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A MobileViT-based Detection of Anomaly in Temperature of
Nuclear Power Plant Core

Rémi Cogrannea

aTroyes University of Technology, Troyes, France

ABSTRACT

This paper presents a simple model based on MobileViT-v2 for temperature monitoring within a nuclear power
plant. Specifically, we propose utilizing MobileNet-v2 to detect a critical accident: a total and instantaneous
blockage. We model the temperature effects of such an event and train a MobileViT-v2 model for detection. The
trained classifier’s results are then used in a sequential procedure to detect blockage as quickly and reliably as
possible. We compare the performance of two sequential detection methods, namely sliding window and CUSUM,
in terms of mean detection delay and probability of detection before a prescribed maximum detection delay.
Experimental results, using actual temperature measurements from the Superphénix power station, demonstrate
the effectiveness of the proposed detection method.

Keywords: Detection, Sequential methods, CUSUM, Empirical evaluation, Artificial Inteligence, Image pro-
cessing

1. INTRODUCTION

Critical infrastructure monitoring is a top priority due to the severe consequences of potential incidents. Most
countries, including those in the EU and US, have established offices and norms for critical national infras-
tructure protection, such as the EU Critical Infrastructure Protection (EUCIP) and US Critical Infrastructure
Protection (CIP) programs. Among critical infrastructure, nuclear power plants are particularly sensitive due
to the significant impact of any malfunction. This is especially true for new reactor types, such as the Sodium-
cooled Fast Reactor (SFR), which is one of six models selected by the Generation IV International Forum (GIF)
for future nuclear power plants.1,2 Despite rigorous development processes, safety and reliability can still be
challenged by extremely unlikely events, such as core cooling incidents. One such critical incident is the Total
and Instantaneous Blockage (TIB), which, although extremely unlikely, can lead to the melting of several reactor
rods if undetected. This paper focuses on the early detection of TIB. Change detection in complex systems,
including thermal incidents, has been extensively studied in various fields, such as finance, econometrics, and
manufacturing. In this paper, we address the general problem of abrupt change detection within a complex
critical infrastructure in real time. Real-time monitoring of the nuclear reactor’s core temperature is essential
for detecting overheating and identifying various incidents, some of which are less obvious. In this operational
context, the highest priority is to ensure the reliability of the detection system, requiring a detector with well-
established statistical properties that guarantee a low false alarm rate and quick detection with minimal delay.
In this context, we propose an effective use of autoencoders to model the temperature of nuclear cores, capturing
complex temporal dependencies with precision. This approach enables the integration of statistical detection
theory, allowing for accurate blockage detection. We believe that the combination of these two approaches offers
a significant contribution to possible applications in a wide range of problems. The present paper is organized as
follows. Section 2 provides a brief overview of the specific thermal anomaly event we aim to detect, introduces
the main difficulties and the operational constraints. Section 3 states the problem of the quickest detection of
coolant flow blockage, considering the very weak heat anomaly at the location of the temperature probes. The
original method we had designed is presented and explained in detail in Section 4 which describes both the
MobileNet-v2 based model for the detection of blockage and its use for sequential detection methods. Then
Section 5 present and analyse the numerical results for both the detection of the blockage and the sequential
detection methods. Finally, the Section 6 concludes the paper.
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2. DESCRIPTION OF THE CONTEXT

The Total and Instantaneous Blockage (TIB) event is a critical scenario that the proposed method aims to detect.
This section provides an overview of the underlying challenges associated with TIB and introduces the notation
used throughout the paper.

Figure 1 illustrates the structure of a Sodium-cooled Fast Reactor (SFR), highlighting the key components
involved in the TIB event. The core consists of nuclear fuel rods surrounded by a coolant, which transfers heat to
the alternator to generate electricity. Temperature measurements are taken from the output coolant, providing
an indirect indication of rod temperatures. However, direct measurement of individual rods is impractical.

