w, t) ∈ ⊔j∈J R

j .

Moreover any non zero vector Cs is sent into intCs and expanded by a factor larger than 103 by

D(z,w,t)F
−1 for any (z, w, t) ∈ ⊔j∈J F (R

j).

Proof. Note that the differentials of F and its inverse are close on
⊔

j∈J R
j and

⊔

j∈J F (R
j) to:







p′(z) b 0

1 0 0

q′(z) 0 λ






and







0 1 0

1/b −p′(w)/b 0

0 −q′(w) 1/λ







where p′ is close to 1/η = 104 and both q′ and b are small. The result follows.

In the following result, we introduce the two hyperbolic basic sets whose continuations will be

later involved in the formation of heterodimensional cycles.

Proposition 2.7. There exists a neighborhood U1 of F1 in Aut(C3) such that every F ∈ U1 displays

a hyperbolic basic set

K =
⋂

n∈Z

Fn(
⊔

j∈J

Rj)

of index 2 included in D(0, 1/2)2 × D and a saddle fixed point S of index 1 close to (3, 3, 3).
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Proof. We first show that K1 = K(F1) is a hyperbolic basic set of index 2. The set K1

is clearly compact, F1-invariant and locally maximal. By Proposition 2.6 and by the cone field

criterion, the set K1 is also hyperbolic with unstable (resp. stable) dimension equal to 2 (resp. 1).

Finally, let us show that K1 is transitive.

Fact 2.8. For every (z, w) ∈ Ko, the set K1 intersects the line {(z, w, t) | t ∈ C} at exactly one

point (z, w, ξ(z, w)), and the map (z, w) ∈ Ko 7→ ξ(z, w) ∈ C is continuous.

Proof. We fix (z, w) ∈ Ko. Let us denote for every n ∈ Z by In the third coordinate projection of

Fn
1 ({H−n(z, w)} ×D). We notice that In is a disk of diameter λn. Also F1({H−n−1(z, w)} ×D) is

close to {H−n(z, w)}× (λ ·D+ 1
10e

i
jπ

2 ) for some j ∈ J , with (λ ·D+ 1
10e

i
jπ

2 ) ⋑ D. Therefore we have

In ⋐ In+1 for every n ∈ Z. Thus
⋂

n∈Z In is reduced to a point ξ(z, w) ∈ D. But {(z, w)}×⋂n∈Z In

is precisely equal to the intersection of K1 with {(z, w, t) | t ∈ C}.
Then the continuity of ξ follows from the continuity of F1.

We recall that Ko is transitive for the Hénon map H. We can therefore pick (z, w) ∈ Ko such

that {Hn(z, w) |n ≥ 0} is dense in Ko. Then the sequence {Fn
1 (z, w, ξ(z, w)) |n ≥ 0} is dense in

K1. Indeed, for every (α, β, ξ(α, β)) ∈ K1, we can find Hn(z, w) arbitrarily close to (α, β). Since ξ

is continuous, then ξ(Hn(z, w)) is close to ξ(α, β). Thus Fn
1 (z, w, ξ(z, w)) = (Hn(z, w), ξ(Hn(z, w))

is close to (α, β, ξ(α, β)). This shows that K1 is transitive for F1.

This shows that K1 is a hyperbolic basic set of index 2 for F1. By robustness of hyperbolic basic

sets, the set K is still a hyperbolic basic set of index 2 for F for every F close to F1.

Now we show that F displays a saddle fixed point S of index 1. Recall that H displays

an attracting fixed point So = (S1
o , S

2
o ) close to (3, 3) by Proposition 2.4. Since q is close to −1/3

on D4, the number t1 := (1 − λ)−1 · q(S1
o) is close to −9 · (−1/3) = 3 and S1 = (So, t1) is a fixed

point for F1 close to (3, 3, 3). Moreover the differential of F1 at S1 is close to:







p′(3) b 0

1 0 0

q′(3) 0 λ







where p′(3) is close to η = 10−4 and both q′(3) and b are small. Thus DS1
F1 has two eigenvalues

smaller than 1 in modulus and one larger than 1 in modulus. Thus F1 displays a saddle fixed point

S1 of index 1 close to (3, 3, 3). The result follows by robustness of hyperbolic basic sets.

Definition 2.9. For every k ≥ 1 and w = (j0 · · · jk) ∈ Jk, we define the following set:

Rw :=
⋂

0≤n≤k

F−n(Rjn) .

