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DISCRETE TIME STOCHASTIC IMPULSE CONTROL WITH DELAY

BOUALEM DJEHICHE AND SAID HAMADÈNE

ABSTRACT. We study a class of infinite-horizon impulse control problems with execution delay in dis-
crete time. Using probabilistic methods, particularly the notion of the Snell envelope of processes, we
construct an optimal strategy among all admissible strategies for both risk-neutral and risk-sensitive
utility functions. Furthermore, we establish the existence of bounded ε-optimal strategies. This frame-
work provides a robust approach to handling execution delays in discrete-time stochastic systems.
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1. INTRODUCTION

Impulse control is an essential part of stochastic control theory, where control affects both the
timing and the jump size of the state because interventions occur at discrete times. These problems
naturally arise in many practical situations where actions cannot be taken continuously but must
be implemented at specific moments. Examples include financial decision-making, inventory con-
trol, and energy management systems, where optimal strategies must account for both timing and
magnitude of interventions.

The formal study of impulse control began with the pioneering work of Bensoussan and Lions
[2], who introduced in a continuous time setting a rigorous framework based on quasi-variational
inequalities (QVI). They established a connection between impulse control, variational inequali-
ties, and the dynamic programming principle, laying the foundation for further developments. In
the continuous-time setting, QVIs provide a powerful mathematical tool to characterize optimal
strategies in terms of stopping times and intervention decisions.

While continuous-time models are analytically appealing, a discrete-time formulation is often
more suitable for real-world applications, particularly in scenarios where decision-making occurs
at a finite number of times. Bensoussan [3] considers impulse control in a discrete time Markovian
set-up, using a dynamic programming framework, which provides the possibility of obtaining
analytic solutions for applications to inventory control and portfolio choice under constraints.
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An additional layer of complexity arises in impulse control when execution delays are intro-
duced. Execution delay refers to the time lag between the moment a control action is decided and
its actual implementation. This phenomenon is ubiquitous in practice, for example, in financial
markets where trades take time to clear or in manufacturing systems where orders experience pro-
cessing delays. Delays can significantly affect optimal decision making, as strategies must account
for not only current system states but also the anticipated evolution during the delay period.

Bruder and Pham [4] tackled this challenge for finite-horizon impulse control problems with
execution delays in a Markovian setting. They use the dynamic programming principle to derive
the Hamilton-Jacobi-Bellman equation satisfied by the value function of the problem.

In the context of processes with memory effects, Djehiche, Hamadène, and Hdhiri [6] extended
impulse control to non-Markovian processes. They established the existence of optimal strategies,
using the Snell envelope in conjunction with reflected BSDEs. Their results emphasize the impor-
tance of incorporating path dependencies and history when modeling real-world systems subject
to delays.

Risk-sensitive control problems, which address decision-making under e.g. risk aversion, fur-
ther complicate the impulse control framework. Hdhiri and Karouf [10] considered finite- horizon
risk-sensitive impulse control of non-Markovian processes, incorporating execution delays and
random coefficients. Their work shows that optimal solutions must carefully balance the risk-
sensitive nature of the utility function with the inherent uncertainties of delayed control. Infinite-
horizon stochastic impulse control with delay and random coefficients is studied in [7].

Optimal stochastic control problems involving delays are not restricted to standard Markovian
or non-Markovian processes. For example, Robin [13] studied impulse control for Markov pro-
cesses with delays as early as 1976, providing foundational insights into the role of delay in con-
trolling stochastic systems. Similarly, Cadenillas and Zapatero [5], Palczewski and Stettner [12],
and Oksendal and Sulem [11], among many other authors, applied impulse control techniques to
portfolio optimization, showing their relevance to financial mathematics and the importance of
delays in practical decision making.

Despite significant progress, much of the existing literature has focused on finite-horizon prob-
lems in a continuous-time setting. However, many applications require considering infinite-horizon
problems, where interventions must be optimized over an indefinite future. This introduces ad-
ditional technical challenges, including ensuring the existence of optimal strategies and bounding
long-term performance in the presence of delays.

In this paper, we address infinite-horizon impulse control with execution delays in discrete time.
Specifically, we study a class of impulse control problems in which decisions are implemented after
a finite delay ∆, and the system evolves in discrete time. We do not require a specific sign for the
running payoff function g and the impulse payoff function Ψ. When Ψ(ξ) is negative, it means that
the impulse ξ provides a subsidy rather than being a cost to the decision maker. On the other hand,
between two successive impulses, the dynamics of the controlled system is no longer Markovian,
contrary to the setting in [3]. Our analysis uses probabilistic tools, particularly the Snell envelope of
processes, to establish the existence of optimal strategies under both risk-neutral and risk-sensitive
utility functions. Furthermore, we show the existence of bounded ε-optimal strategies, providing
a robust framework for practical applications.

The remainder of this paper is organized as follows. Section 2 introduces the problem formula-
tion, including the dynamics of the system and admissible strategies. Section 3 presents our main
results, including the existence of optimal and bounded ε-optimal strategies. Section 4 discusses
the risk-sensitive case and highlights key differences from the risk-neutral case. Section 5 provides
concluding remarks.

2. THE MODEL

Let (Ω,F , P) be a probability space and F = (Fn)n≥1 a filtration of (Ω,F ). Let ∆ be a pos-
itive integer and U be a finite subset of Rd. Denote by F∞ := σ{Fn, n ≥ 0} the σ-algebra
generated by Fn, n ≥ 0, and for any F-stopping time τ, set Fτ := {A ∈ F∞, A ∩ {τ = n} ∈
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Fn, for any n ≥ 0}. Let N := N ∪ {+∞} and (θn)n≥0 be a stochastic process indexed by N. We
set θ−∞ := lim supn→+∞ θn and extend (θn)n≥0 to N by setting θ∞ = θ−∞.

Let (Xn)n≥0 be an F-adapted stochastic process valued in Rd that describes the evolution of a
system when it is not controlled. An impulse strategy with delay ∆ is a sequence δ := (τp, ζp)p≥0,
where for any p ≥ 0,

(a) τp is an F-stopping time such that τp+1 − τp ≥ ∆, P-a.s.;
(b) ζp is a U-valued and Fτp -measurable random variable.

In this definition, τp is the time when the controller of the system decides to make an impulse of
magnitude ζp. The sequence δ = (τp, ξp)p≥0 is called an admissible strategy of the impulse control
problem and the set of admissible strategies is denoted by A.

When the controller implements an impulse strategy δ := (τp, ζp)p≥0, the evolution of the con-
trolled system is given by the process Xδ := (Xδ

k)k≥0 defined by

Xδ
k =

{
Xk if k < τ0 + ∆,

Xk + ζ0 + · · ·+ ζℓ if τℓ + ∆ ≤ k < τℓ+1 + ∆,

or in a compact form,

(2.1) Xδ
k = Xk1{k<τ0+∆} + ∑

ℓ≥0
(Xk + ζ0 + · · ·+ ζℓ)1{τℓ+∆≤k<τℓ+1+∆}, k ≥ 0.

3. THE RISK-NEUTRAL IMPULSE CONTROL PROBLEM

The payoff which is a reward for the controller is given by the following risk-neutral utility
function:

(3.1) J(δ) := E[∑
k≥0

e−θkg(Xδ
k)− ∑

ℓ≥0
e−θ(ℓ+∆)Ψ(ζℓ)],

where

(i) θ, standing for the discount factor, is a positive constant,
(ii) g and Ψ are bounded functions. They stand respectively for the running payoff and the

accumulated payoff due to impulses.

The controller’s problem is to find an optimal strategy δ∗, that is, which satisfies

J(δ∗) = sup
δ∈A

J(δ).

Remark 3.1. We do not require a specific sign for g(·) and more importantly for Ψ(·) because we allow for
a negative impulse payoff (cost), which means that an impulse induces a reward instead of incurring a cost.
In some way, in the latter situation, the controller gets subsidies. □

3.1. Iterative scheme. Let ν be an F- stopping time and ξ be a U-valued and Fν-measurable ran-
dom variable. For any n ≥ 0 and any pair (ν, ξ), let (Yn

k (ν, ξ))k∈N be the sequence of processes
defined recursively as follows. For any k ∈ N,

(3.2) Y0
k (ν, ξ) = E[∑

ℓ≥k
e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk].

