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2nd Guénaël CABANES
LIPN, UMR 7030
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Abstract—Unsupervised learning, particularly clustering, in-
volves systematically categorizing objects based on inherent sim-
ilarities. As a popular research field of clustering, multi-view data
analysis enriches clustering by considering diverse perspectives.
Persistent challenges in dynamic multi-view clustering focus on
optimizing speed and maintaining quality with an increasing
number of views. Motivated by the success of recent researches,
we propose in this article an advanced framework of incremental
multi-view clustering based on barycentric coordinates repre-
sentation (IMBC). This framework refines object representation
of each view and saves only the first m views as base kernels,
then learns a consensus kernel. Updated m base kernels can
be obtained via the combination of previous m base kernels
and the representation of a new view. The proposed approach
also offers the feasibility of incremental multi-modal clustering:
its versatility extends to various data types and modalities,
enhancing its applicability in diverse scenarios. Through the
implementation of various standard clustering algorithms on
the consensus kernel, our proposed approaches demonstrate
efficient computational processing, achieving comparable clus-
tering performance to existing approaches while incurring lower
computational time.

Index Terms—multi-view clustering, incremental multi-view
clustering, barycentric coordinate representation

I. INTRODUCTION

Clustering [1] and classification [2] are fundamental con-
cepts in machine learning [3] that both aim to group objects;
however, they differ in how the training model incorporates
real labels. Classification typically falls under supervised
learning [4], where the model groups objects based on prede-
fined labels. In contrast, clustering is a form of unsupervised
learning [5], where the model groups different objects based
on their physical distance or similarity, relying solely on the
characteristics of the objects themselves. In this case, no prior
knowledge of real labels is available prior to training. The
primary goal of clustering is to group similar objects into the
same cluster, while separating dissimilar entities into different
clusters. It can be used in various applications, including
biological data analysis [6], recommendation systems [7],
image processing [8], and more.

This work was funded through the ANR project Pro-Text (project N°
ANR-18-CE23-0024-01). More details are available at: https://pro-text.huma-
num.fr/le-projet/

Multi-view clustering [9] is a popular sub-area of clustering
that involves examining an object or dataset from multiple
perspectives, rather than relying on a single point of view.
Individual objects may be characterized by multiple sets of
features. Instead of grouping them by a single aspect of obser-
vation, considering the complementary information provided
by different sets of features has the potential to improve
clustering performance. Despite the progress made in multi-
view clustering algorithms, there still lacks approaches that
address the challenge of dynamic multi-view clustering. In
particular, this paper focuses on increasing the speed of the
clustering process while maintaining quality in the context of
a dynamic increase in the number of views over time.

Motivated by the achievements highlighted in recent re-
search, in particular the work entitled ”Incremental Multi-
view Spectral Clustering” [10], we present a comparable
framework based on the use of the barycentric coordinate
(BC) formalism [11]. BC representation offers distinct ad-
vantages over alternative representation methods, including
computational simplicity, robustness, and stability. The pro-
posed approach integrates object representation while facili-
tating dynamic learning of a unified representation for current
views. It reduces computational complexity in both time and
space, overcoming a common problem in dynamic multi-view
clustering algorithms. Indeed, since different views correspond
to different representation spaces that cannot be directly com-
pared, existing approaches often build a unified representation
by computing a similarity matrix between all objects in the
views, which can lead to a high level of complexity in terms of
time and space, while the new approach creates a much more
efficient unified representation space. In addition, since the BC
representation depends only on the distance between objects
that allows considering multiple similarity measures across
different views, thus extending its the applicability of proposed
approach to a wide range of data types and modalities.

In the remainder of this paper, we present a brief overview
of the barycentric coordinate formalism, clustering, multi-view
clustering, and incremental multi-view clustering in Section II,
then introduce the framework IMBC and the various proposed
approaches in Section III. Finally, We discuss the experimental
results in Section IV, before concluding in Section V.

https://pro-text.huma-num.fr/le-projet/
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II. RELATED WORK

A. Clustering

Unlike classification, clustering involves grouping objects
with the specific definition of similarity or distance between
objects varying as needed. Thus, training a clustering model
doesn’t require real labels. For example, it’s possible to group
people who are physically close to each other, but it’s difficult
to summarize the common characteristics of each group using
simple descriptions. This could also aid in addressing the
challenge of having a restricted set of labels available to
describe data in classification models.

Known as one of the most widely used clustering algo-
rithms, KMeans [12] works by iteratively updating k cluster
centers using the means of data points within the same
cluster, this iterative process ensures continuous refinement
and optimization of the cluster assignments. The goal is to
minimize the sum of the distances between each point and its
associated cluster center. It is simple to implement with low
time complexity and its strengths are particularly evident in
clusters with spherical shapes.

Meanwhile, Spectral clustering [13] is also famous for
well-performed clustering quality, it reduces complex multi-
dimensional datasets into k clusters of similar data in rarer
dimensions. It does not make strong assumptions about the
shape of the clusters, which means it works well on clusters
with arbitrary shapes. The detailed structure of spectral clus-
tering could be found in Algo. 1. However, the drawback of
this algorithm is that it is relatively slow compared to other
clustering algorithms such as KMeans.

Algorithm 1: Spectral clustering algorithm

Data: Dataset X = {x1, · · · , xn} ∈ Rn×f , k
Result: Clustering result C ∈ Rn×1

S ∈ Rn×n ← Compute similarity matrix.
W ∈ Rn×n ← Construct sparse adjacency matrix.
L ∈ Rn×n ← Compute Laplacian matrix by using W .
µ ∈ Rk×n ← Compute the first k eigenvectors of L.
C ← KMeans(µT , k) to obtain partition result.