We also denote:

∂zR
w := Rw∩F−k−1(∂D×D

2) , ∂wR
w := Rw∩(D×∂D×D) and ∂tR

w := Rw∩F−k−1(D2×∂D) .
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Proposition 2.10. For every s = (jk)k≥0 ∈ JN, the set W s :=
⋂

n≥0R
(j0,··· ,jn) is a local stable

manifold of K which is a holomorphic graph over w ∈ intD with tangent spaces in Cs.

For every u = (jk)k<0 ∈ JZ∗

− , the set Wu :=
⋂

n>0 F
n(R(j−n,··· ,j−1)) is a local unstable manifold

of K which is a holomorphic graph over (z, t) ∈ (intD)2 with tangent spaces in Cu.

Proof. By Proposition 2.6, for every s ∈ JN, the set W s intersects each {w = wo}, with wo ∈ D, at

exactly one point depending continuously on wo. Thus W
s is a continuous graph over w ∈ D.

LetM ∈W s. For every n ≥ 0, notice that Fn(M) belongs to the set Fn(R(s1,··· ,sn))∩R(sn+1,··· ,s2n).

The latter is included in
⋂

−n≤k≤n F
k(
⊔

j∈J R
j), which is a small neighborhood of K. Thus the

distance of Fn(M) to K is small when n is large and so W s is a local stable manifold of K. In

particular it is a holomorphic graph. Still by Proposition 2.6, its tangent spaces are in Cs.

The same proof is working for unstable manifolds.

We also define:

W s
loc(K) =

⋃

s∈JN

W s and W u
loc(K) =

⋃

u∈J
Z∗
−

Wu .

The saddle point S and its stable/unstable manifolds will be of particular interest to us:

Definition 2.11. The local stable (resp. unstable) manifold W s
loc(S) (resp. W u

loc(S)) of S is the

connected component of W s(S) ∩D(3, 1)3 (resp. W u(S) ∩D(3, 1)3) containing S.

Up to restricting the neighborhood U1 of F1 defined by Proposition 2.7, we obtain:

Fact 2.12. The local stable manifold W s
loc(S) of the saddle point S is C1-close to:

{(z, w, 3) | z , w ∈ D(3, 1)} .

Proof. This is an immediate consequence of the hyperbolic continuation of local stable manifolds

(indeed, for F = F1 with q = −1/3 on D4, W
s
loc(S1) is simply equal to {(z, w, 3) | z , w ∈ D(3, 1)}

since the basin of the sink So of the Hénon map H contains D(3, 1)2 by Proposition 2.4).

Fact 2.13. The local unstable manifold W u
loc(S) of the saddle point S is C1-close to:

{(3, 3, 3 + t) | t ∈ D} .

Proof. This is an immediate consequence of the hyperbolic continuation of local unstable manifolds

(indeed, for F = F1 with q = −1/3 on D4, W
u
loc(S1) is simply equal to {(3, 3, 3 + t) | t ∈ D}).

Remark 2.14. The set U1 can be taken as the ǫ1-C
0-neighborhood of F1 on some small neighborhood

of W s
loc(K1) ∪ F−1

1 (W u
loc(K1)) ∪W s

loc(S1) ∪ F−1
1 (W u

loc(S1)), for some small ǫ1 > 0.
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3 Blender property

In this section, we show that the compact hyperbolic set K for the automorphism F ∈ U1 displays

the blender property. We first define the following constant cone field:

Cuu = {v = (v1, v2, v3) ∈ C
3 : ‖(v2, v3)‖2 ≤ 10−3 · |v1|} .

Lemma 3.1. For every F ∈ U1, any non zero vector in Cuu is sent into intCuu and expanded by

a factor larger than 103 by D(z,w,t)F for any (z, w, t) ∈ ⊔j∈J R
j.

Proof. The proof is exactly the same as in the proof of Proposition 2.6.

Definition 3.2. A uu-curve is a continuous graph C = {(z, c2(z), c3(z)) | z ∈ D} ⊂ D × (intD)2

such that z 7→ (c2(z), c3(z)) is holomorphic on intD and (1, c′2(z), c
′
3(z)) ∈ Cuu for every z ∈ intD.

Here is the main result of this section. It is the aforementioned blender property.

Proposition 3.3. Every uu-curve C ⊂ D
2 × D(0, 1/2) intersects W s

loc(K) for every F ∈ U1.