Since g(·) is bounded, (Y0
k (ν, ξ))k∈N is well-posed. Moreover, Y0,−

∞ (ν, ξ) = lim
k→∞

Y0
k (ν, ξ) = 0, P-

a.s., and in Lp(P), for any p ∈ [1, ∞), since for any k ∈ N,

(3.3) |Y0
k (ν, ξ)| ≤ (1 − e−θ)−1e−θk∥g∥∞,

where ∥g∥∞ = sup
x∈Rd

|g(x)|. Then, we set Y0
∞(ν, ξ) = 0, which makes the sequence (Yn

k (ν, ξ))k∈N

well-posed. Next, for n ≥ 1 and any pair (ν, ξ), we set

(3.4) On
k (ν, ξ) :=


E[ ∑

k+1≤ℓ<k+∆
e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk]

+max
β∈U

E[−e−θ(k+∆)Ψ(β) + Yn−1
k+∆(ν, ξ + β)|Fk] if k ∈ N,

0 if k = +∞,
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and for any k ∈ N,

(3.5) Yn
k (ν, ξ) := ess sup

τ≥k
E[ ∑

k≤ℓ≤τ

e−θℓg(Xℓ + ξ)1{ℓ≥ν} +On
τ (ν, ξ)|Fk],

where the essential supremum is taken over F-stopping times τ ≥ k. Note that according to this
definition Yn

∞(ν, ξ) = On
∞(ν, ξ) = 0.

In the next proposition we collect some properties of the sequence (Yn
k (ν, ξ))k∈N, n ≥ 0.

Proposition 3.1. For any n ≥ 0 and any pair (ν, ξ), the processes (Yn
k (ν, ξ))k∈N are well-posed and

Yn,−
∞ (ν, ξ) = limk→∞ Yn

k (ν, ξ) = Yn
∞(ν, ξ) = 0.

Proof. We proceed by an induction argument on n, to show that for any n ≥ 0 and any pair (ν, ξ),
the process (Yn

k (ν, ξ))k∈N exists and satisfies, for any k ∈ N and any pair (ν, ξ),

(3.6) |Yn
k (ν, ξ)| ≤ ((2n + 1)cθ∥g∥∞ + n|Ψ|∞)e−θk.

where cθ := (1 − e−θ)−1.
For n = 0, the property holds true since (Y0

k (ν, ξ))k∈N is well-posed and by (3.3), the estimate
(3.6) is satisfied. Assume now that for some n ≥ 0 and for any (ν, ξ), the process (Yn

k (ν, ξ))k∈N is
well-posed and (3.6) is satisfied. By definition, the process (On+1

k (ν, ξ))k∈N is given by

(3.7)
On+1

k (ν, ξ) := E[ ∑
k+1≤ℓ<k+∆

e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk]

+max
β∈U

E[−e−θ(k+∆)Ψ(β) + Yn
k+∆(ν, ξ + β)|Fk], k ∈ N.

The boundedness of g(·), Ψ(·) and the inequality (3.6) imply that, for any k ∈ N, On+1
k (ν, ξ) is

well-posed. Thus, the process (On+1
k (ν, ξ))k∈N is also well-posed since On+1

∞ (ν, ξ) = 0. Moreover,
for any k ∈ N,

|On+1
k (ν, ξ)| ≤ ((2n + 2)cθ∥g∥∞ + (n + 1)|Ψ|∞)e−θk.

So, the process (Yn+1
k (ν, ξ))k∈N is well-posed and satisfies

|Yn+1
k (ν, ξ)| ≤ ((2n + 3)cθ∥g∥∞ + (n + 1)|Ψ|∞)e−θk, k ∈ N.

Consequently, the property is valid for n + 1 and hence it is valid for every n ≥ 0.
Finally, the fact that Yn,−

∞ (ν, ξ) = limk→∞ Yn
k (ν, ξ) = Yn

∞(ν, ξ) = 0 follows immediately from
(3.6). □

Remark 3.2. As a by-product, we obtain that, for any n ≥ 0 and any (ν, ξ)

(3.8) |On
k (ν, ξ)| ≤ (2ncθ∥g∥∞ + n∥Ψ∥∞) e−θk, k ≥ 0,

where ∥Ψ∥∞ = supu∈U |Ψ(u)|. Therefore, On,−
∞ (ν, ξ) = 0, for any n ≥ 1 and any pair (ν, ξ). □

For every n ≥ 1 and every (ν, ξ), set

(3.9) Ỹn
k (ν, ξ) := Yn

k (ν, ξ) + ∑
ℓ≤k−1

e−θℓg(Xℓ + ξ)1{ℓ≥ν}, k ≥ 0.

In view of (3.5), we have

(3.10) Ỹn
k (ν, ξ) = ess sup

τ≥k
E[∑

ℓ≤τ

e−θℓg(Xℓ + ξ)1{ℓ≥ν} +On
τ (ν, ξ)|Fk], k ≥ 0,

which means that it is the Snell envelope (see e.g. [8], p.431 or [9], p.140) of the obstacle processes

(3.11) Ln
k (ν, ξ) := ∑

ℓ≤k
e−θℓg(Xℓ + ξ)1{ℓ≥ν} +On

k (ν, ξ), k ≥ 0, Ln
∞(ν, ξ) = lim

k→∞
Ln

k (ν, ξ),

i.e., (Ỹn
k (ν, ξ))k≥0 is the smallest supermartingale which dominates (Lk(ν, ξ))k≥0. Thus, (Ỹn

k (ν, ξ))k≥0
is the unique process that satisfies the following recursive formula:

(3.12)


Ỹn

k (ν, ξ) = max{E[Ỹn
k+1(ν, ξ)|Fk], ∑

ℓ≤k
e−θℓg(Xℓ + ξ)1{ℓ≥ν} +On

k (ν, ξ)︸ ︷︷ ︸
Ln

k (ν,ξ)

}, k ≥ 0;

Ỹn
∞(ν, ξ) = Ln

∞(ν, ξ) = ∑ℓ≥0 e−θℓg(Xℓ + ξ)1{ℓ≥ν}.
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Note that the r.v. Ln
∞(ν, ξ) exists since the function g(·) is bounded and limk→∞ On

k (ν, ξ) = 0.

Proposition 3.3 (Monotonicity property). For any n ≥ 0 and any pair (ν, ξ),

(3.13) Yn
k (ν, ξ) ≤ Yn+1

k (ν, ξ), k ≥ 0.

Proof. We proceed by induction on n. Indeed, by (3.5), for any m ≥ k, we have

Y1
k (ν, ξ) ≥ E[ ∑

k≤ℓ≤m
e−θℓg(Xℓ + ξ)1{ℓ≥ν} +O1

m(ν, ξ)|Fk].

Therefore, in view of Remark 3.2, the boundedness of g(·) and conditional dominated convergence,
it holds that, for any pair (ν, ξ),

Y1
k (ν, ξ) ≥ lim

m→∞
E[ ∑

k≤ℓ≤m
e−θℓg(Xℓ + ξ)1{ℓ≥ν} +O1

m(ν, ξ)|Fk]

= E[∑
ℓ≥k

e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk] = Y0
k (ν, ξ).

Thus, the property holds for n = 0. Now, suppose that for some n and for any (ν, ξ) and any k ≥ 0,
Yn

k (ν, ξ) ≤ Yn+1
k (ν, ξ). Then, by (3.7), it follows that On+1

k (ν, ξ) ≤ On+2
k (ν, ξ) which implies that

Yn+1
k (ν, ξ) ≤ Yn+2

k (ν, ξ). Thus, the property holds for any n ≥ 0, which means that (Yn(ν, ξ))n≥0
is non-decreasing in n. □

Next, we provide a characterization of the processes Yn(ν, ξ) and state some of their properties.

Proposition 3.4 (Consistency property). Let ν be a stopping time and ξ be a U-valued and Fν-measurable
r.v. Then, for any F-stopping time ν′ ≥ ν, P-a.s, it holds that, for any n ≥ 0,

Yn
k (ν, ξ) = Yn

k (ν
′, ξ), k ≥ ν′.

Proof. We proceed by induction on n. For any (ν, ξ),

Y0
k∨ν′(ν, ξ) = E[ ∑

ℓ≥k∨ν′
e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk∨ν′ ], k ≥ 0.