KASP [14] is one of the algorithms that accelerates the
speed of sampling-based spectral clustering, Algo. 2 shows the
structure. This algorithm works by initially applying KMeans
to the entire dataset to identify a fixed number ϕ (ϕ > k) of
cluster centers and gather information about the assignment
of each data point to its corresponding center. Subsequently,
spectral clustering is applied to these cluster centers to group
them into k clusters. The final partition matrix for each data
point can be determined by identifying the cluster to which its
cluster center is assigned. As the number of sub-cluster centers
decreases, the complexity of spectral clustering is reduced.

B. Multi-view clustering

Unlike traditional clustering, multi-view clustering groups
diverse objects based on multiple sets of features rather than a

Algorithm 2: KASP algorithm

Data: Dataset X = {x1, · · · , xn} ∈ Rn×f , k, ϕ
Result: Clustering result C ∈ Rn×1

C K ∈ Rn×1, µ K ∈ Rϕ×f ← KMeans(X,ϕ) to
obtain partition result and cluster centers.

C S ∈ Rϕ×1 ← Spectral clustering(µ K, k).
C ← Update C K by looking at the membership of
µ K in C S.

single set. These approaches provide more complementary in-
formation by incorporating different perspectives. For instance,
documents written in various languages, with each language
considered as an individual ’view,’ could be grouped based on
the information provided by different languages. Depending
on the modes of collaboration between different views.

Co-training clustering, as described in works such as [15]–
[17], involves clustering multi-view data through a co-training
strategy, clustering results from different views are combined
using prior knowledge or by learning from each other. Through
iterative implementation of this strategy, clustering results
from all views converge, leading to a comprehensive consensus
on the entire dataset. Algorithms employing a co-training style
focus on achieving consensus among multiple views, with the
goal of maximizing mutual agreement.

Multi-kernel clustering (such as [18]–[20]), originally de-
signed to expand the search space for potential kernel func-
tions and achieve robust generalization, has found extensive
application in dealing with multiview data. In this method,
predefined kernels corresponding to different views are used
and then integrated to improve clustering.

Graphs, or networks, typically represent relationships be-
tween objects. In a multi-view context, each graph captures
partial data information, assuming a common underlying clus-
tering structure. These graphs reinforce each other’s correla-
tions. Multi-view graph-based clustering (such as [21]–[23])
aims to find a fusion graph across all views and applies graph-
cut or spectral clustering for the final result.

The key idea of multi-view subspace clustering (such as
[24]–[26]) is to learn a common feature representation across
all feature subspaces of different views, thus simplifying the
clustering process. It involves creating a unified representation
for all views, derived from multiple subspaces, to efficiently
handle high-dimensional data in clustering models.

C. Incremental multi-view clustering

Although there are many approaches that helps to solve
the problem of multi-view clustering, but when it comes
to the dynamic aspect, there are few proposed approaches
that consider the cluster structure when the number of views
increased. However, in real application, this can help to free up
memory space during the clustering process, instead of storing
all the data information as in static multi-view clustering, it is
sufficient to keep only the current model information.

Recently, [10] introduced incremental multi-view spectral
clustering (IMSC), that doesn’t need to wait for the complete



collection of all views. Instead, it learns consensus clustering
results while arriving new views. The basic concept is to define
m base kernels (Gaussian kernels) from m initial views, and
to obtain a consensus kernel from the first m base kernels.
Then, spectral embedding is applied to this consensus kernel
to determine a consensus embedding result. When a new view
arrives, a new consensus kernel is computed using the m
base kernels and the Gaussian kernel of the new view. Then,
a consensus spectral embedding is obtained with respect to
the spectral embedding of the new consensus kernel and the
previous embedding result. The consensus kernel could be
used to update the m base kernels for the next incoming view.
The clustering result could be obtained by applying KMeans
on consensus spectral embedding. To improve efficiency in
terms of time and space complexity, instead of computing the
Gaussian kernel of each view directly, the authors construct a
low-rank approximation of the Gaussian kernels using random
Fourier features [27] and perform a low-rank singular value
decomposition (SVD) [28] accordingly. The diagram in Fig.1
briefly explains the process.

Fig. 1. Diagram IMSC

In 2021, [29] presented an incremental multi-view spectral
clustering framework that incorporates Sparse and Connected
Graph Learning (SCGL). This method differs from the in-
cremental Gaussian kernel adaptation in IMSC by iteratively
updating the sparse similarity matrix upon the arrival of each
new view, keeping only a single similarity matrix as base
kernel which reduces the complexity in terms of time and
memory space. To enhance clustering effectiveness, the model
integrates sparse graph learning and connected graph learning,
aiming not only to reduce noise but also to preserve accurate
connections within clusters. Later in 2022, [30] proposed
a continual multi-view clustering (CMVC) approach which
works by updating a partition matrix during the incremental
process. The process can be outlined as follows: first, a
partition matrix is constructed based on the initial view, which
is then referred to as the consensus partition matrix. Next,
by integrating the incoming new view with the previous
consensus partition matrix, a consensus partition matrix is
learned. Finally, apply KMeans clustering on this consensus

partition matrix to derive the final clustering results.