A TIB event occurs when the coolant flow is suddenly and completely blocked, causing the actual rod
temperature to increase rapidly while the measured temperature remains relatively constant. As the coolant
flow ceases, the measured temperatures no longer accurately reflect the actual rod temperatures. Although the
temperatures increase due to thermal conductivity, the effect is subtle and gradual. If left undetected, this can
lead to nuclear core melting and potentially catastrophic consequences. A notable example of TIB occurred on
October 5, 1966, at the FERMI-1 reactor in Michigan, USA. According to the report,3 during power ascension,
zirconium plates at the bottom of the reactor vessel became loose, blocking sodium coolant flow to some fuel
subassemblies. Two subassemblies began to melt, prompting a manual shutdown of the reactor.

Detecting TIB poses significant challenges, primarily due to the following difficulties:

• Temperature modelling: Accurately modelling the temperature of a nuclear power plant is extremely
challenging, as it is influenced by numerous factors, including control rods, power adjustments, and external
conditions.

• Weak signal detection: The impact of total blockage on temperatures produces a very weak initial signal,
making detection even more challenging.

• Reliability requirements: The detection method must meet stringent reliability criteria, ensuring that the
detection delay is below a critical threshold and the false alarm rate is extremely low to avoid unnecessary
emergency shutdown procedures.

• Quickest possible detection: When the total blockage occurs, it is crucial to detect this event as quickly as
possible. More precisely, a maximal detection delay is generally prescribed after which fatal consequences
are inevitable, such as the partial melting of the core of the nuclear power plant.

To address these challenges, a highly accurate model of the temperature of all rods under normal operating
conditions is required. Additionally, the model must be computationally efficient to enable real-time monitoring.
Furthermore, some parameters, such as outside temperature and humidity, are not precisely known, adding
complexity to the problem. Last but not least, we must detect a weak signal as quickly as possible. To address
all these difficulties, the present paper proposes an original method based on the MobileViT-v2 deep learning
model used in a sequential detection procedure.

2.1 A Brief Review on the Quickest Detection Problem

The traditional approach to sequential detection focuses on minimizing the average detection delay. However, in
this case, we aim to maximize detection under a strict maximal delay constraint. This problem is discussed in
more detail in the present section.

Real-time monitoring of nuclear rod temperatures is crucial for detecting blockages. This sequential detection
setting involves analysing data one-by-one as they are received. Let Ti;x,y denote the temperature of the rod at
location (x, y) ∈ X at time i ∈ [1, . . . , I]. The temperature surface of all p rods at time i is denoted by Ti ∈ Rp.
The goal is to model this complex surface accurately to distinguish regular changes from those induced by TIB.
The sequential problem can be stated as follows:

H0 Ti ∼ Pθi
∀i ≤ I (1)

H1,ν Ti ∼

{
Pθi

∀i < ν

Pθi
+ ai−ν ∀i ∈ ν, . . . I,

(2)
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Figure 1: Illustration of the overall design of an SFR nuclear reactor, here using a pool architecture emphasizing
the location of thermocouples with respect to the possible blockage. Source: based on an image in the public
domain from www.Gen-4.org.

where Pθi
is a known distribution parametrized by θi describing the regular rod’s temperature, and ν is the

(unknown) time of change point. The quickest detection means that upon occurrence, hypothesis H1,ν must be
detected with minimal delay I−ν. The distribution parameter an represents the temperature drift after the TIB
occurs and, of course, it changes over time. Note that the detection problem is complex because hypothesis H1,ν

is composite, meaning that at each time i there are many possible possibilities for the change point, leading to
different alternative hypotheses for the occurrence of the blockage. A sequential detection scheme is a stopping
rule S on T1,T2, . . . ,Ti that indicates when to take a final decision. The stopping time tS is the first time i
at which the stopping rule S decides that the change point ν has been reached. False alarms occur if tS ≤ ν,
and the detection delay tS − ν should be minimized. Two criteria are widely used for sequential detection: the
Lorden criterion, which focuses on the worst possible detection delay

sup
ν∈N

supE [tS − ν] . (3)

and the Bayesian approach, which considers that the change point ν is drawn from a known statistical distribution
π : πk = P[ν = k], k ∈ N, and minimizes the average detection delay