But, since ν′ ≥ ν P-a.s., we must have

E[ ∑
ℓ≥k∨ν′

e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk∨ν′ ] = E[ ∑
ℓ≥k∨ν′

e−θℓg(Xℓ + ξ)1{ℓ≥ν′}|Fk∨ν′ ] = Y0
k∨ν′(ν

′, ξ).

Thus, the property is valid for n = 0. Assume now that it is valid for some n ≥ 0, i.e., for any pair
(ν, ξ) and any k ≥ 0, Yn

k∨ν′(ν, ξ) = Yn
k∨ν′(ν

′, ξ). We have

(3.14)

On+1
k∨ν′(ν, ξ) = E[ ∑

k∨ν′+1≤ℓ<k∨ν′+∆
e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk∨ν′ ]

+max
β∈U

E[−e−θ(k∨ν′+∆)Ψ(β) + Yn
k∨ν′+∆(ν, ξ + β)|Fk∨ν′ ]

= E[ ∑
k∨ν′+1≤ℓ<k∨ν′+∆

e−θℓg(Xℓ + ξ)1{ℓ≥ν′}|Fk∨ν′ ]

+max
β∈U

E[−e−θ(k∨ν′+∆)Ψ(β) + Yn
k∨ν′+∆(ν

′, ξ + β)|Fk∨ν′ ]

= On+1
k∨ν′(ν

′, ξ).

The second equality is valid by the induction assumption, the fact that β is constant and so ξ + β

is Fν-measurable, and ν′ ≥ ν. But, by (3.5), we have, for any k ≥ 0,

(3.15)

Yn+1
k∨ν′ (ν, ξ) = ess sup

τ≥k∨ν′
E[∑k∨ν′≤ℓ≤τ e−θℓg(Xℓ + ξ)1{ℓ≥ν} +On+1

τ (ν, ξ)|Fk∨ν′ ]

= ess sup
τ≥k∨ν′

E[∑k∨ν′≤ℓ≤τ e−θℓg(Xℓ + ξ)1{ℓ≥ν′} +On+1
τ (ν′, ξ)|Fk∨ν′ ]

= Yn+1
k∨ν′ (ν

′, ξ),

which implies that the property holds for n + 1, hence it is valid for every n ≥ 0. □
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For a given n ≥ 0, let An be the set of admissible strategies δ = (τp, ζp)p≥0 such that τn = +∞,
P-a.s. and, for k ≥ 0, let Ak

n be the subset of An of strategies δ = (τp, ζp)p≥0 such that τ0 ≥ k. When
a strategy δ belonging to An is implemented, it means that only n impulses, at most, are allowed.

We have

Proposition 3.5. For any n ≥ 0 and any pair (ν, ξ),

Yn
k (ν, ξ) = ess sup

δ∈Ak
n

E[∑
ℓ≥k

e−θℓg(Xδ
ℓ + ξ)1{ℓ≥ν} − ∑

p≥0
e−θ(τp+∆)Ψ(ζp)|Fk], k ≥ ν.

Proof. First note that for n = 0, the property is obvious since for any strategy δ = (τp, ζp)p≥0 such
that τ0 = +∞ P-a.s., meaning that the controller does not exercise any impulse i.e., Xδ = X for
any δ ∈ A0. Therefore, for any k ≥ 0,

Y0
k (ν, ξ) = E[∑

ℓ≥k
e−θℓg(Xℓ+ ξ)1{ℓ≥ν}|Fk] = ess sup

δ∈Ak
0

E[∑
ℓ≥k

e−θℓg(Xδ
ℓ + ξ)1{ℓ≥ν}− ∑

ℓ≥0
e−θ(τℓ+∆)Ψ(ζℓ)|Fk].

Fix n ≥ 1. For p = 0, . . . , n− 1, let (τ∗
p , β∗

p) be the pairs defined as follows (we omit the dependence
on n as there is no risk for confusion):

τ∗
0 = inf{ℓ ≥ k ∨ ν, Yn

ℓ (ν, ξ) = On
ℓ (ν, ξ)}

and β∗
0 be an U-valued and Fτ∗0

-r.v. such that

On
τ∗0
(ν, ξ) = E[ ∑

τ∗0 +1≤ℓ<τ∗0 +∆
e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fτ∗0

]

+ max
β∈U

E[−e−θ(τ∗0 +∆)Ψ(β) + Yn−1
τ∗0 +∆(ν, ξ + β)|Fτ∗0

]

= E[ ∑
τ∗0 +1≤ℓ<τ∗0 +∆

e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fτ∗0
]

+ max
β∈U

E[−e−θ(τ∗0 +∆)Ψ(β) + Yn−1
τ∗0 +∆(τ

∗
0 , ξ + β)|Fτ∗0

]

= E[ ∑
τ∗0 +1≤ℓ<τ∗0 +∆

e−θℓg(Xℓ + ξ)|Fτ∗0
] + E[−e−θ(τ∗0 +∆)Ψ(β∗

0) + Yn−1
τ∗0 +∆(τ

∗
0 , ξ + β∗

0)|Fτ∗0
].

Finally, we set τ∗
n = +∞. First, note that τ∗

0 is optimal for (3.5) since, by (3.8), lim
ℓ→+∞

On
ℓ (ν, ξ) =

On
∞(ν, ξ) = 0 (see e.g. [14], p.184 for more details). On the other hand, the second equality is valid

by the consistency condition of Proposition 3.4, since Yn−1
τ∗0 +∆(τ

∗
0 , ξ + β) = Yn−1

τ∗0 +∆(ν, ξ + β) as τ∗
0 ≥ ν

and ξ + β is Fν-measurable because ξ is Fν-measurable and β is a constant. Therefore, for any
k ≥ ν,

Yn
k (ν, ξ) = E[ ∑

k≤ℓ≤τ∗0

e−θℓg(Xℓ + ξ)1{ℓ≥ν} +On
τ∗0
(ν, ξ)|Fk]

= E[ ∑
k≤ℓ≤τ∗0

e−θℓg(Xℓ + ξ)1{ℓ≥ν} + ∑
τ∗0 +1≤ℓ<τ∗0 +∆

e−θℓg(Xℓ + ξ)1{ℓ≥ν}

− e−θ(τ∗0 +∆)Ψ(β∗
0) + Yn−1

τ∗0 +∆(τ
∗
0 , ξ + β∗

0)|Fk]

= E[ ∑
k≤ℓ<τ∗0 +∆

e−θℓg(Xℓ + ξ)− e−θ(τ∗0 +∆)Ψ(β∗
0) + Yn−1

τ∗0 +∆(τ
∗
0 , ξ + β∗

0)|Fk].(3.16)

We shall repeat the same argument with Yn−1
τ∗0 +∆(τ

∗
0 , ξ + β∗

0). Let

τ∗
1 = inf{ℓ ≥ τ∗

0 + ∆, Yn−1
ℓ (τ∗

0 , ξ + β∗
0) = On−1

ℓ (τ∗
0 , ξ + β∗

0)}

and β∗
1 an U-valued and Fτ∗1

-r.v. such that

On−1
τ∗1

(τ∗
0 , ξ + β∗

0) = E[ ∑
τ∗1 +1≤ℓ<τ∗1 +∆

e−θℓg(Xℓ + ξ + β∗
0)1{ℓ≥τ∗0 }|Fτ∗1

]

+ max
β∈U

E[−e−θ(τ∗1 +∆)Ψ(β) + Yn−2
τ∗1 +∆(τ

∗
0 , ξ + β∗

0 + β)|Fτ∗1
]
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= E[ ∑
τ∗1 +1≤ℓ<τ∗1 +∆

e−θℓg(Xℓ + ξ + β∗
0)|Fτ∗1

]

+ max
β∈U

E[−e−θ(τ∗1 +∆)Ψ(β) + Yn−2
τ∗1

(τ∗
1 , ξ + β∗

0 + β)|Fτ∗1
]

= E[ ∑
τ∗1 +1≤ℓ<τ∗1 +∆

e−θℓg(Xℓ + ξ + β∗
0)|Fτ∗1

]

+ E[−e−θ(τ∗1 +∆)Ψ(β∗
1) + Yn−2

τ∗1 +∆(τ
∗
1 , ξ + β∗

0 + β∗
1)|Fτ∗1

],

since

Yn−1
τ∗0 +∆(τ

∗
0 , ξ + β∗

0) = E[ ∑
τ∗0 +∆≤ℓ≤τ∗1

e−θℓg(Xℓ + ξ + β∗
0) +On−1

τ∗1
(τ∗

0 , ξ + β∗
0)|Fτ∗0 +∆].