The key to prove Proposition 3.3 is the following one-dimensional open covering property stated

in Sublemma 3.4. Let us first define the four following affine maps:

L0(t) :=
9

10
t− 9

100
, L1(t) :=

9

10
t− 9i

100
, L2(t) :=

9

10
t+

9

100
and L3(t) :=

9

10
t+

9i

100
.

We remark that the third coordinate of F−1 is close to Lj on F (Rj).

Sublemma 3.4. For any t ∈ D(0, 1/2), there exists τ ∈ D(0, 0.497) and j ∈ J such that t = Lj(τ).

Proof. By symmetry, it suffices to show that {reiθ | 0 ≤ r ≤ 0.5 , −π/4 ≤ θ ≤ π/4} is included

in the image of D(0, 0.497) by L2. For every 0 ≤ r ≤ 0.5 and −π/4 ≤ θ ≤ π/4, we have reiθ ∈
L2(D(0, 0.497)) if and only if |reiθ − 0.09| ≤ 0.9 · 0.497, that is if and only if:

√

r2 − 0.18 · r cos(θ) + 0.092 ≤ 0.9 · 0.497 .

Rapid computations show this is true if the inequality is satisfied for r = 0.5 and θ = π/4, which

is the case since 0.52 − 0.18 · 0.5 ·
√
2/2 + 0.092 < 0.2 < 0.92 · 0.4972.

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. It is enough to show that for every automorphism F ∈ U1, there is s =

(j0, j1, · · · ) ∈ JN such that for every n ≥ 0, the curve C intersects R(j1,··· ,jn). Then C has a

nonempty intersection with the local stable manifoldW s =
⋂

n≥0R
(j0,··· ,jn). The result then follows

immediately by induction from the following Lemma 3.5.

Lemma 3.5. Let C ⊂ D
2 × D(0, 1/2) be a uu-curve. Then for every F ∈ U1, there is j ∈ J such

that C intersects Rj and F (C ∩Rj) is a uu-curve included in D
2 × D(0, 1/2).

Proof of Lemma 3.5 . We start with the following intermediate result:
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Sublemma 3.6. Let C be a uu-curve included in D
2 × D(0, 1/2). Then for every F ∈ U1, for any

j ∈ J , the curve C intersects the interior of Rj but does not intersect ∂wR
j ∪ ∂tRj.

Proof. Let us denote zj = 1/4 if j = 0, = i/4 if j = 1, = −1/4 if j = 2 and = −i/4 if j = 3.

We remark that Rj contains the point (zj , c2(zj), c3(zj)) ∈ C in its interior since c2(zj) ∈ intD and

c3(zj) ∈ D(0, 1/2) while {zj} × intD × D(0, 1/2) ⊂ intRj (indeed Rj is close to Dj × D × Lj(D)

with Lj(D) ⋑ D(0, 1/2)). Therefore C intersects intRj. Also since C ⊂ D× intD× D(0, 1/2) while

∂wR
j ⊂ D× ∂D × D and ∂tR

j ∩ (D2 × D(0, 1/2)) = ∅, the result follows.

Sublemma 3.7. Let C be a uu-curve intersecting the interior of Rj, for j ∈ J , but not ∂wRj∪∂tRj.

Then F (C ∩Rj) is a uu-curve.

Proof. It is immediate from Lemma 3.1 that F (C ∩ Rj) has its tangent spaces in Cuu. Moreover,

if we denote by πz the first coordinate projection, the map ψ : M ∈ C ∩ Rj 7→ πz(F (M)) ∈ C is

open (since holomorphic and non constant) on the interior of C ∩ Rj. Thus ∂ Imψ is included in

ψ(∂(C ∩Rj)) = ψ(C ∩∂zRj) ⊂ ∂D. Since Imψ ⊂ D, we conclude that ∂ Imψ = ∂D. Thus F (C ∩Rj)

is a graph over z ∈ D and so a uu-curve.

Let us now conclude the proof of Lemma 3.5. By Sublemma 3.4, there exist τ ∈ D(0, 0.497)

and j ∈ J such that c3(0) = Lj(τ). Also, by Sublemma 3.6, the curve C intersects Rj but not

∂wR
j ∪ ∂tR

j. Then, by Sublemma 3.7, we have that F (C ∩ Rj) is a uu-curve. Since any point

(z, c2(z), c3(z)) ∈ C ∩ Rj has its third coordinate c3(z) which is 10−3-close to c3(0), the preimage

of c3(z) by Lj is in D(0, 0.497 + λ · 10−3) ⊂ D(0, 0.499). Since the third coordinate of F−1 is close

to Lj(t) on F (R
j), it follows that F (C ∩Rj) is a uu-curve included in D

2 × D(0, 1/2).