Eπ [tS − ν] . (4)

However, in our case, neither the worst detection delay nor the average detection delay are relevant criteria. The
change point is a deterministic but unknown value, and the goal is to minimize the probability that the change
point is detected with a prescribed strict maximal delay. This constraint is dictated by the operational context:
if the TIB is not detected within 6 seconds, the core begins to melt, causing irreversible damage. Our goal is
to find a stopping rule such that the worst probability of detecting a change point ν with maximal delay M is



maximized. The power function of the stopping rule S is:

β
(M)
S = inf

ν∈N
P[tS < ν +M |tS ≥ ν]. (5)

Additionally, the largest probability of false alarm over a run length of L observations is:

α
(L)
S = sup

i∈N
P[tS ∈ i− L+ 1, . . . , i|ν > i]. (6)

To achieve this, we will use a sliding window likelihood ratio test (SW-LRT) which has been shown to be optimal
for the worst possible power function (5), over all possible stopping time ν, under a prescribed mean time to
false alarm (6), see details in4–6 and the references therein. Before presenting the SW-LRT detection procedure
in more detail, we need to explain how to deal with the nuisance parameters that normal temperatures are.

3. DETECTION OF TOTAL AND INSTANTANEOUS BLOCKAGE:
STATEMENT OF THE PROBLEM

To understand better the contributions of this paper, this section outlines how we tackled the three primary
difficulties mentioned in Section 2. Firstly, we discuss how to handle nuisance parameters in Section 3.1. Secondly,
we present the model for the anomalous temperature caused by a blockage in Section 3.2.

3.1 Dealing With Nuisance Parameters

Handling nuisance parameters is a crucial issue in statistical detection, as discussed in.7,8 A common approach is
to assume linearity, which simplifies the problem. Specifically, we assume that under normal operating conditions,
the temperature at time index i of all rods can be modelled as:

Ti ∼ N (µi, σ
2Ip), (7)

where µi is the expected value of all rods’ temperature at index time i, σ2 is the variance of all rods, and Ip is
the identity matrix of size p×p with p being the number of rods. The linear nuisance parameters model assumes
that the average values of temperature can be represented with a small set of basis vectors:

Ti ∼ N (Hθi, σ
2Ip), (8)

where H is a known full-column rank matrix of size p× q and θ ∈ Rq is a vector representing the q-dimensional
nuisance parameter. This model has been widely used in signal processing due to its simplicity and accuracy in
several applications.

Note that when a blockage occurs, it creates an anomaly denoted am,n] in the temperature of the rods at
location (m,n), see section 3.2 and, therefore, the statistical model of the core temperature becomes:

Ti ∼ N (Hθi + am,n, σ
2Ip), (9)

Under this model, everything that falls within the column space spanned by H, denoted R(H), is considered
as the nuisance parameter. Therefore, the rejection of the nuisance parameter can be carried out by simply
projecting the vector of measured temperature Ti onto the orthogonal complement R(H)⊥ of the column space
R(H). This projection is defined with the orthonormal matrix W = (w1, . . . , wp− q), where wi are the eigen-
vectors of the projection matrix P⊥

H = Ip −H(H⊤H)−1H⊤ corresponding to eigenvalues 1. The rejection of a
linear nuisance parameter can be simply carried out as W⊤Ti such that:

W⊤Ti ∼ N (0, σ2Ip− q). (10)

Again, we an anomaly is present, especially because of a blockage at rod location (m,n) the elimination of
the nuisance parameters leads to

W⊤Ti ∼ N (W⊤am,n, σ
2Ip− q). (11)



Figure 2: Illustration of the temperature of the rods of the nuclear power plant’s core and its conversion into
pixels: the temperature measurements are aligned on a grid. Note the temperature of the control rods with the
lowest temperature in the middle of the core, and note that on the border of the image some pixels are duplicate
to complete the grid. Note that the illustration on the left-hand side does not correspond to the images on
the right-hand side: we had measurements over only 121 rods because of the small size of the experimental
installation, while the right-hand side is the illustrates the simulated temperate for a larger, real core.

which clearly emphasizes that, on the one hand, the detection problem is reduced to the detection of a signal
in a zero-mean noise (10)-(11) and, on the other hand, that the detection depends on the part of the anomaly,
which can be distinguished from the non-anomalous background : W⊤am,n. It is also important to note that,
in practice, the location of the blockage is not known; hence am,n is also unknown.