D. Barycentric coordinate representation

In geometry, a barycentric coordinate (BC) system [31]
is used to specify the location of a point with respect to a
simplex. For example, a triangle consists of three vertices
(s1, s2, s3), and for all points xi ∈ X in Euclidean space,
there exist scalars βi = [β1

i , β
2
i , β

3
i ] that satisfy the relation

xi =
∑3

j=1 β
j
i sj where

∑3
j=1 β

j
i = 1. And in general,

for p-simplexes, xi =
∑p

j=1 β
j
i sj where

∑p
j=1 β

j
i = 1. If

there is at least one negative scalar, the point is outside
the simplex. Otherwise, if they are all positive, the point is
inside. These scalars form a coordinate called the barycentric
coordinate (BC) of the corresponding data point, and the
vertices are called support points. To ensure that data points
are projected into the same barycentric coordinate system,
the support points must remain constant for all data points
during the projection process. This consistency ensures that the
barycentric coordinates of different data points are comparable
and can be analyzed in the same coordinate system.

Recent research [11] suggests that the BC representation βi

of a point xi could be found by following the equation:

βi = A−1 ∗Mi, (1)

where A is a matrix with size p × p and Mi = [d(xi, s1) −
d(xi, s2), ..., d(xi, s1)− d(xi, sp), 1].

A =

d(s1, s1)− d(s2, s1) ... d(s1, sp)− d(s2, sp)
... ... ...

d(s1, s1)− d(sp, s1) ... d(s1, sp)− d(sp, sp)
1 ... 1

 . (2)

As shown in Eq.2, d is a dissimilarity measure that must
have properties similar to those of a Euclidean distance.

Since data points are represented by BC, the distances
between the data points must be adjusted based on the BC
system. This adjustment is crucial for clustering tasks, which
are defined as follows:

d2(xi, xj) = −
1

2
(βi − βj)

T ∗Ds ∗ (βi − βj), (3)

where Ds is the dissimilarity matrix between support points.

III. PROPOSED APPROACH

Referring to the framework of recent research, we pro-
posed a similar framework that aims to represent the data
points {X(1), ..., X(m)} of the first m views by the BC
representation {β(1), ..., β(m)}. The m dissimilarity matrices
{D(1)

s , ..., D
(m)
s } between the support points are computed

and stored in memory to be able to compute the distance
between points in BC space when needed, and set as base
kernels ({β(1)

b , ..., β
(m)
b }, {D(1)

b , ..., D
(m)
b }). With these m

base kernels a consensus kernel β
(m)
c (or consensus D

(m)
c )

can be computed. When a new view X(v) arrives, computing
its BC representation β(v) and D

(v)
s , then compute a consensus

kernel of all views β
(v)
c and D

(v)
c , updating m base kernels

({β
′(1)
b , ..., β

′(m)
b }, {D

′(1)
b , ..., D

′(m)
b }) using the new view.

Fig. 2 explains the process, and the details of the algorithm



can be found in Algo. 4. The most important thing to know is
how to learn a consensus kernel and update m base kernels.

Fig. 2. Diagram IMBC

A. Learn a consensus kernel and update base kernels

To calculate the first initial consensus kernel β
(m)
c and

D
(m)
c , only need to minimize the following objective function:

min
β
(m)
c ,D

(m)
c

m∑
i=1

d2(β(m)
c − β

(i)
b ) +

m∑
i=1

||D(m)
c −D(i)

s ||2F ,

with partial derivative, the result obtained is :

β(m)
c =

1

m

m∑
i=1

β
(i)
b , D(m)

c =
1

m

m∑
i=1

D(i)
s , (4)

The new consensus kernel β(v)
c (or D

(v)
c ) and the updated

m base kernels ({β
′(1)
b , ..., β

′(m)
b }, {D

′(1)
b , ..., D

′(m)
b }) are ob-

tained while arriving a new view by minimizing the following
objective function:

min
β
′(1)
b ,...,β

′(m)
b ,β(v)

c ,

D
′(1)
b ,...,D

′(m)
b ,D(v)

c

m∑
i=1

d2(β(v)
c − β

′(i)
b ) + d2(β(v)

c − β(v))

+λ

m∑
i=1

d2(β
′(i)
b − β

(i)
b ) +

m∑
i=1

||D(v)
c −D

′(i)
b ||

2
F

+||D(v)
c −D(v)||2F + λ

m∑
i=1

||D
′(i)
b −D

(i)
b ||

2
F

(5)

where || · ||2F refers to the Frobenius L2-norm and as been
proposed in [10], λ is a balancing parameter.

• Optimizing β
(v)
c (resp. D(v)

b ) by fixing β
(v)
b (resp. D(v)

b ).

β(v)
c =

1

m+ 1
(

m∑
i=1

β
(i)
b + β(v))

D(v)
c =

1

m+ 1
(

m∑
i=1

D
(i)
b +D(v)

s )

(6)

• Optimizing β
′(i)
b (resp. D

′(i)
b ) by fixing β

(v)
c (resp. D(v)

c )
with i ∈ {1, ...,m}

β
′(i)
b =

λβ
(i)
b + β

(v)
c

λ+ 1
, D

′(i)
b =

λD
(i)
b +D

(v)
c

λ+ 1
(7)

The details of this part could be summarized in Algo. 3

Algorithm 3: Learn a consensus kernel and update
base kernels

Data: Current base kernels βb = {β(1)
b , · · · , β(m)

b },
BC representation of new view β(v), λ

Result: Consensus kernel (β(v)
c , D

(v)
c ),

updated base kernels ({β
′(1)
b , ..., β

′(m)
b },

{D
′(1)
b , ..., D

′(m)
b })