4 Creating robust cycles

We now create robust heterodimensional cycles and conclude the proof of the main Theorem. We

will take the composition of F1 with finitely many polynomial automorphisms of the form:

(z, w, t) 7→ (z, w, t + P (z, w)) or (z, w, t) 7→ (z, w + P (z, t), t) or (z, w, t) 7→ (z + P (w, t), w, t)

where P : C → C is a polynomial. So the final map will also be a polynomial automorphism.

4.1 Robust intersections between W s(S) and W u(K)

We first create a robust intersection between the stable manifold W s(S) of the continuation S of

the saddle point S1 and the unstable set W u(K) of the continuation K of the basic set K1, by

perturbating F1. This is the easiest part since the intersection will be transverse and hence robust.

Proposition 4.1. There exists F2 ∈ U1 and a neighborhood U2 ⊂ U1 of F2 such that every F ∈ U2

displays a nonempty intersection between W s(S) and W u(K).
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Proof of Proposition 4.1. Let A1 ∈ K1 be a fixed point of F1. Let us take ω > 0 small. We set

γ1 := 1 + 2ω and α′
1 := 3.9. The following is an immediate consequence of Proposition 2.10 and

Fact 2.12 applied to F = F1:

Fact 4.2. There exist M1 = (γ1, β1, γ1) ∈ F1(W
u
loc(A1)) and N1 = (α′

1, α
′
1, γ

′
1) ∈W s

loc(S1).

Let t ∈ C 7→ P1(t) be a polynomial close to 1 on D(γ1, ω) and to 0 on D ⊔ D(3, 1). Let

z ∈ C 7→ P2(z) be a polynomial close to 1 on D(α′
1, ω) and close to 0 on D ⊔ D(3, 1/2). Such

polynomials exist by the Runge theorem. We set:

g1(z, w, t) := (z + P1(t) · (α′
1 − γ1), w, t) ,

g2(z, w, t) := (z, w + P2(z) · (α′
1 − β1), t) ,

and g3(z, w, t) := (z, w, t + P2(z) · (γ′1 − γ1)) .

Notice that g3 ◦ g2 ◦ g1 sends M1 close to N1. Now we set:

F2 := g3 ◦ g2 ◦ g1 ◦ F1 .

Fact 4.3. The map F2 belongs to the neighborhood U1 defined in Proposition 2.7 and Remark 2.14.

Proof. The first and third coordinate projections of F1(W
s
loc(K1)) ∪ W u

loc(K1) ∪ F1(W
s
loc(S1)) ∪

W u
loc(S1) are respectively included in D⊔D(3, 1/2) and D⊔D(3, 1). Therefore the maps g1, g2 and

g3 are all close to the identity on a neighborhood of the latter set and hence F2 := g3 ◦ g2 ◦ g1 ◦ F1

is close to F1 on W s
loc(K1) ∪ F−1

1 (W u
loc(K1)) ∪W s

loc(S1) ∪ F−1
1 (W u

loc(S1)).

In particular F2 displays the hyperbolic continuations K2 of K1 and S2 of S1. Also by Fact 2.12,

there is a bidisk ∆s embedded in W s
loc(S2) which is C1-close to

N1 + {(z, w, 0) | z, w ∈ D(0, ω)} .

Let A2 be the continuation of A1 for F2. By Proposition 2.10 and since ω is small, there is a bidisk

∆u embedded in F1(W
u
loc(A2)) which is a graph of the form:

∆u =M1 + {(z, w(z, t), t) | z, t ∈ D(0, ω)} ,

where w(0, 0) is small and the tangent spaces of ∆u are included in a cone slightly larger than Cu

(in particular w(z, t) ∈ D(0, ω) for (z, t) ∈ D(0, ω)2). Since M1 is sent close to N1 by g3 ◦ g2 ◦ g1
and the restriction of g3 ◦ g2 ◦ g1 to M1 +D(0, ω)3 is close to a translation, the set (g3 ◦ g2 ◦ g1)(∆u)

(which is included in F2(W
u
loc(A2)) ⊂W u(A2)) is C

1-close to:

N1 + {(z, w(z, t), t) | z, t ∈ D(0, ω)} .