However, this approach is limited in cases of complex non-anomalous backgrounds, such as the temperatures
of the rods, see, for instance,.9 Recently, it was proposed to use a locally adaptive model that adjusts the
linear model using the last measurements.10–15 For the specific problem of total and instantaneous blockage
detection, designing a linear model for representing the temperature measurements over 121 nuclear rods is
not straightforward. To address this challenge, we proposed using the MobileViT-v2 deep learning model to
implicitly learn the underlying nuisance parameters.
We have tried several alternatives for the deep learning model but, in the end, MobileViT is an extremely
lightweight architecture yet far enough for our images of size 11 × 12 pixels. Its attention mechanism has
also been experimentally shown very efficient to learn the reference temperature of the rods and eliminate this
nuisance parameter.

Specifically, the temperature of the rods from the nuclear core is gathered and represented as the pixels’ value
of an image, see figure ?? for an illustration. The measures of the rods are aligned on a rectangular grid and
presented to the MobileViT-v2 model as an image. We used this deep learning model for detecting the anomaly
due to total and instantaneous blockage. To create a large dataset of temperature measurements containing
the thermal footprints of a blockage, we accurately modelled the specific footprint of total and instantaneous
blockage on temperature measurements, which is addressed in the next section.

3.2 Modelling Blockage Impact on Temperatures

To develop a comprehensive understanding of the impact of a blockage-induced anomaly (TIB) on temperatures,
we leveraged numerical data collected at a Sodium Fast Reactor (SFR) station. Temperature measurements
were obtained using K-type thermocouples, whose transfer function is well documented. The impulse response
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Figure 3: Illustration of the model of TIB contribution on both the central rod and its neighbours.

function of the thermocouples is given by:

h(t) =
1

τ
exp

(
−t

τ

)
, (12)

where τ is the time constant of the thermocouple, approximately 0.5-1 seconds in our setting. We utilized a
time constant of τ = 1 second for our simulations. Given the impracticality of inducing a real TIB to measure
its impact on rod temperatures, we relied on numerical simulations utilizing the ASTRID reactor model. These
simulations accounted for relevant thermodynamic parameters, such as materials, assembly geometry, and sodium
cooling flow. However, the simulated temperatures did not perfectly align with the measured temperatures due
to discrepancies in sampling frequency and thermocouple response.
To mitigate this discrepancy, we applied the thermocouple response function, defined above, and subsampled
the data by averaging temperatures over one second. This yielded a model for the anomalous temperature due
to the TIB, denoted as a. Figure 3 illustrates the temperature profile after the TIB occurs for both the rod at
which the blockage happens and its neighbours.

Notably, the figure reveals that the temperature at neighbouring rods increases at a relatively constant rate of
approximately 0.6°C per second, whereas the temperature of the central rod drops suddenly after TIB, followed
by a rapid increase of about 150°C after approximately 7 seconds, attributed to local vaporization of sodium.
The disparity between simulated and observable temperatures is evident, particularly for the central rod. We
assumed a spatially invariant model of TIB impact, although the proposed methodology can be adapted to more
accurate models by modifying the vector a according to the inspected rod position and temperature.

Note that in our simulation we did not use the exact profile of the abnormal temperature due to a blockage
because with this setting we have a perfect detection, hence the difficulty to present, to analyse or even to
compare the results. To avoid having a detection case which is “too simple”, we multiplied the thermal footprint
of a blockage for a factor of 1/6, which thus corresponds to an increase of about 0.1°C for the neighbouring rods
and a drop in temperature of about 1.5°C on the rod subject to the blockage, see Figure 3.