Initialize β
′(i)
b = β

(i)
b (1 ≤ i ≤ m)

while Not converge do
Calulate β

(v)
c and D

(i)
b by Eq.6

for t = 1, 2, ...,m do
Update β

′(i)
b and D

′(i)
b by Eq.7

end
end

Algorithm 4: Framework IMBC

Data: Multi-view dataset X = {X(1), · · · , X(v)}, m,
k, p, λ

Result: Clustering result C(v) of X
for t = 1, 2, ...,m do

Construct BC representation β(t) and obtain D
(t)
s

from X(t) using Eq.1.
Set (β(t),D(t)

s ) as t-th base kernel (β(t)
b ,D(t)

b ).
end
Learn an initial consensus kernel (β(m)

c ,D(m)
c ) by Eq.4.

for t = m+ 1,m+ 2, ..., v do
Construct BC representation β(t) and obtain D

(t)
s

from X(t) using Eq.1.
Learn a consensus kernel (β(t)

c ,D(t)
c ) and update m

base kernels (details found in Algo.3).
end
Apply different clustering algorithm (adapted to BC

representation) on β
(v)
c to obtain result C(v).

B. Different clustering on consensus kernel β(v)
c

As been indicated previously, once obtained a consensus
kernel β

(t)
c , different clustering algorithms (such as referred

in II-A) could be applied on it, only need to modify the
algorithms so that they could work on BC system.

BCKMeans as demonstrated in [11], mirrors the KMeans
procedure with one important difference. Instead of the con-
ventional distance calculation between each data point and its
cluster center, the formula 3 is used.

BCSpec follows a process similar to spectral clustering.
However, when computing the similarity matrix, the pair-
wise distance between data points, as given by the formula
3, replaces the standard approach.

BCKASP differs from the standard KASP in its approach.
Instead of applying KMeans to the entire dataset to derive
multiple cluster centers, we randomly select a larger number
of data points as cluster centers. Consequently, the distance
computation is adjusted using the formula 3.



IV. EXPERIMENTS

In this section, we conduct a comprehensive performance
analysis of our proposed framework and relevant approaches
on 9 authentic multi-view datasets commonly addressed in
multi-view clustering research. The evaluation of clustering
performance is based on two external metrics, namely clus-
tering accuracy (ACC) and normalized mutual information
(NMI), both of which are crucial for assessing the alignment
between predicted clusters and groud-truth labels. A higher
metric value indicates better results. In addition, execution
time is considered for comprehensive analysis. To ensure the
reliability and robustness of our scores, the entire testing
process of each approach is repeated 10 times and the mean
along with the standard deviation of the evaluation metrics are
presented as the final results.

A. Datasets description

The datasets used in our study have been discussed in a
variety of previous research and include samples described by
different sets of features and generated by different techniques.
Detailed descriptions and original sources of these datasets
are carefully cited in Tab. I. Before performing any clustering
analysis, we first normalize the data for each feature type to
ensure that all values fall within the range [0,1].

TABLE I
DATASETS SUMMARY

Real multi-view datasets

Name Nb sampels Nb views Nb clusters Nb features/view

MSRCv1 [32] 210 5 7 [24, 576, 512, 256, 254]
ORL [33] 400 3 40 [4096, 3304, 6750]

100-leaves [34] 1599 3 100 [64, 64, 64]
UCIDigit [35] 2000 6 10 [216, 76, 64, 6, 240, 47]

Caltech101-20 [32] 2386 6 20 [48, 40, 254, 1984, 512, 928]
Out-Scene [36] 2688 4 8 [512, 432, 256, 48]

Reuters [37] 18758 5 6 [24892,34251,15506,11547]
NUSWIDE [38] 30000 5 31 [65, 226, 145, 74, 129]

AwA [39] 30475 6 50 [2690,2002,254,2002,2002,2002]

B. Comparison of clustering performance

Our experimental results show our proposed approaches,
including IMBCKMeans, IMBCSpec, and IMBCKASP, which
integrate adapted clustering algorithms (BCKMeans, BCSpec,
BCKASP) discussed in section III-B. These approaches are
compared to the existing algorithms IMSC, SCGL, and
CMVC. We aim for consistency with the source code of these
approaches, minimizing parameter changes and adhering to
their described configurations. Recent research [11] indicates
that while the number of data points p has a limited impact
on quality, it significantly affects time complexity for larger
values. Therefore, we limit p to 50, consistent with IMSC.
The number of base kernels m is set to 2, following the
IMSC approach, and the parameter λ is set to 1, as validated
in the IMSC and SCGL source code. For the IMBCKASP
approach, we set the number of cluster centers as 5×(k+

√
n).

We uniformly set the number of neighbors for K-Nearest
Neighbor to 20 to maintain consistency across approaches.
Instead of using multiple kernel KMeans as in CMVC, we
opt for standard KMeans to derive a partition matrix, thus
ensuring comparability with IMBCKMeans.

TABLE II
EXPERIMENT RESULTS OF DATABASE MSRCV1

Nb view Algo ACC NMI Time
mean std mean std mean std

1

IMSC 0.3605 0.022 0.2552 0.029 0.0264 0.008
SCGL 0.3514 0.016 0.2194 0.012 0.0534 0.065
CMVC 0.3638 0.020 0.2585 0.024 0.0074 0.008

IMBCKMeans 0.3319 0.028 0.2274 0.040 0.0291 0.007
IMBCSpec 0.3552 0.015 0.2735 0.031 0.1159 0.177

IMBCKASP 0.3433 0.022 0.2421 0.016 0.0450 0.014

2

IMSC 0.5471 0.041 0.4707 0.040 0.0476 0.004
SCGL 0.7652 0.074 0.6831 0.044 0.0629 0.017
CMVC 0.4895 0.058 0.3756 0.062 0.1086 0.034