Note that τ∗
1 is optimal after τ∗

0 + ∆ since limk→∞ On−1
k (τ∗

0 , ξ + β∗
0) = On−1

∞ (τ∗
0 , ξ + β∗

0) = 0 (Re-
mark 3.2). Now, take the last expression of On−1

τ∗1
(τ∗

0 , ξ + β∗
0) and insert it into the previous one of

Yn−1
τ∗0 +∆(τ

∗
0 , ξ + β∗

0) to obtain

Yn−1
τ∗0 +∆(τ

∗
0 , ξ + β∗

0) = E[ ∑
τ∗0 +∆≤ℓ<τ∗1 +∆

e−θℓg(Xℓ + ξ + β∗
0)− e−θ(τ∗1 +∆)Ψ(β∗

1)

+ Yn−2
τ∗1 +∆(τ

∗
1 , ξ + β∗

0 + β∗
1)|Fτ∗0 +∆].(3.17)

Next, in the last expression of Yn
k (ν, ξ) in (3.16), replace Yn−1

τ∗0 +∆(τ
∗
0 , ξ + β∗

0) with the right-hand side
of (3.17) to obtain, for any k ≥ ν,

Yn
k (ν, ξ) = E[ ∑

k≤ℓ<τ∗0 +∆
e−θℓg(Xℓ + ξ)− e−θ(τ∗0 +∆)Ψ(β∗

0) + Yn−1
τ∗0 +∆(τ

∗
0 , ξ + β∗

0)|Fk]

= E[ ∑
k≤ℓ<τ∗0 +∆

e−θℓg(Xℓ + ξ)− e−θ(τ∗0 +∆)Ψ(β∗
0) + ∑

τ∗0 +∆≤ℓ<τ∗1 +∆
e−θℓg(Xℓ + ξ + β∗

0)

− e−θ(τ∗1 +∆)Ψ(β∗
1) + Yn−2

τ∗1 +∆(τ
∗
1 , ξ + β∗

0 + β∗
1)|Fk].

Continuing this procedure n times, we deduce the existence of a strategy δ∗ = (τ∗
p , β∗

p)p≥0 that
belongs to Ak

n such that, for any k ≥ ν,

Yn
k (ν, ξ) = E[∑

ℓ≥k
e−θℓg(Xδ∗

ℓ + ξ)1{ℓ≥ν} − ∑
p≥0

e−θ(τ∗p+∆)Ψ(ζ∗p)|Fk].

On the other hand, the optimality of the choice of (τ∗
p , β∗

p)p≥0 implies that, for any δ ∈ Ak
n, we have

Yn
k (ν, ξ) ≥ E[∑

ℓ≥k
e−θℓg(Xδ

ℓ + ξ)1{ℓ≥ν} − ∑
p≥0

e−θ(τp+∆)Ψ(ζp)|Fk], k ≥ ν.

Therefore, for any n ≥ 0 and any pair (ν, ξ),

Yn
k (ν, ξ) = ess sup

δ∈Ak
n

E[∑
ℓ≥k

e−θℓg(Xδ
ℓ + ξ)1{ℓ≥ν} − ∑

p≥0
e−θ(τp+∆)Ψ(ζp)|Fk], k ≥ ν.

□

The strategy δ∗n := (τ∗
p , β∗

p)p≥0 displayed in the previous proof and which depends on (ν, ξ) is
optimal in Aν

n when the system starts at (ν, ξ). Namely, we have the following

Corollary 3.6.

Yn
ν (ν, ξ) = ess sup

δ∈Aν
n

E[∑
ℓ≥ν

e−θℓg(Xδ
ℓ + ξ)1{ℓ≥ν} − ∑

p≥0
e−θ(τp+∆)Ψ(ζp)|Fν]

= E[∑
ℓ≥ν

e−θℓg(Xδ∗n
ℓ + ξ)1{ℓ≥ν} − ∑

p≥0
e−θ(τ∗p+∆)Ψ(β∗

p)|Fν].
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3.2. The general case. We shall now consider the limit of Yn(ν, ξ) as n → ∞. We have the follow-
ing

Proposition 3.7. There exists a constant C such that, for any pair (ν, ξ) and any k ≥ ν,

(3.18) |Yn
k (ν, ξ)| ≤ C, k ≥ ν.

Consequently, the sequence of processes (Yn
k (ν, ξ))k≥ν converges P-a.s. Moreover, the limit process

Yk(ν, ξ) := lim
n→∞

Yn
k (ν, ξ), k ≥ ν,

satisfies

(3.19) Yk(ν, ξ) = ess sup
τ≥k

E[ ∑
k≤ℓ≤τ

e−θℓg(Xℓ + ξ)1{ℓ≥ν} +Oτ(ν, ξ)|Fk], k ≥ ν,

where

(3.20) Ok(ν, ξ) =


E[ ∑

k+1≤ℓ<k+∆
e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk]

+maxβ∈U E[−e−θ(k+∆)Ψ(β) + Yk+∆(ν, ξ + β)|Fk], ν ≤ k < ∞;
0 if k = ∞.

Furthermore,

(3.21) Y−
∞ (ν, ξ) = lim

k→+∞
Yk(ν, ξ) = 0 = Y∞(ν, ξ).

Proof. We first derive (3.18). Recall that

Yn
k (ν, ξ) = ess sup

δ∈Ak
n

E[∑
ℓ≥k

e−θℓg(Xδ
ℓ + ξ)1{ℓ≥ν} − ∑

p≥0
e−θ(τp+∆)Ψ(ζp)|Fk], k ≥ ν.

For any δ = (τp, ξp)p≥0 ∈ Ak
n, we have τ0 ≥ k, τn = ∞ and τp+1 ≥ τp + ∆. Therefore, τp ≥ k + p∆

for any p ≥ 0. So,

| − ∑
p≥0

e−θ(τp+∆)Ψ(ζp)| ≤ e−∆θ
n−1

∑
p=0

e−θ(k+p∆)∥Ψ∥∞ ≤ e−(∆+k)θ(1 − e−θ∆)−1∥Ψ∥∞.

Since g(·) is bounded, the above characterization of Yn
k (ν, ξ) implies that, for any k ≥ ν,

(3.22) |Yn
k (ν, ξ)| ≤ e−kθ(1 − e−θ)−1∥g∥∞ + e−(∆+k)θ(1 − e−θ∆)−1∥Ψ∥∞.

So, let us take a constant C to be

C := (1 − e−θ)−1∥g∥∞ + e−∆θ(1 − e−θ∆)−1∥Ψ∥∞.

Then, for any k ≥ ν, |Yn
k (ν, ξ)| ≤ C, P-a.s. Next, since the sequence of processes (Yn

k (ξ, ν))k≥ν is
increasing and bounded by C, it converges P-a.s. to a bounded process (Yk(ξ, ν))k≥ν which, due to
(3.22), satisfies

(3.23) |Yk(ξ, ν)| ≤ e−kθC, k ≥ ν.

Therefore,

lim
k→+∞

Yk(ν, ξ) = 0 = Y∞(ν, ξ).

Next, since U is finite, by (3.7) and conditional dominated convergence we have P-a.s.

lim
n→∞

On
k (ν, ξ) = Ok(ν, ξ), k ≥ ν,

where, for k ≥ ν,

Ok(ν, ξ) = E[ ∑
k+1≤ℓ<k+∆

e−θℓg(Xℓ + ξ)1{ℓ≥ν}|Fk]

+max
β∈U

E[−e−θ(k+∆)Ψ(β) + Yk+∆(ν, ξ + β)|Fk].
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Recall the Snell envelope (Ỹn
k (ν, ξ))k≥0 defined by (3.9) and associated with the obstacle process

(Ln
k (ν, ξ))k≥0 given by (3.11). Since g(·) is bounded, the Snell envelope (Ỹn

k (ν, ξ))k≥ν converges
P-a.s. to the process (Ỹk(ν, ξ))k≥ν defined, for any (ν, ξ), by

(3.24) Ỹk(ξ, ν) := Yk(ν, ξ) + ∑
ℓ≤k−1

e−θℓg(Xℓ + ξ)1{ℓ≥ν}, k ≥ ν.

By (3.12) and conditional dominated convergence, we have P-a.s.