4. PROPOSED METHOD FOR THE QUICKEST DETECTION OF A BLOCKAGE

We can now present the proposed method for the quickest detection of the total and instantaneous blockage.
With the model of the impact of total blockage on nuclear core temperature, we created a dataset with additive
anomalies. More specifically, for each temperature measurement, we added the anomaly at a random location due



to blockage after a random time between 1 and 6 seconds, because this corresponds to the maximal acceptable
detection delay.

As already explained, we trained a MobileViT-v2 deep learning model that was trained over this dataset to
distinguish images with an additive anomaly from original images. Since we have two set of measurements, each
with a duration of one week, at a sampling frequency of one second, for a total of 604, 800 measurements each,
we used one set of data for training and one set of testing so that we are certain that the training and testing set
are independent from each other. The number of data is indeed suffisant for training the MobileViT-v2 model
over very small images.

Regarding the implementation we used the timm16 python package but, given the specificity of our image,
we have noted that it is better not to use the pretrained weights. MobileViT-v2 model was trained using a
decreasing learning rate following stochastic gradient descent with warm restarts (SGDR).17–19 Given the small
size of the image and the lightweight architecture of MobileVit-v2, the training over one epoch was rather very
fast. However, given the peculiarity of the images we used, we used 155 epochs, which was far enough. The
initial value of the learning rate was obtained using from the method initially proposed in20 which estimates the
optimal value using a one-cycle training with an increasing learning rate at each mini-batch, from a very low
initial value to a final high value.
The learning rate scheduler is thus based on this initial guess and then slowing decreased over one cycle. The
initial cycle length is set to 5; it is doubled for every cycle and the initial learning rate is divided by two after
each cycle. We used five cycles for a total of 155 epochs, which is far enough for convergence.

4.1 Sequential Detection Scheme

The main originality of the present paper is that it is not aimed at detecting the blockage from a single mea-
surement but rather to detect the occurrence of this event in less than a few seconds, in other words, over a
set of successive temperature measures. In the literature this problem of sequential analysis is referred to as a
change-point detection see, for instance,21 and the reference therein for a complete introduction. To this end we
propose two different approaches for the sequential detection of a blockage. First, it is proposed to use the “soft
output” of the MobileViT-v2 model as an input for the well-known CUSUM (cumulative sum) control chart
initially developed by Page.22 Let us denote x1, . . . , xN the consecutive softmax output from the MobileViT-v2
model. The idea of the CUSUM is to compute a cumulative sum of the decision statistics xn. After the occur-
rence of the change point, that is after the blockage occurs in our case, the MobileViT-v2 softmax output should
be increased. Therefore the CUMSUM is computed as:

Sn = max(0;Sn + xn − c), S0 = 0. (13)

In the relation (13) one can note that the constant value c is subtracted from the MobileViT-v2 softmax output.
This constant represents the minimum value above which it is considered that a blockage has been detected. In
addition one can also note in the equation (13) that the CUSUM value Sn is reset to 0 when it is negative. This
is a key concept of the CUSUM, which allows detecting the change point with a minimal delay because samples
without blockage do not reduce the CUSUM value, which is assumed to remain at 0 before the event we want
to detect occurs, in our case, the total and instantaneous blockage.

The alternative approach we used in the present paper is the sliding windows:

Wn =

n∑
n−τ

xn, (14)

where τ is the size of the sliding window, which is defined in our case by τ = 6 because, as explained in Section 3.2
the blockage must be detected in less than 6 seconds.

On the one hand, it has been shown that the CUSUM minimizes the average detection delay (3) for a fixed
average false-alarm time.23,24 On the other hand, it has been shown the sliding window method maximizes the
probability of detecting a known change under a maximal prescribed delay (5). Both criteria are relevant in
our case because, on the one hand, it is aimed at detecting the blockage in less than 6 seconds and hence to
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with the empirical optimal detection power.

maximize the probability of detecting the blockage under this prescribed delay. On the other hand, minimizing
the detection delay is also interesting, as, we shall see in the next Section 5 the CUSUM offers very good overall
results.