IMBCKMeans 0.5457 0.073 0.4905 0.065 0.0268 0.002
IMBCSpec 0.6638 0.042 0.5958 0.026 0.0419 0.010

IMBCKASP 0.5905 0.051 0.5146 0.038 0.0380 0.001

3

IMSC 0.6814 0.027 0.5941 0.034 0.5239 0.018
SCGL 0.7338 0.002 0.6693 0.011 0.0939 0.009
CMVC 0.6333 0.040 0.5400 0.037 0.2050 0.044

IMBCKMeans 0.6662 0.061 0.5975 0.047 0.0364 0.019
IMBCSpec 0.8338 0.022 0.7332 0.031 0.0442 0.005

IMBCKASP 0.6790 0.048 0.6161 0.044 0.0374 0.001

4

IMSC 0.7181 0.031 0.6280 0.036 0.9345 0.077
SCGL 0.7633 0.032 0.7079 0.014 0.1320 0.010
CMVC 0.6586 0.050 0.5616 0.044 0.3477 0.075

IMBCKMeans 0.5371 0.095 0.5097 0.080 0.0302 0.001
IMBCSpec 0.8038 0.030 0.7033 0.027 0.0427 0.003

IMBCKASP 0.7129 0.070 0.6533 0.046 0.0378 0.004

5

IMSC 0.6795 0.041 0.5961 0.047 1.2632 0.036
SCGL 0.7333 0.000 0.6911 0.000 0.1491 0.007
CMVC 0.6405 0.067 0.5527 0.052 0.4411 0.071

IMBCKMeans 0.6338 0.064 0.5813 0.051 0.0346 0.003
IMBCSpec 0.8200 0.024 0.7221 0.019 0.0429 0.003

IMBCKASP 0.7200 0.031 0.6304 0.027 0.0373 0.001

TABLE III
EXPERIMENT RESULTS OF DATABASE ORL

Nb view Algo ACC NMI Time
mean std mean std mean std

1

IMSC 0.5440 0.022 0.7265 0.011 0.3336 0.022
SCGL 0.6318 0.018 0.7919 0.007 0.1119 0.026
CMVC 0.5148 0.036 0.7165 0.022 0.1013 0.014

IMBCKMeans 0.4658 0.023 0.6895 0.015 0.2336 0.003
IMBCSpec 0.5132 0.028 0.7198 0.014 0.1397 0.009

IMBCKASP 0.3625 0.036 0.5685 0.033 0.1358 0.013

2

IMSC 0.6225 0.039 0.7717 0.018 0.3742 0.022
SCGL 0.7077 0.024 0.8571 0.008 0.2256 0.009
CMVC 0.5327 0.034 0.7290 0.018 0.6138 0.023

IMBCKMeans 0.4822 0.045 0.6831 0.025 0.2399 0.003
IMBCSpec 0.5488 0.019 0.7347 0.017 0.1515 0.014

IMBCKASP 0.3848 0.046 0.5798 0.042 0.1364 0.003

3

IMSC 0.6557 0.026 0.7898 0.016 2.0729 0.148
SCGL 0.6942 0.016 0.8502 0.009 0.3724 0.004
CMVC 0.5883 0.026 0.7687 0.012 1.2253 0.136

IMBCKMeans 0.4758 0.035 0.6674 0.021 0.2520 0.005
IMBCSpec 0.5492 0.023 0.7258 0.014 0.1551 0.005

IMBCKASP 0.3945 0.038 0.5839 0.029 0.1354 0.005

TABLE IV
EXPERIMENT RESULTS OF DATABASE 100-LEAVES

Nb view Algo ACC NMI Time
mean std mean std mean std

1

IMSC 0.6154 0.013 0.7874 0.008 1.8871 0.194
SCGL 0.6560 0.009 0.8241 0.004 1.2800 0.099
CMVC 0.5681 0.022 0.7891 0.007 0.0581 0.004

IMBCKMeans 0.5402 0.020 0.7748 0.008 2.3002 0.027
IMBCSpec 0.6038 0.009 0.7942 0.006 1.3782 0.041

IMBCKASP 0.3572 0.021 0.6248 0.037 1.0630 0.033

2

IMSC 0.7530 0.018 0.8713 0.008 1.5941 0.110
SCGL 0.5311 0.005 0.7722 0.006 3.2241 0.072
CMVC 0.4804 0.021 0.7217 0.010 2.5353 0.159

IMBCKMeans 0.6009 0.026 0.8113 0.010 2.2809 0.034
IMBCSpec 0.6522 0.011 0.8294 0.005 1.4144 0.130

IMBCKASP 0.3927 0.012 0.6538 0.021 1.0409 0.018

3

IMSC 0.8592 0.009 0.9162 0.004 8.5384 0.643
SCGL 0.4529 0.011 0.7064 0.010 5.3927 0.373
CMVC 0.6124 0.018 0.8036 0.008 5.4342 0.574

IMBCKMeans 0.6801 0.026 0.8462 0.012 2.2720 0.030
IMBCSpec 0.7638 0.028 0.8733 0.011 1.3698 0.069

IMBCKASP 0.4230 0.016 0.6533 0.030 1.0559 0.025



TABLE V
EXPERIMENT RESULTS OF DATABASE UCIDIGIT

Nb view Algo ACC NMI Time
mean std mean std mean std

1

IMSC 0.8972 0.007 0.8183 0.012 0.2627 0.012
SCGL 0.8653 0.068 0.8342 0.038 0.7178 0.033
CMVC 0.6684 0.049 0.6593 0.025 0.0376 0.008