(3.25)


Ỹk(ν, ξ) = max{E[Ỹk+1(ν, ξ)|Fk], ∑

ℓ≤k
e−θℓg(Xℓ + ξ)1{ℓ≥ν} +Ok(ν, ξ)︸ ︷︷ ︸

Lk(ν,ξ)

}, k ≥ ν.

Ỹ∞(ν, ξ) = L∞(ν, ξ) = ∑ℓ≥0 e−θℓg(Xℓ + ξ)1{ℓ≥ν}.

Thus, (Ỹk(ξ, ν))k≥ν is the Snell envelope associated with the obstacle process (Lk(ν, ξ))k≥ν. There-
fore, for any k ≥ ν,

Yk(ν, ξ) + ∑
ℓ≤k−1

e−θℓg(Xℓ + ξ)1{ℓ≥ν} = ess sup
τ≥k

E[∑
ℓ≤τ

e−θℓg(Xℓ + ξ)1{ℓ≥ν} +Oτ(ν, ξ)|Fk],

which in turn yields (3.19). □

As a consequence of Proposition 3.4, we also have the following consistency property for the
limit processes (Yk(ν, ξ))k≥ν.

Corollary 3.8. Let ν be a stopping time and ξ a U-valued and Fν-measurable r.v. Then, for any stopping
time ν′ ≥ ν, P-a.s, it holds that,

Yk(ν, ξ) = Yk(ν
′, ξ), k ≥ ν′.

Remark 3.9. Note that the estimate (3.18) is valid only for k ≥ ν. This estimate is enough to solve our
impulse control problem in this discrete time setting with delay. However, when Ψ ≥ 0, one can show easily
by induction on n that the process (Yn

k (ν, ξ))k≥0 satisfies the following estimate: for any k ≥ 0,

|Yn
k (ν, ξ)| ≤ e−kθ(1 − θ)−1∥g∥∞,

which means that under the assumption Ψ ≥ 0, the estimate (3.18) is valid not only for k ≥ ν but also for
k < ν. Finally, when the sign of Ψ is negative, one can also obtain a similar estimate for Yn

k (ν, ξ) but the
r.h.s. contains ∥Ψ∥∞ (see Section 4 below for more details).

The following is the main result of this section.

Theorem 3.10. The discrete time impulse control with delay problem admits an optimal strategy δ∗ =

(τ∗
n , ξ∗n)n≥0. Moreover,

Y0(0, 0) := Y0(ν, ξ)|(ν,ξ)=(0,0) = sup
δ∈A

J(δ) = J(δ∗).

Proof. First, consider the following strategy δ∗ = (τ∗
n , ξ∗n)n≥0 defined as follows.

(i)
τ∗

0 = inf{ℓ ≥ ∆, Yℓ(0, 0) = Oℓ(0, 0)}.

(ii) ξ∗0 is the U-valued and Fτ∗0
-measurable r.v. such that

max
β∈U

E[−e−θ(τ∗0 +∆)Ψ(β) + Yτ∗0 +∆(0, β)|Fτ∗0
] = max

β∈U
E[−e−θ(τ∗0 +∆)Ψ(β) + Yτ∗0 +∆(τ

∗
0 , β)|Fτ∗0

]

= E[−e−θ(τ∗0 +∆)Ψ(ξ∗0) + Yτ∗0 +∆(τ
∗
0 , ξ∗0)|Fτ∗0

].(3.26)

(iii) For n ≥ 1,

τ∗
n = inf{ℓ ≥ ∆ + τ∗

n−1, Yℓ(τ
∗
n−1, ξ∗0 + . . . + ξ∗n−1) = Oℓ(τ

∗
n−1, ξ∗0 + . . . + ξ∗n−1)}

(iv) ξ∗n is the U-valued and Fτ∗0
-measurable r.v. such that

max
β∈U

E[−e−θ(τ∗n+∆)Ψ(β) + Yτ∗n+∆(τ
∗
n , ξ∗0 + . . . + ξ∗n−1 + β)|Fτ∗n ] =

E[−e−θ(τ∗n+∆)Ψ(ξ∗n) + Yτ∗n+∆(τ
∗
n , ξ∗0 + . . . + ξ∗n−1 + ξ∗n)|Fτ∗n ].(3.27)
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The strategy δ∗ is admissible since, for any n ≥ 0, τ∗
n is a stopping time, τ∗

n − τ∗
n−1 ≥ ∆ and ξ∗n is a

U-valued r.v. which is moreover Fτ∗n -measurable. We will next show that

Y0(0, 0) = J(δ∗).

Indeed, recall that (Yk(ν, ξ))k≥ν satisfies

(3.28) Yk(ν, ξ) = ess sup
τ≥k

E[ ∑
k≤ℓ≤τ

e−θℓg(Xℓ + ξ)1{ℓ≥ν} +Oτ(ν, ξ)|Fk], k ≥ ν.

Therefore, by taking ν = 0 and ξ = 0, which corresponds to the initial state of the system, it holds
that

(3.29) Yk(0, 0) = ess sup
τ≥k

E[ ∑
k≤ℓ≤τ

e−θℓg(Xℓ) +Oτ(0, 0)|Fk], k ≥ 0.

Since
τ∗

0 = inf{ℓ ≥ 0, Yℓ(0, 0) = Oℓ(0, 0)},

it is optimal for (3.29) with k = 0 simply because lim
k→+∞

Ok(0, 0) = O∞(0, 0) = 0 and g(·) is

bounded. So, τ∗
0 satisfies

Y0(0, 0) = E[ ∑
0≤ℓ≤τ∗0

e−θℓg(Xℓ) +Oτ∗0
(0, 0)].(3.30)

But,

Oτ∗0
(0, 0) = E[ ∑

τ∗0 +1≤ℓ<τ∗0 +∆
e−θℓg(Xℓ)|Fτ∗0

] + max
β∈U

E[−e−θ(τ∗0 +∆)Ψ(β) + Yτ∗0 +∆(0, β)|Fτ∗0
]

= E[ ∑
τ∗0 +1≤ℓ<τ∗0 +∆

e−θℓg(Xℓ)|Fτ∗0
] + max

β∈U
E[−e−θ(τ∗0 +∆)Ψ(β) + Yτ∗0 +∆(τ

∗
0 , β)|Fτ∗0

]

= E[ ∑
τ∗0 +1≤ℓ<τ∗0 +∆

e−θℓg(Xℓ)|Fτ∗0
] + E[−e−θ(τ∗0 +∆)Ψ(ξ∗0) + Yτ∗0 +∆(τ

∗
0 , ξ∗0)|Fτ∗0

],

where the second equality is due to the consistency property of Corollary 3.8 since β ∈ U is de-
terministic and then Fτ∗0

-measurable. Insert the last expression of Oτ∗0
(0, 0) in the r.h.s. of (3.30) to

obtain

Y0(0, 0) = E[ ∑
0≤ℓ<τ∗0 +∆

e−θℓg(Xℓ)− e−θ(τ∗0 +∆)Ψ(ξ∗0) + Yτ∗0 +∆(τ
∗
0 , ξ∗0)].(3.31)

Next, we have

Yτ∗0 +∆(τ
∗
0 , ξ∗0) = E[ ∑

τ∗0 +∆≤ℓ≤τ∗1

e−θℓg(Xℓ + ξ∗0) +Oτ∗1
(τ∗

0 , ξ∗0)|Fτ∗0 +∆]

since τ∗
1 is optimal after τ∗

0 + ∆. On the other hand,

Oτ∗1
(τ∗

0 , ξ∗0) =E[ ∑
τ∗1 +1≤ℓ<τ∗1 +∆

e−θℓg(Xℓ + ξ∗0)|Fτ∗1
]

+ max
β∈U

E[−e−θ(τ∗1 +∆)Ψ(β) + Yτ∗1 +∆(τ
∗
0 , ξ∗0 + β)|Fτ∗1

]

=E[ ∑
τ∗1 +1≤ℓ<τ∗1 +∆

e−θℓg(Xℓ + ξ∗0)|Fτ∗1
]

+ max
β∈U

E[−e−θ(τ∗1 +∆)Ψ(β) + Yτ∗1 +∆(τ
∗
1 , ξ∗0 + β)|Fτ∗1

](3.32)

=E[ ∑
τ∗1 +1≤ℓ<τ∗1 +∆

e−θℓg(Xℓ + ξ∗0)|Fτ∗1
]

+ E[−e−θ(τ∗1 +∆)Ψ(ξ∗1) + Yτ∗1 +∆(τ
∗
1 , ξ∗0 + ξ∗1)|Fτ∗1

].