The directions of the tangent spaces of ∆s are close to C · (1, 0) +C · (0, 1) while those of (g3 ◦ g2 ◦
g1)(∆

u) are included in a cone slightly larger than Cu. Therefore ∆s ⊂ W s
loc(S2) and (g3 ◦ g2 ◦

g1)(∆
u) ⊂ W u(A2) have a transverse intersection close to N1 + (0, w(0, 0), 0) ≈ N1. In particular,

this intersection is robust, which ends the proof of Proposition 4.1.

Remark 4.4. The set U2 can be taken as the subset of U1 formed by maps which are ǫ2-C
0-close to

F2 on the ω-neighborhood of F−1
1 (M1), for some small ǫ2 > 0.
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4.2 Robust intersections between W u(S) and W s(K)

We now create a robust intersection between the unstable manifold W u(S) of the continuation S

of the saddle point S2 and the stable set W s(K) of the continuation K of the basic set K2. This is

the difficult part since both the unstable manifold of S and the stable manifolds of points of K are

one-dimensional so we can not apply a transversality argument here. To overcome this difficulty,

we will use here the blender property to obtain the robustness.

Proposition 4.5. There exist F3 ∈ U2 and a neighborhood U ⊂ U2 of F3 such that every F ∈ U
displays a nonempty intersection between W u(S) and W s(K).

4.2.1 Obtaining an initial intersection between W u(S) and W s(K).

We now perturb the automorphism F2 into F3 in order to get an intersection point betweenW u(S3)

and W s(K3). We start by selecting a particular periodic point in K2:

Fact 4.6. There is a periodic point B2 ∈ K2 of F2 of third coordinate in D(0, 1/10).

Proof. By Proposition 3.3, there is a point in W s
loc(K2) of third coordinate 0. Since by Proposi-

tion 2.10 any local stable manifold has its tangent spaces in Cs, there is a point of K2 of third

coordinate close to 0. Then, by density of periodic points in K2, there is a periodic point B2 ∈ K2

of third coordinate in D(0, 1/10).

Let us take again ω > 0 small. We set γ2 := 2 − 2ω and β′2 := −0.9. The following is an

immediate consequence of Proposition 2.10 and Fact 2.13 together with Fact 4.3:

Fact 4.7. There exist M2 = (α2, β2, γ2) ∈ F2(W
u
loc(S2)) and N2 = (α′

2, β
′
2, γ

′
2) ∈W s

loc(B2).

Let t ∈ C 7→ Q1(t) be a polynomial close to 1 on D(γ2, ω) and close to 0 on D⊔D(3, 1). Similarly

let w ∈ C 7→ Q2(w) be a polynomial close to 1 on D(β′2, ω) and close to 0 on D(0, 1/2) ⊔ D(3, 1).

Let us also take µ ∈ D(0, 1/10). Then we define:

h1(z, w, t) := (z, w +Q1(t) · (β′2 − β2), t) ,

h2(z, w, t) := (z, w, t +Q2(w) · (γ′2 − γ2)) ,

and h3(z, w, t) := (z +Q2(w) · (α′
2 − α2 + µ+ (t− γ′2)), w, t) .

Notice that h3 ◦ h2 ◦ h1 sends M2 close to N2. Now we set:

F3 := h3 ◦ h2 ◦ h1 ◦ F2 .

Fact 4.8. The map F3 belongs to the neighborhood U2 defined in Proposition 4.1 and Remark 4.4.

Proof. The same proof as for Fact 4.3 shows that F3 ∈ U1. Also recall that F−1
1 (M1) is sent close

to N1 by F2. Since N1 = (3.9, 3.9, γ′1) with γ′1 ∈ D(0, 1/2), the maps h1, h2 and h3 are all close

to the identity on a ball around N1 of radius bounded from below independently of ω. Since ω is

small, this implies that F3 is close to F2 on the ω-neighborhood of F−1
1 (M1) and so F3 ∈ U2.
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By Proposition 2.10, there is a disk Uµ embedded in the local stable manifold of the continuation

B3 ∈ K3 of B2 ∈ K2 for F3 which is close to:

{(α′
2, β

′
2 + w, γ′2) |w ∈ D(0, ω)} . (4.1)

Let S3 be the continuation of S2 for F3. By Fact 2.13 and since ω is small, there is a disk Ṽµ

embedded in F2(W
u
loc(S3)) which is close to {(α2, β2, γ2 + t) | t ∈ D(0, ω)}. Then its image is