IMBCKMeans 0.6754 0.071 0.6588 0.031 0.2907 0.007
IMBCSpec 0.8999 0.009 0.8219 0.011 1.4895 0.011

IMBCKASP 0.7789 0.041 0.7010 0.026 0.7725 0.017

2

IMSC 0.9256 0.007 0.8638 0.010 0.3622 0.010
SCGL 0.9072 0.051 0.8737 0.028 1.8849 0.067
CMVC 0.5978 0.078 0.5717 0.047 0.3604 0.092

IMBCKMeans 0.7472 0.070 0.7416 0.034 0.2891 0.003
IMBCSpec 0.9281 0.015 0.8732 0.018 1.4720 0.013

IMBCKASP 0.8749 0.017 0.7921 0.020 0.7823 0.012

3

IMSC 0.9412 0.008 0.8887 0.010 2.4116 0.364
SCGL 0.9515 0.028 0.9107 0.014 3.0588 0.129
CMVC 0.7190 0.082 0.7191 0.045 0.5616 0.116

IMBCKMeans 0.7890 0.113 0.7777 0.048 0.2925 0.002
IMBCSpec 0.9524 0.006 0.9057 0.008 1.4686 0.013

IMBCKASP 0.8961 0.012 0.8218 0.012 0.7665 0.007

4

IMSC 0.9665 0.004 0.9263 0.007 5.0147 0.442
SCGL 0.7641 0.024 0.7704 0.009 4.3461 0.203
CMVC 0.8008 0.050 0.7803 0.023 0.7699 0.136

IMBCKMeans 0.7375 0.102 0.7629 0.061 0.3336 0.121
IMBCSpec 0.7767 0.051 0.8008 0.025 1.4757 0.013

IMBCKASP 0.7976 0.051 0.7722 0.023 0.7709 0.006

5

IMSC 0.9636 0.006 0.9212 0.009 8.9979 0.700
SCGL 0.9665 0.000 0.9348 0.000 5.4178 0.127
CMVC 0.7907 0.065 0.7906 0.024 1.1426 0.383

IMBCKMeans 0.7719 0.029 0.7646 0.023 0.3015 0.004
IMBCSpec 0.9486 0.004 0.9006 0.007 1.4770 0.016

IMBCKASP 0.8731 0.028 0.8042 0.024 0.7692 0.005

6

IMSC 0.9579 0.005 0.9099 0.009 12.8876 0.878
SCGL 0.9825 0.000 0.9584 0.000 6.9811 0.449
CMVC 0.7960 0.084 0.7821 0.044 2.3709 0.657

IMBCKMeans 0.7572 0.072 0.7454 0.036 0.3061 0.003
IMBCSpec 0.8744 0.053 0.8506 0.020 1.4776 0.021

IMBCKASP 0.8193 0.038 0.7607 0.032 0.7713 0.009

TABLE VI
EXPERIMENT RESULTS OF DATABASE CALTECH101-20

Nb view Algo ACC NMI Time
mean std mean std mean std

1

IMSC 0.2357 0.009 0.2815 0.006 0.5581 0.050
SCGL 0.2948 0.017 0.3408 0.007 1.0144 0.032
CMVC 0.2717 0.008 0.2813 0.003 0.0404 0.016

IMBCKMeans 0.2324 0.008 0.2706 0.010 0.4187 0.032
IMBCSpec 0.2371 0.016 0.2810 0.005 2.2014 0.025

IMBCKASP 0.2363 0.010 0.2629 0.010 1.0388 0.016

2

IMSC 0.3035 0.010 0.3855 0.007 0.6204 0.066
SCGL 0.4002 0.026 0.4478 0.008 2.9690 0.066
CMVC 0.3174 0.032 0.3110 0.024 0.7290 0.113

IMBCKMeans 0.3243 0.025 0.3913 0.013 0.4661 0.049
IMBCSpec 0.3070 0.021 0.4039 0.008 2.1731 0.020

IMBCKASP 0.3202 0.025 0.3792 0.009 1.0370 0.009

3

IMSC 0.3288 0.009 0.4064 0.011 3.5718 0.244
SCGL 0.4984 0.011 0.5057 0.006 4.9655 0.260
CMVC 0.3418 0.012 0.3670 0.010 1.0078 0.331

IMBCKMeans 0.3618 0.030 0.4195 0.016 0.4404 0.038
IMBCSpec 0.3346 0.023 0.4446 0.011 2.1968 0.034

IMBCKASP 0.3370 0.017 0.3999 0.012 1.0388 0.014

4

IMSC 0.3662 0.013 0.4527 0.009 6.8241 0.637
SCGL 0.4787 0.027 0.5617 0.012 6.9670 0.307
CMVC 0.4005 0.036 0.4710 0.014 1.6648 0.532

IMBCKMeans 0.3712 0.035 0.4879 0.011 0.4292 0.032
IMBCSpec 0.3602 0.033 0.5082 0.014 2.1723 0.020

IMBCKASP 0.3653 0.028 0.4647 0.010 1.0277 0.011

5

IMSC 0.3662 0.015 0.4528 0.016 11.5651 0.518
SCGL 0.5529 0.015 0.6114 0.006 8.8589 0.264
CMVC 0.4124 0.026 0.5100 0.019 1.8780 0.138

IMBCKMeans 0.3400 0.030 0.4607 0.009 0.4435 0.054
IMBCSpec 0.3554 0.027 0.4913 0.016 2.1852 0.018

IMBCKASP 0.3595 0.019 0.4554 0.010 1.0444 0.018

6

IMSC 0.3738 0.012 0.4606 0.014 20.5039 2.810
SCGL 0.5447 0.011 0.6189 0.004 10.7139 0.323
CMVC 0.4121 0.023 0.5172 0.014 2.4488 0.179

IMBCKMeans 0.3595 0.038 0.4581 0.014 0.4857 0.043
IMBCSpec 0.3788 0.025 0.4816 0.016 2.1992 0.022

IMBCKASP 0.3641 0.024 0.4373 0.020 1.0384 0.011

In the case of small real-world datasets, as shown in Tab.
II to VII, we observe that the clustering quality of all three
proposed approaches is close to that of the existing approaches.