By inserting the last expression of (3.32) in the ones of Yτ∗0 +∆(τ
∗
0 , ξ∗0) and Y0(0, 0) successively, we

obtain

Y0(0, 0) =E[ ∑
0≤ℓ<τ∗0 +∆

e−θℓg(Xℓ)− e−θ(τ∗0 +∆)Ψ(ξ∗0) + ∑
τ∗0 +∆≤ℓ<τ∗1 +∆

e−θℓg(Xℓ + ξ∗0)+

− e−θ(τ∗1 +∆)Ψ(ξ∗1) + Yτ∗1 +∆(τ
∗
1 , ξ∗0 + ξ∗1)].
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By repeating this procedure n times yields

Y0(0, 0) =E[ ∑
0≤ℓ<τ∗n+∆

e−θℓg(Xδ∗
ℓ )− ∑

0≤ℓ≤n
Ψ(ξ∗ℓ )e

−θ(τ∗ℓ +∆) + Yτ∗n+∆(τ
∗
n , ξ∗0 + ... + ξ∗n)].

We have

|Y0(0, 0)− J(δ∗)| ≤ E[| ∑
τ∗n+∆≤ℓ

e−θℓg(Xδ∗
ℓ )|+ | ∑

n+1≤ℓ

Ψ(ξ∗ℓ )e
−θ(τ∗ℓ +∆)|+ |Yτ∗n+∆(τ

∗
n , ξ∗0 + ... + ξ∗n)|].

Since τ∗
n ≥ n∆, g(·) and Ψ(·) are bounded, due to (3.23) the r.h.s. of the above inequality converges

to 0, as n goes to infinity, which means that Y0(0, 0) = J(δ∗).
Let δ = (τn, ζn)n≥0 be an admissible strategy. Since τ0 is an arbitrary stopping time, then

(3.33) Y0(0, 0) ≥ E[ ∑
0≤ℓ≤τ0

e−θℓg(Xℓ) +Oτ0(0, 0)].

But,

Oτ0(0, 0) = E[ ∑
τ0+1≤ℓ<τ0+∆

e−θℓg(Xℓ)|Fτ0 ] + maxβ∈U E[−e−θ(τ0+∆)Ψ(β) + Yτ0+∆(0, β)|Fτ0 ]

≥ E[ ∑
τ0+1≤ℓ<τ0+∆

e−θℓg(Xℓ)|Fτ0 ] + E[−e−θ(τ0+∆)Ψ(ζ0) + Yτ0+∆(τ0, ζ0)|Fτ0 ].

Therefore, we obtain from (3.33) that

(3.34) Y0(0, 0) ≥ E[ ∑
0≤ℓ<τ0+∆

e−θℓg(Xℓ)− e−θ(τ0+∆)Ψ(ζ0) + Yτ0+∆(τ0, ζ0)].

By noting that

(3.35) Yτ0+∆(τ0, ζ0) ≥ E[ ∑
τ0+∆≤ℓ≤τ1

e−θℓg(Xℓ + ζ0) +Oτ1(τ0, ζ0)|Fτ0+∆]

and

Oτ1(τ0, ζ0) = E[ ∑
τ1+1≤ℓ<τ1+∆

e−θℓg(Xℓ + ζ0)|Fτ1 ] + maxβ∈U E[−e−θ(τ1+∆)Ψ(β) + Yτ1+∆(τ0, ζ0 + β)|Fτ1 ]

= E[ ∑
τ1+1≤ℓ<τ1+∆

e−θℓg(Xℓ + ζ0)|Fτ1 ] + maxβ∈U E[−e−θ(τ1+∆)Ψ(β) + Yτ1+∆(τ1, ζ0 + β)|Fτ1 ]

≥ E[ ∑
τ1+1≤ℓ<τ1+∆

e−θℓg(Xℓ + ζ0)|Fτ1 ] + E[−e−θ(τ1+∆)Ψ(ζ1) + Yτ1+∆(τ1, ζ0 + ζ1)|Fτ1 ],

we get from (3.34),

Y0(0, 0) ≥ E[ ∑
0≤ℓ<τ0+∆

e−θℓg(Xℓ) + ∑
τ0+∆≤ℓ<τ1+∆

e−θℓg(Xℓ + ζ0)− e−θ(τ0+∆)Ψ(ζ0)+

− e−θ(τ1+∆)Ψ(ζ1) + Yτ1+∆(τ1, ζ0 + ζ1)]

= E[ ∑
0≤k<τ1+∆

e−θkg(Xδ
k)−

1

∑
ℓ=0

e−θ(ℓ+∆)Ψ(ζℓ) + Yτ1+∆(τ1, ζ0 + ζ1)].

By repeating this procedure as many times as necessary we get, for any n ≥ 0,

Y0(0, 0) ≥ E[ ∑
0≤k<τn+∆

e−θkg(Xδ
k)−

n

∑
ℓ=0

e−θ(ℓ+∆)Ψ(ζℓ) + Yτn+∆(τn, ζ0 + ζ1 + . . . + ζn)].

Due to the boundedness of g(·) and Ψ(·), the estimate (3.23) and the fact that τn ≥ n∆, by taking
the limit n → ∞ in the above inequality, we finally obtain

Y0(0, 0) = J(δ∗) ≥ J(δ),

which ends the proof of the claim, since δ is arbitrary in A. □
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3.3. Bounded ε-optimal strategies. We will show that, for every ε > 0, there exists a strategy δε

which allows at most a bounded (i.e., finite and independent of ω) number nε of impulses such
that supδ∈A J(δ) ≤ J(δε) + ε. This property is very useful in settings where exact optimal strategies
may not be easily implementable.

Proposition 3.11. Let ε > 0. Then there exists nε ≥ 1 and δε ∈ Anε such that

sup
δ∈A

J(δ) ≤ J(δε) + ε,

that is, the strategy δε is ε-optimal.

Proof. Let ε > 0 and nε such that

(3.36) ∑
ℓ≥(1+nε)∆

e−ℓ∆∥g∥∞ + ∑
ℓ≥nε

e−(ℓ+1)∆∥Ψ∥∞ < ε.

i.e.,

nε ≥ ⌊( 1
∆

ln (
C0

ε
)⌋+ 1,

where C0 := C0(g, ψ, ∆) =
e−∆

1 − e−∆ (∥g∥∞ + ∥Ψ∥∞).

We have

sup
δ∈A

J(δ) = J(δ∗) = E[ ∑
0≤ℓ<τ∗nε+∆

e−θℓg(Xδ∗
ℓ )− ∑

0≤ℓ≤nε

Ψ(ξ∗ℓ )e
−θ(τ∗ℓ +∆)]

+ E[ ∑
ℓ≥τ∗nε+∆

e−θℓg(Xδ∗
ℓ )− ∑

ℓ≥1+nε

Ψ(ξ∗ℓ )e
−θ(τ∗ℓ +∆)]

≤ E[ ∑
0≤ℓ<τ∗nε+∆

e−θℓg(Xδ∗
ℓ )− ∑

0≤ℓ≤nε

Ψ(ξ∗ℓ )e
−θ(τ∗ℓ +∆)] + ε,

since, due to (3.36), the remaining terms are smaller than ε. But,

E[ ∑
0≤ℓ<τ∗nε+∆

e−θℓg(Xδ∗
ℓ )− ∑

0≤ℓ≤nε

Ψ(ξ∗ℓ )e
−θ(τ∗ℓ +∆)] ≤ sup

δ∈Anε

J(δ) = J(δε)

where δε is an optimal strategy in Anε . Therefore,

sup
δ∈A

J(δ) ≤ J(δε) + ε,

i.e., the strategy δε is ε-optimal. □

4. THE DISCRETE TIME RISK-SENSITIVE IMPULSE CONTROL PROBLEM

In this section, we extend the previous results to the risk-sensitive case where the controller has
a utility function of exponential type. We tackle this problem using a probabilistic approach based
on the notion of the Snell envelope of processes. When the decision maker implements a strategy
δ = (τn, ξn)n≥0, the payoff is given by