Vµ := (h3 ◦ h2 ◦ h1)(Ṽµ) ⊂ F3(W
u
loc(S3)) ⊂W u(S3) and is close to:

{(α′
2 + µ+ t, β′2, γ

′
2 + t) | t ∈ D(0, ω)} . (4.2)

We will use the following independent technical result:

Lemma 4.9. Let (Uµ)µ∈D be a holomorphic family of graphs w ∈ intD 7→ (U1
µ(w), w, U

3
µ(w)) ∈

C
3, where U1

µ and U3
µ are small. Let (Vµ)µ∈D be a holomorphic family of graphs t ∈ intD 7→

(V 1
µ (t), V

2
µ (t), t) ∈ C

3. Suppose that µ 7→ V 1
µ (0) is close to µ and that V 2

µ (t) ∈ intD. Then there

exists µo ∈ D such that Uµo intersects Vµo .

Proof. Up to the change of coordinates (z, w, t) 7→ (z − U1
µ(w), w, t − U3

µ(w)) which is close to the

identity, we can suppose that Uµ = {(0, w, 0) |w ∈ D}. Notice that Vµ intersects the plane {t = 0}
at a unique point equal to (V 1

µ (0), V
2
µ (0), 0). Also the map µ ∈ intD 7→ V 1

µ (0) is holomorphic and

close to λ 7→ λ. Then by the Rouché theorem there is µo ∈ D(0, 1/2) such that V 1
µo
(0) = 0. Then

the point (0, V 2
µo
(0), 0) belongs to Uµo ∩ Vµo .

As a consequence of Lemma 4.9 together with Eq. (4.1) and Eq. (4.2), we obtain:

Proposition 4.10. The unstable manifold W u(S3) intersects the local stable manifold W s
loc(B3) at

a point N such that TNW
u(S3) is close to C · (1, 0, 1).

4.2.2 Obtaining robust intersections between W u(S3) and W s(K3) using the blender

property.

We now conclude the proofs of Proposition 4.5 and of the main Theorem. We use the blender

property to make robust the initial intersection between W u(S3) and W
s(K3) we obtained above.

Proposition 4.11. Let ∆o be an embedded open disk intersecting W s
loc(B3) at a point N such that

TN∆o is close to C · (1, 0, 1). Then there exists n ≥ 1 such that for every map F close to F3 and

every embedded disk ∆ close to ∆o, the intersection Fn(∆)∩ (D2 ×D(0, 1/2)) contains a uu-curve.

Proof. Let us consider the following matrix:

Mo :=







104 0 0

1 0 0

0 0 λ







For every matrix M close to Mo and every vector v close to (1, 0, 1), we have M · v ∈ intCuu.

Observe that the differential of F3 at any point in W s
loc(B3) is close to Mo. Thus, if ∆o intersects
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W s
loc(B3) at N with a direction close to C · (1, 0, 1), the direction of F3(∆o) at F3(N) ∈W s

loc(B3) is

in intCuu. Then, by invariance of the cone Cuu (see Lemma 3.1) and by expansion in the strong

unstable direction, for n large enough, Fn
3 (∆o) contains a holomorphic graph ∆n over z varying

in a neighborhood of D with tangent spaces in intCuu (in particular it contains a uu-curve). If

moreover n is a multiple of the period of B3, then ∆n intersects W s
loc(B3) at a point Fn

3 (N) close

to B3. Since the third coordinate of B3 is in D(0, 1/10) by Fact 4.6, the curve ∆n is included in

C
2 ×D(0, 1/3). Then, by continuity, for every map F close to F3 and every ∆ close to ∆o, we have

that Fn(∆) ∩ (D2 ×D(0, 1/2)) contains a uu-curve.

Proof of Proposition 4.5. By Proposition 4.10 and then Proposition 4.11, for every F in a neigh-

borhood U ⊂ U2 of F3, the unstable manifold W u(S) contains a uu-curve C ⊂ D
2 × D(0, 1/2).

Therefore by Proposition 3.3, there is a nonempty intersection between C ⊂ W u(S) and W s
loc(K).

This ends the proof of Proposition 4.5.

Proof of the Main Theorem. It follows immediately from Proposition 4.1 and Proposition 4.5.

Proof of the main Corollary. We just take Ud := U ∩Autd(C
3) with d := degF3 to conclude.
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