In particular, IMKCSpec occasionally outperforms the others.
Although IMBCKMeans and IMBCKASP show slightly lower
performance, their efficiency stands out, especially on larger
datasets. Due to page limitations, we present an example using
the Out-Scene dataset in Figure VII.

TABLE VII
EXPERIMENT RESULTS OF DATABASE OUT-SCENE

Nb view Algo ACC NMI Time
mean std mean std mean std

1

IMSC 0.5528 0.024 0.4003 0.017 0.4456 0.034
SCGL 0.6086 0.033 0.4988 0.014 1.3191 0.048
CMVC 0.5058 0.027 0.3983 0.012 0.1429 0.069

IMBCKMeans 0.4866 0.036 0.3668 0.026 0.2075 0.018
IMBCSpec 0.5239 0.013 0.4127 0.006 2.7961 0.058

IMBCKASP 0.5219 0.018 0.3820 0.013 1.1613 0.008

2

IMSC 0.6681 0.046 0.5429 0.019 0.6477 0.041
SCGL 0.6683 0.045 0.5538 0.014 3.7220 0.150
CMVC 0.5170 0.062 0.4152 0.031 0.3993 0.088

IMBCKMeans 0.6108 0.039 0.4995 0.021 0.2103 0.015
IMBCSpec 0.6769 0.021 0.5648 0.009 2.7597 0.025

IMBCKASP 0.6200 0.044 0.5022 0.028 1.1706 0.032

3

IMSC 0.6339 0.018 0.5599 0.016 3.2648 0.578
SCGL 0.6428 0.023 0.5703 0.013 6.0143 0.051
CMVC 0.5375 0.053 0.4619 0.023 0.7618 0.117

IMBCKMeans 0.5944 0.040 0.5231 0.026 0.1855 0.005
IMBCSpec 0.6372 0.017 0.5576 0.011 2.7522 0.049

IMBCKASP 0.6495 0.030 0.5355 0.018 1.1727 0.012

4

IMSC 0.6076 0.014 0.5120 0.014 9.2126 1.741
SCGL 0.6226 0.028 0.5491 0.017 8.4814 0.225
CMVC 0.5490 0.032 0.4463 0.010 1.1359 0.152

IMBCKMeans 0.5822 0.048 0.4878 0.025 0.2080 0.020
IMBCSpec 0.6202 0.036 0.5238 0.016 2.7817 0.043

IMBCKASP 0.5840 0.027 0.4721 0.012 1.1734 0.015

TABLE VIII
EXPERIMENT RESULTS OF DATABASE REUTERS

Nb view Algo ACC NMI Time
mean std mean std mean std

1
CMVC 0.3817 0.087 0.1199 0.095 211.9843 215.688

IMBCKMeans 0.4546 0.026 0.2588 0.032 0.4358 0.023
IMBCKASP 0.3713 0.056 0.1468 0.074 19.9197 0.103

2
CMVC 0.4419 0.049 0.2176 0.079 420.7973 202.024

IMBCKMeans 0.4354 0.023 0.2485 0.017 0.4544 0.022
IMBCKASP 0.4082 0.058 0.1713 0.054 20.0633 0.337

3
CMVC 0.4355 0.065 0.2174 0.070 617.0122 275.661

IMBCKMeans 0.4344 0.027 0.2340 0.028 0.4638 0.016
IMBCKASP 0.3478 0.051 0.1240 0.062 20.1195 0.340

4
CMVC 0.4273 0.071 0.2173 0.082 587.7670 334.487

IMBCKMeans 0.4339 0.024 0.2325 0.034 0.4876 0.015
IMBCKASP 0.3784 0.053 0.1542 0.055 19.9955 0.088

5
CMVC 0.4260 0.048 0.2229 0.052 798.8100 305.825

IMBCKMeans 0.4637 0.030 0.2535 0.029 0.5230 0.024
IMBCKASP 0.4013 0.066 0.1745 0.060 20.1272 0.125

TABLE IX
EXPERIMENT RESULTS OF DATABASE NUSWIDE

Nb view Algo ACC NMI Time
mean std mean std mean std

1 CMVC 0.1094 0.004 0.0816 0.001 0.9877 0.186
IMBCKMeans 0.1065 0.003 0.0784 0.002 3.0580 0.059

2 CMVC 0.1182 0.006 0.0846 0.001 7.4429 0.512
IMBCKMeans 0.1118 0.004 0.0939 0.003 3.2001 0.110

3 CMVC 0.1155 0.004 0.0884 0.002 13.5399 0.628
IMBCKMeans 0.1159 0.003 0.1030 0.003 3.1157 0.067

4 CMVC 0.1196 0.003 0.0965 0.002 18.6937 0.365
IMBCKMeans 0.1280 0.003 0.1174 0.005 3.2733 0.149

5 CMVC 0.1338 0.006 0.1094 0.003 24.1099 0.980
IMBCKMeans 0.1231 0.008 0.1100 0.006 3.4435 0.082

In the case of large real datasets, the results are presented
in Tab. VIII to X, our evaluation focuses primarily on CMVC,
IMBCKMeans, and IMBCKASP. This choice is due to the sub-
stantial computational requirements associated with spectral
clustering-based methods such as IMSC, SCGL, and IMBC-
Spec, which requires significant time and space. Consequently,



Fig. 3. Experiment results of dataset Out-Scene

Fig. 4. Experiment results of dataset Reuters

Fig. 5. Experiment results of dataset AwA

the clustering quality evaluated on Reuters dataset (see Fig.
VIII) of IMBCKMeans occasionally exceeds that of CMVC.