(4.1) J(δ) := E[exp{ρ{∑
ℓ≥0

e−θτℓ g(Xδ
ℓ )− ∑

ℓ≥0
e−θ(ττℓ

+∆)Ψ(ξℓ)︸ ︷︷ ︸
C(δ)

}],

where ρ > 0 is the risk-sensitive index and Xδ is the dynamics of the controlled system given by

(4.2) Xδ
k = Xk1{k<τ0+∆} + ∑

ℓ≥0
(Xk + ζ0 + · · ·+ ζℓ)1{τℓ+∆≤k<τℓ+1+∆}, k ≥ 0,

which is (2.1).
Exponential utilities are often called risk-sensitive utilities because they capture risk-averse and

risk-seeking behaviors of the controller (see [?jacobson]). To see this, note that if the index ρ is
small enough then the risk-sensitive reward function satisfies

(4.3) Γ(ρ, δ) := ρ−1Log(J(δ)) ≈ E[C(δ)] +
ρ

2
var[C(δ)],
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where var[C(δ)] denotes the variance of C(δ). Thus, limρ→0 Γ(θ, δ) = E[C(δ)] which is the risk-
neutral utility function (3.1) studied in Section 3. Now, if ρ > 0, we have Γ(ρ, δ) > E[C(δ)] meaning
that the variance var[C(δ)] as a measure of risk improves Γ(ρ, δ), in which case the optimizer is a
risk-seeker. But, when ρ < 0, Γ(ρ, δ) < E[C(δ)] meaning that the variance var[C(δ)] worsens
Γ(ρ, δ) in which case the optimizer is risk-averse.

For simplicity, we hereafter consider only the case ρ = 1 since the other cases are treated in
a similar way. We proceed by recasting the risk-sensitive impulse control problem into an itera-
tive optimal stopping problem, and by exploiting once more the properties of the Snell envelope,
we shall be able to characterize recursively an optimal strategy to this discrete time risk-sensitive
impulse control problem.

4.1. Iterative optimal stopping and properties. Let ν be a stopping time and ξ an Fν-measurable
random variable. Consider the sequence of processes (Vn(ν, ξ))n≥0 defined recursively by

(4.4) V0
k (ν, ξ) = E

[
exp

{
∑
ℓ≥k

e−θℓg(Xk + ξ)1{ν≥ℓ}

}
|Fk

]
, k ∈ N, and V0

∞ = V0,−
∞ = 1.

For n ≥ 1,

(4.5) Vn
k (ν, ξ) = ess sup

τ≥k
E

[
exp

{
∑

k≤ℓ≤τ

e−θℓg(Xℓ + ξ)1{ℓ≥ν}

}
Θn

τ(ν, ξ) | Fk

]
, k ∈ N,

where for k ∈ N,

Θn
k (ν, ξ) = max

β∈U

{
E

[
exp

{
∑

k+1≤ℓ<k+∆
e−θℓg(Xℓ + ξ)1{ℓ≥ν} − e−θ(k+∆)Ψ(β)

}
Vn−1

k+∆ (ν, ξ + β)|Fk

]}
.

and Θn
∞(ν, ξ) = 1.

In the next proposition, we collect some properties of the sequence of processes (Vn
k (ν, ξ))k∈N,

n ≥ 0.

Proposition 4.1. The following properties hold true.

(a) For any n ≥ 0 and any pair (ν, ξ), the processes (Vn
k (ν, ξ))k∈N are well-posed.

(b) (Monotonicity). For any (ν, ξ), the sequence of processes ((Vn
k (ν, ξ))k∈N)n≥0 is non-decreasing in

n, i.e., for any n ≥ 0 and any pair (ν, ξ),

(4.6) 0 ≤ Vn
k (ν, ξ) ≤ Vn+1

k (ν, ξ), k ≥ 0.

(c) (Consistency). Let ν be a stopping time and ξ be a U-valued and Fν-measurable r.v. Then, for any
F-stopping time ν′ ≥ ν, P-a.s, it holds that, for any n ≥ 0,

Vn
k (ν, ξ) = Vn

k (ν
′, ξ), k ≥ ν′.(4.7)

Proof. (a) For n = 0 and any (ν, ξ), the process (V0
k (ν, ξ))k∈N is well posed, since g is bounded.

Moreover
|V0

k (ν, ξ)| ≤ exp {(1 − e−θ)−1∥g∥∞e−θk}, k ∈ N.

Next, the boundedness of g, ψ and (V0
k (ν, ξ))k∈N uniformly in (ν, ξ), implies that

E[sup
k∈N

|Θ1
k(ν, ξ)|] < ∞.

So, (V1
k (ν, ξ))k∈N is well-posed. Furthermore, V1

∞(ν, ξ) = Θ1
∞(ν, ξ) = 1. Finally, for any k ∈ N,

|Θ1
k(ν, ξ)| ≤ exp{∥g∥∞(1 − e−θ)−1(e−θ(k+1) − e−θ(k+∆)) + e−θ(k+∆)∥Ψ∥∞} exp {(1 − e−θ)−1∥g∥∞e−θ(k+∆)}

≤ exp{∥g∥∞(1 − e−θ)−1e−θ(k+1) + e−θ(k+∆)∥Ψ∥∞}.

Hence, for any k ∈ N,

|V1
k (ν, ξ)| ≤ exp{∥g∥∞(1 − e−θ)−1e−θk + e−θ(k+∆)∥Ψ∥∞}.
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Assume now that, for some n and for any pair (ν, ξ), the process (Vn
k ((ν, ξ)))k∈N is well-posed (

Vn
∞((ν, ξ)) = 1) and for any k ≥ 0,

|Vn
k (ν, ξ)| ≤ exp{∥g∥∞(1 − e−θ)−1e−θk + ∥Ψ∥∞

n

∑
j=1

e−θ(k+j∆)}.

Therefore,

|Θn+1
k (ν, ξ)| ≤ max

β∈U

{
E

[
exp

{
∑

k+1≤ℓ<k+∆
e−θℓg(Xℓ + ξ)1{ℓ≥ν} − e−θ(k+∆)Ψ(β)

}
|Vn

k+∆(ν, ξ + β)||Fk

]}
≤ exp{∥g∥∞(1 − e−θ)−1(e−θ(k+1) − e−θ(k+∆)) + e−θ(k+∆)∥Ψ∥∞}

× exp{∥g∥∞(1 − e−θ)−1e−θ(k+∆) + ∥Ψ∥∞

n

∑
j=1

e−θ(k+∆+j∆)}

= exp{∥g∥∞(1 − e−θ)−1e−θ(k+1) + ∥Ψ∥∞

n+1

∑
j=1

e−θ(k+j∆)},

which implies that (Vn+1
k (ν, ξ))k∈N is well-posed, Vn+1

∞ (ν, ξ) = 1, and for any k ≥ 0,

|Vn+1
k (ν, ξ)| ≤ exp{∥g∥∞(1 − e−θ)−1e−θk + ∥Ψ∥∞

n+1

∑
j=1

e−θ(k+j∆)}.

Consequently, for any n ≥ 0 and any pair (ν, ξ), (Vn
k (ν, ξ))k∈N is well-posed and the following

estimate holds true, for any n ≥ 0, any pair (ν, ξ) and and k ∈ N:

|Vn
k (ν, ξ)| ≤ exp{∥g∥∞(1 − e−θ)−1e−θk + ∥Ψ∥∞

n

∑
j=1

e−θ(k+j∆)}.(4.8)

(b) The fact that, for any n ≥ 0, any pair (ν, ξ) and k ≥ 0, Vn
k (ν, ξ) ≤ Vn+1

k (ν, ξ) can be obtained by
induction since, obviously, for any pair (ν, ξ) and k ∈ N, V0

k (ν, ξ) ≤ V1
k (ν, ξ). Finally, it is enough

to take into account the definition of Vn
k (ν, ξ), n ∈ N.

(c) We now focus on the consistency condition. Once more it will be obtained by induction. So let
us consider the case n = 0. Let ν and ν′ two stopping times such that ν ≤ ν′ and ξ be an U-valued
and Fν-measurable random variable. For any k ∈ N,

(4.9) V0
k (ν

′, ξ) = E

[
exp

{
∑
ℓ≥k

e−θℓg(Xk + ξ)1{ℓ≥ν′}

}
|Fk

]
and

V0
k (ν, ξ) = E

[
exp

{
∑
ℓ≥k

e−θℓg(Xk + ξ)1{ℓ≥ν}

}
|Fk

]

= E

[
exp

{
∑
ℓ≥k

e−θℓg(Xk + ξ)1{ℓ≥ν′}

}
exp

{
∑
ℓ≥k

e−θℓg(Xk + ξ)1{ν≤ℓ<ν′}

}
|Fk

]
.