5. NUMERICAL RESULTS AND ANALYSIS

First of all, we would like to show how well the MobileNet-v2 model performs for detecting the abnormal
temperature due to the presence of a blockage we simulated in our dataset. To this end, Figure 4 shows the
accuracy of the detection through a ROC (Receiver-Operating Characteristic) curve, which shows the true
positive rate, some referred to as the recall or the sensitivity, as a function of the false-positive rate. Note that,
for readability, the value of the x-axis is represented with a logarithmic scale in Figure 4.
Because we simulated the occurrence of a blockage, it is possible to compute the optimal most powerful test, which
is simply a likelihood ratio test (LR test). In our case, when the anomaly due to blockage is perfectly known,
the detection problem is reduced to a change of the mean in a Gaussian (8)-(9). Therefore, it is straightforward
to establish that, provided that the non-anomalous back is also perfectly known (10)-(11), the LR test is given
by the projection of the measurements Ti onto the thermal footprint of the blockage am,n. For the sake of
comparison, we computed empirically these decision statistics in order to provide, in the Figure 4 a comparison
between the performance of the MobileViT-v2 detection and the optimal detection provided that the blockage
and its location are perfectly known. It can be seen that the proposed detection method based on MobileViT-v2
performs extremely well, especially for low false-positive rates.

Of course, the most interesting results concern the sequential detection of total and instantaneous blockage
using the MobileViT-v2 model. To this end Figure 5 first compares the performance of the CUSUM with the
performance of the sliding window. In Figure 5 the average detection is presented, on the y-axis, as a function
of the average mean time to false alarm. Note that experimentation is rather time-consuming because for each
simulation we need to apply the CUSUM and the sliding window test over a long sequence of MobileViT-v2
output in order to measure the mean time to false alarm. For the sake of simplicity, we limit the analysis to
35000 samples. For each simulation we chose a random starting point in the sequence of 604, 800 measurements
and we added Gaussian noise with standard deviation σ = 0.25 in order to generate 10, 000 repetitions to compute
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the mean time to false alarm as a function of the detection threshold.
We repeated the same procedure with an additive signal, at a random location, corresponding to the thermal
footprint of a blockage. In the case we limit our analysis to 20 consecutive samples because, in practice, the
blockage is always detected before such a long delay.

We can note in Figure 6 that the CUSUM sequential detection method always achieves a lower average
detection delay than the sliding window method.

Last but not least, the Figure 6 presents the probability of detecting the blockage in 6 seconds or less as a
function of the average time to false alarm. Surprisingly, one can note that the CUSUM sequential detection
methods achieve a higher probability of blockage detection. This is especially surprising because the sliding
window is designed to maximize the probability of detection under a maximal delay.4–6,21 However, in the
present case of blockage, the problem is difficult because the impact of blockage on the softmax output from
the MobileViT-v2 is unknown; therefore, the sliding window is reduced to a simple sum (14) which is not the
condition under which it is proved optimal.
All in all, even though we decrease significantly the impact of the blockage on the temperature in order to obtain
meaningful results, it can be noted that the sequential detection methods allow obtaining very high detection
performance, which is very encouraging.

6. CONCLUSION AND FUTURE WORKS

The present paper proposes a very original sequential method for the detection of a total and instantaneous
blockage in the coolant of the nuclear power plant core. The detection method we propose is two-fold. First we
trained a MobileViT-v2 model to detect the anomaly that is due to the blockage in the temperature of the core.
This lightweight model leverages the attention mechanism to reach a very high detection power, which is close
to the performance of the optimal LR test.
Then the main originality of the present paper is to use the softmax output from the MobileViT-v2 into a
sequential statistical procedure. For the sequential detection, we used the CUSUM, which minimizes the average
detection delay as well as the sliding window method, which maximizes the probability of detection under
a prescribed detection delay provided that the signal to detect is perfectly known. Surprisingly, the CUSUM
provides better performance in terms of average detection delay and probability of detection under the prescribed
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delay of 6 seconds, which can be explained by the fact that the effect of the blockage on the softmax output from
the MobileViT-v2 model is unknown.
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J.-P., “Sequential detection of a total instantaneous blockage occurred in a single subassembly of a sodium-
cooled fast reactor,” Nuclear Engineering and Design 366, 110733 (2020).