TABLE X
EXPERIMENT RESULTS OF DATABASE AWA

Nb view Algo ACC NMI Time
mean std mean std mean std

1 CMVC 0.0760 0.002 0.1041 0.004 39.8712 7.087
IMBCKMeans 0.0868 0.003 0.1314 0.009 5.5635 0.287

2 CMVC 0.0856 0.004 0.1250 0.009 88.7627 5.811
IMBCKMeans 0.1043 0.004 0.1906 0.009 5.7563 0.271

3 CMVC 0.0930 0.004 0.1646 0.009 95.1516 9.310
IMBCKMeans 0.1311 0.006 0.2597 0.006 6.1558 0.390

4 CMVC 0.0920 0.004 0.1608 0.009 140.7533 8.392
IMBCKMeans 0.1127 0.003 0.2070 0.007 5.8596 0.107

5 CMVC 0.0919 0.002 0.1506 0.006 195.6748 7.649
IMBCKMeans 0.0982 0.004 0.1687 0.008 5.9960 0.188

6 CMVC 0.1000 0.003 0.1657 0.006 238.2173 11.870
IMBCKMeans 0.1279 0.005 0.2445 0.006 6.4769 0.605

Although IMBCKASP has slightly lower performance, it still
leads to a lower complexity. Then, we focus on compar-
ing CMVC and IMBCKMeans on larger datasets such as
NUSWIDE and AwA, both of which use KMeans-based
approaches. IMBCKMeans consistently outperforms CMVC

in terms of clustering quality, as shown in Fig. X. While the
TABLE XI

ACC RESULTS BY CHANGING DIFFERENT ORDER OF VIEWS

Datasets Algo Order 1 Order 2 Order 3
mean std mean std mean std

MSRCv1
IMBCKMeans 0.6384 0.081 0.5930 0.080 0.6175 0.078
IMBCKASP 0.6052 0.050 0.5682 0.044 0.5450 0.048
IMBCSpec 0.7769 0.032 0.7697 0.025 0.7755 0.030

ORL
IMBCKMeans 0.4876 0.025 0.4860 0.025 0.4833 0.027
IMBCKASP 0.3995 0.028 0.3831 0.034 0.3870 0.041
IMBCSpec 0.5392 0.022 0.5451 0.034 0.5377 0.031

100-leaves
IMBCKMeans 0.6138 0.023 0.5579 0.020 0.6203 0.025
IMBCKASP 0.3959 0.023 0.3703 0.016 0.3924 0.018
IMBCSpec 0.6507 0.013 0.6507 0.017 0.6295 0.014

UCIDigit
IMBCKMeans 0.7008 0.054 0.7414 0.066 0.7170 0.082
IMBCKASP 0.8162 0.046 0.7611 0.040 0.8434 0.043
IMBCSpec 0.8708 0.019 0.7302 0.034 0.8600 0.044

Caltech101-20
IMBCKMeans 0.3408 0.028 0.3519 0.028 0.3705 0.030
IMBCKASP 0.3288 0.024 0.3405 0.027 0.3455 0.023
IMBCSpec 0.3648 0.029 0.3677 0.027 0.3684 0.023

Out-Scene
IMBCKMeans 0.5723 0.033 0.5875 0.042 0.5227 0.035
IMBCKASP 0.4590 0.030 0.5310 0.025 0.4784 0.031
IMBCSpec 0.5461 0.027 0.4984 0.025 0.5365 0.029

Reuters IMBCKMeans 0.4475 0.024 0.4407 0.020 0.4452 0.029
IMBCKASP 0.3868 0.061 0.3588 0.051 0.3668 0.053

NUSWIDE IMBCKMeans 0.1208 0.004 0.1225 0.004 0.1231 0.005

AwA IMBCKMeans 0.0990 0.003 0.0926 0.003 0.1255 0.004



time required is comparable for a small number of views, there
is a significant difference as the number of views increases.

Additionally, we analyzed the effect of varying the order of
the views across all datasets by systematically shuffling the
views three times. The results in Tab. XI show that clustering
quality remains consistent regardless of view order.

V. CONCLUSION

In this paper, we present a novel framework, Incremental
Multi-View Clustering using Barycentric Coordinate Repre-
sentation (IMBC), which facilitates the incremental addition
of new views during the learning process. Unlike conventional
multi-view methods that aim to achieve clustering on the
collection of all views, our approach constructs a unified
barycentric coordinate (BC) representation for the current
views. Inspired by the IMSC algorithm, IMBC iteratively
integrates new views and updates the consensus BC rep-
resentation without computing full similarity matrices. By
applying adapted standard clustering algorithms to the BC
system on the final consensus BC representation, our experi-
mental results demonstrate comparable clustering performance
to existing methods, while significantly reducing time and
memory complexity from quadratic to linear. Future work will
explore the application of IMBC in incremental multimodal
clustering scenarios, offering a promising approach that goes
beyond traditional multi-view clustering by considering differ-
ent modalities such as text, image, or audio.
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