Therefore, for any k ≥ 0,
V0

k∨ν′(ν, ξ) = V0
k∨ν′(ν

′, ξ).

Next, assume that the property holds for some n, i.e., for any two stopping times ν ≤ ν′ and ξ a
U-valued and Fν-measurable random variable we have

Vn
k (ν, ξ) = Vn

k (ν
′, ξ), k ≥ ν′.

Then we have: For any k ≥ ν′,

Θn+1
k (ν, ξ) = max

β∈U

{
E

[
exp

{
∑

k+1≤ℓ<k+∆
e−θℓg(Xℓ + ξ)1{ℓ≥ν′} − e−θ(k+∆)Ψ(β)

}
Vn

k+∆(ν
′, ξ + β)|Fk

]}
= Θn+1

k (ν′, ξ).

since, on the one hand, 1{ℓ≥ν} = 1{ℓ≥ν′} + 1{ν′>ℓ≥ν} and, on the other hand, by using the induction
assumption it holds that Vn

k+∆(ν, ξ + β) = Vn
k+∆(ν

′, ξ + β), as β is deterministic and then ξ + β is
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Fν-measurable. Going back to the definitions of Vn+1
k (ν, ξ) and Vn+1

k (ν′, ξ) in (4.5) we then obtain,
for any k ≥ ν′,

Vn+1
k (ν, ξ) = Vn+1

k (ν′, ξ)

which is the desired result and the consistency property holds for every n ≥ 0. □

Next, we have the following properties.

Proposition 4.2. There exists a constant C such that, for any pair (ν, ξ) and any k ≥ 0,

(4.10) |Vn
k (ν, ξ)| ≤ C, k ≥ 0.

Consequently, the sequence of processes (Vn
k (ν, ξ))k≥0 converges P-a.s. Moreover, the limit process

Vk(ν, ξ) := lim
n→∞

Vn
k (ν, ξ), k ≥ 0,

satisfies

(4.11) Vk(ν, ξ) = ess sup
τ≥k

E

[
exp

{
∑

k≤ℓ≤τ

e−θℓg(Xℓ + ξ)1{ℓ≥ν}

}
Oτ(ν, ξ)|Fk

]
, k ≥ 0,

where

(4.12)
Θk(ν, ξ) = max

β∈U

{
E

[
exp

{
∑

k+1≤ℓ<k+∆
e−θℓg(Xℓ + ξ)1{ℓ≥ν}

−e−θ(k+∆)Ψ(β)
}

Vk+∆(ν, ξ + β)|Fk

]}
, k ≥ 0.

Furthermore, for any two F-stopping times ν and ν′ such that ν ≤ ν′ and any Fν-measurable r.v. ξ, we
have P-a.s.,

(4.13) Vk(ν, ξ) = Vk(ν
′, ξ), k ≥ ν′.

Finally,

(4.14) V−
∞ (ν, ξ) = lim

k→+∞
Vk(ν, ξ) ≤ 1 = Θ∞(ν, ξ) = V∞(ν, ξ).

Proof. The sequence of processes (Vn(ν, ξ))n≥0 is non-decreasing and we know, by (4.8), that ∀n ≥
0, ∀(ν, ξ), ∀k ∈ N,

|Vn
k (ν, ξ)| ≤ exp{∥g∥∞(1 − e−θ)−1e−θk + ∥Ψ∥∞

n

∑
j=1

e−θ(k+j∆)}

≤ exp{∥g∥∞(1 − e−θ)−1e−θk + ∥Ψ∥∞e−θ(k+∆)(1 − e−θ∆)−1}

≤ exp{∥g∥∞(1 − e−θ)−1 + ∥Ψ∥∞e−θ∆(1 − e−θ∆)−1} := C(4.15)

Therefore, the limiting process Vk(ν, ξ) := limn→∞ Vn
k (ν, ξ), k ∈ N, exists and for any k ∈ N,

|Vk(ν, ξ)| ≤ exp{∥g∥∞(1 − e−θ)−1e−θk + ∥Ψ∥∞e−θ(k+∆)(1 − e−θ∆)−1}(4.16)

≤ exp{∥g∥∞(1 − e−θ)−1 + ∥Ψ∥∞e−θ∆(1 − e−θ∆)−1} := C.

Next, since (Vn
k (ν, ξ))k≥0 satisfies (4.5) and is non-decreasing in n, then (Vk(ν, ξ))k≥0 satisfies (4.11),

since U is finite. Furthermore, note that limk→∞ Vk(ν, ξ) exists since (Vk(ν, ξ). exp{∑1≤ℓ<k e−θℓg(Xℓ+

ξ)1{ℓ≥ν}})k≥0 is a bounded supermartingale and (exp{∑1≤ℓ<k e−θℓg(Xℓ + ξ)1{ℓ≥ν}})k≥0 is conver-
gent w.r.t. k and its limit is positive and bounded. Now by (4.16), taking the limit as k → ∞, we
obtain (4.14). Finally, the consistency condition (4.13) is an immediate consequence of (4.7) satisfied
by V(ν, ξ).

□

We end this section with its main result of this section whose proof is similar to that of Theorem
3.10.
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Theorem 4.3. The discrete time risk-sensitive impulse control with delay problem admits an optimal strat-
egy δ∗ = (τ∗

n , ξ∗n)n≥0. Moreover,

V0(0, 0) := V0(ν, ξ)|(ν,ξ)=(0,0) = sup
δ∈A

J(δ) = J(δ∗).

More precisely, such a strategy δ∗ = (τ∗
n , ξ∗n)n≥0 is defined as follows.

(i)
τ∗

0 = inf{ℓ ≥ ∆, Vℓ(0, 0) = Oℓ(0, 0)}.

(ii) ξ∗0 is the U-valued and Fτ∗0
-measurable r.v. such that

maxβ∈U E
[
exp

{
−e−θ(τ∗0 +∆)Ψ(β)

}
Vτ∗0 +∆(0, β)|Fτ∗0

]
= maxβ∈U E

[
exp

{
−e−θ(τ∗0 +∆)Ψ(β)

}
Vτ∗0 +∆(τ

∗
0 , β)|Fτ∗0

]
= E

[
exp

{
−e−θ(τ∗0 +∆)Ψ(ξ∗0)

}
Vτ∗0 +∆(τ

∗
0 , ξ∗0)|Fτ∗0

]
.

(iii) For n ≥ 1,

τ∗
n = inf{ℓ ≥ ∆ + τ∗

n−1, Vℓ(τ
∗
n−1, ξ∗0 + . . . + ξ∗n−1) = Oℓ(τ

∗
n−1, ξ∗0 + . . . + ξ∗n−1)}

(iv) ξ∗n is the U-valued and Fτ∗0
-measurable r.v. such that

max
β∈U

E
[
exp

{
−e−θ(τ∗n+∆)Ψ(β)

}
Vτ∗n+∆(τ

∗
n , ξ∗0 + . . . + ξ∗n−1 + β)|Fτ∗n

]
=

E
[
exp

{
−e−θ(τ∗n+∆)Ψ(ξ∗n)

}
Vτ∗n+∆(τ

∗
n , ξ∗0 + . . . + ξ∗n−1 + ξ∗n)|Fτ∗n

]
.(4.17)

Note that the stopping times τ∗
n are optimal because, by (4.14), limk→∞ Vk(ν, ξ) ≤ V∞(ν, ξ) = 1

(see [14], p.184).

CONCLUSION

In this paper, we addressed a class of infinite-horizon stochastic impulse control problems in
discrete time, with execution delays. Using probabilistic tools, particularly the notion of the Snell
envelope of processes, we constructed an optimal control strategy among all admissible strategies
for both risk-neutral and risk-sensitive utility functions. Furthermore, we proved the existence of
bounded ε-optimal strategies, which is very useful in settings where exact optimal strategies may
not be easily implementable. Our approach bridges the gap between theoretical impulse control
models and real-world decision-making processes, where delays are inevitable. Extending the
current framework to incorporate random execution delays, state-dependent delays, or systems
with constraints on intervention frequency could provide further insight.
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