[10] Tout, K., Cogranne, R., and Retraint, F., “Fully automatic detection of anomalies on wheels surface us-
ing an adaptive accurate model and hypothesis testing theory,” in [2016 24th European Signal Processing
Conference (EUSIPCO) ], 508–512 (2016).



[11] Tout, K., Cogranne, R., and Retraint, F., “Statistical decision methods in the presence of linear nuisance
parameters and despite imaging system heteroscedastic noise: Application to wheel surface inspection,”
Signal Processing 144, 430–443 (2018).

[12] Nguyen, T., Cogranne, R., and Doyen, G., “An optimal statistical test for robust detection against interest
flooding attacks in ccn,” in [2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM) ], 252–260 (2015).

[13] Nguyen, T., Mai, H.-L., Cogranne, R., Doyen, G., Mallouli, W., Nguyen, L., El Aoun, M., De Oca, E. M., and
Festor, O., “Reliable Detection of Interest Flooding Attack in Real Deployment of Named Data Networking,”
IEEE Transactions on Information Forensics and Security 14, 2470–2489 (Sept. 2019).

[14] Ghadban, N., Cogranne, R., and Doyen, G., “A decentralized approach for adaptive workload estimation in
virtualized environments,” in [2017 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM) ], 1186–1194, IEEE (2017).

[15] Cogranne, R., Doyen, G., Ghadban, N., and Hammi, B., “Detecting botclouds at large scale: A decentralized
and robust detection method for multi-tenant virtualized environments,” IEEE Transactions on Network
and Service Management 15(1), 68–82 (2018).

[16] Wightman, R., “Pytorch image models.” https://github.com/huggingface/pytorch-image-models

(2019).

[17] Smith, L. N., “No more pesky learning rate guessing games,” CoRR, abs/1506.01186 5, 575 (2015).

[18] Loshchilov, I. and Hutter, F., “Sgdr: Stochastic gradient descent with warm restarts,” arXiv preprint
arXiv:1608.03983 (2016).

[19] Smith, L. N., “Cyclical learning rates for training neural networks,” in [2017 IEEE winter conference on
applications of computer vision (WACV) ], 464–472, IEEE (2017).

[20] Smith, L. N. and Topin, N., “Super-convergence: Very fast training of neural networks using large learning
rates,” in [Artificial intelligence and machine learning for multi-domain operations applications ], 11006,
369–386, SPIE (2019).

[21] Tartakovsky, A., Nikiforov, I., and Basseville, M., [Sequential Analysis: Hypothesis Testing and Changepoint
Detection ], Chapman & Hall/CRCMonographs on Statistics & Applied Probability, Taylor & Francis (2014).

[22] Page, E., “Continuous inspection schemes,” Biometrika , 100–115 (1954).

[23] Lorden, G., “Procedures for reacting to a change in distribution,” The Annals of Mathematical Statistics ,
1897–1908 (1971).

[24] Moustakides, G. V., “Optimal stopping times for detecting changes in distributions,” the Annals of Statis-
tics 14(4), 1379–1387 (1986).

https://github.com/huggingface/pytorch-image-models

	Introduction
	Description of the Context
	A Brief Review on the Quickest Detection Problem

	Detection of Total and Instantaneous Blockage:Statement of the Problem
	Dealing With Nuisance Parameters
	Modelling Blockage Impact on Temperatures

	Proposed Method for the Quickest Detection of a Blockage
	Sequential Detection Scheme

	NUMERICAL RESULTS AND ANALYSIS
	CONCLUSION AND FUTURE WORKS

