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ABSTRACT
This paper addresses the critical necessity of continuously moni-
toring systems of the temperature of fuel rod assemblies within a
nuclear power plant and presents a quick and accurate detection of
total and instantaneous blockages. Our research works propose an
advanced and original autoencoder-based methodology for adap-
tive modelling of normal operational temperatures. This model
allows incorporating detailed expertise on the specific malfunc-
tions targeted, in order to detect and identify small heat increases
indicative of blockages in the flow of a nuclear core coolant. The
proposed online detection method ensures a reliable outcome in
terms of false alarm probability as well as detection delay which
are both of the utmost importance. Experimental results, utilizing
real actual temperature measurements from the Superphénix power
station, demonstrate the model’s accuracy and the relevance of the
proposed detection method.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; In-
formation extraction; Probabilistic reasoning; Control methods; •
Hardware→ Temperature monitoring; Safety critical systems;
Temperature control; • Theory of computation → Unsupervised
learning and clustering.
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1 INTRODUCTION
Monitoring critical infrastructure is a top-priority concern due to
the severe consequences of potential incidents. Offices and norms
for critical national infrastructure protection exist in a vast majority
of countries, such as the EU and US critical infrastructure protection
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(EUCIP and CIP) programs. Among critical infrastructure, nuclear
power plants are the most important and sensitive, given the sig-
nificant impact of any malfunction. This is especially true for new
reactor types under development, such as the Sodium-cooled Fast
Reactor (SFR): one of six models selected by the Generation IV
International Forum (GIF) for future nuclear power plants [32, 35].
Despite rigorous development processes, safety and reliability can
still be challenged by very unlikely events, such as core cooling
incidents. One of such critical incidents is the Total and Instanta-
neous Blockage (TIB), which is extremely unlikely to happen, yet,
if undetected, it can lead to the melting of several reactor rods. This
paper focusses on the early detection of TIB.

Change detection in complex systems, including thermal inci-
dents, has been extensively studied in various fields, such as finance,
econometrics, and manufacturing. In this paper, we address the
general problem of abrupt change detection within a complex criti-
cal infrastructure in a real-time context. More precisely, real-time
monitoring of the nuclear reactor’s core temperature is essential
for detecting overheating and identifying various incidents, some
of which are less obvious. In this operational context, the highest
priority is to ensure the reliability of the detection system. This
requires a detector with well-established statistical properties, guar-
anteeing a low false alarm rate and a very quick detection with the
lowest possible delay.

In this context, the present paper proposes an effective use of
autoencoders to model the temperature of nuclear cores, captur-
ing complex temporal dependencies with precision. It enables the
accuracy of blockage by integrating statistical detection theory.
We believe that the combination of these two approaches offers a
significant contribution to possible applications in a wide range of
problems.

The present paper is organized as follows. Section 2 briefly
presents the specific thermal anomaly event it is aimed at detect-
ing and briefly introduces the main difficulties and also recalls the
current art in the field of change detection and especially using
artificial intelligence. Then Section 3 states the problem of the quick-
est detection of coolant flow blockage, considering the very weak
heat anomaly it has at the location of the temperature probes. The
original method we have designed is presented and explained in
detail in the Section 4. Extensive numerical evaluation over a real
dataset of the temperature of a nuclear power plant is presented in
section 5 . Finally, Section 6 concludes the present paper by briefly
recalling the theoretical findings and numerical validation and also
draws possible future works.
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2 STATEMENT AND POSITION OF THE
PROBLEM

This section details the Total and Instantaneous Blockage (TIB)
event that the proposed method aims at detecting. We especially
highlight the underlying challenges and introduce the notation
used throughout the paper.

2.1 Total and Instantaneous Blockage
Figure 1 illustrates the structure of a Sodium-cooled Fast Reactor
(SFR). The core contains the nuclear fuel, in the form of rods, and a
coolant, which cools the core and exchanges heat with the alterna-
tor to produce electricity. The rods are arranged in a honeycomb
structure, each placed in a steel pipe through which the coolant
flows. The temperature of the rod assembly is monitored to detect
overheating. However, direct measurement of the rods is imprac-
tical. Instead, the temperature of the output coolant is measured,
providing an indirect measure of the rod temperatures.

As the name suggests, a total and instantaneous blockage occurs
when the flow of the coolant is completely blocked all of a sudden.
In this case, the actual temperature of the central increases very
quickly yet the measured temperature of this rod remains roughly
constant. The flows of the coolant being completely stopped, the
measured temperatures do not correspond any longer with the
actual rod temperature. However, the temperatures (actual and
measured) increased due to thermal conductivity but only very
lightly and rather slowly. This can cause nuclear core melting and
an ensuing major accident if emergency systems are not activated
immediately. A notable example of TIB occurred on October 5, 1966,
at the FERMI-1 reactor in Michigan, USA. To quote the report [2]:
“during power ascension, zirconium plates at the bottom of the reactor
vessel became loose and blocked sodium coolant flow to some fuel
subassemblies. Two subassemblies started to melt and the reactor was
manually shut down” ; this event was the subject of the book [12].

It is therefore hoped that such an event will be the subject of a
specific detection procedure [1, 23, 24]. However, this is a challeng-
ing problem, mostly because of the following difficulties:

• The temperature of a nuclear power plant is very difficult
to model with accuracy. Indeed, the temperature is largely
affected by the so-called control rods that absorb neutrons
in order to control the rate of fission of the nuclear fuel. The
temperature changes due to power adjustments and, more
generally, depends on many factors that are out of control.

• The impact of total blockage on temperatures constitutes a
very weak signal, at the beginning, again due to the absence
of coolant flow.

• The detection method must be extremely reliable with re-
spect to the following two detection criteria: (1) the detection
delay must be below a certain limit after which the rods may
start melting down, and (2) the false alarm rate must be kept
extremely low, as detection leads to an emergency shutdown
procedure, which is particularly costly in all respects.

The two firsts problems can only be addressed using a very ac-
curate model of the temperature of all rods under normal operating
conditions. In addition, such a model must be computationally sim-
ple, as the system must be monitored in real time; complex physical
models are therefore impossible. What’s more, some parameters
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Figure 1: Illustration of the overall design of an SFR nuclear
reactor, here using a pool architecture emphasizing the lo-
cation of thermocouples with respect to the possible block-
age. Source: based on an image in the public domain from
www.Gen-4.org.

(outside temperature and humidity, water temperature, etc.) are not
precisely known.
The last point is more technical but the usual sequential detection
system focusses on the average detection delay. For instance, the
well-known Sequential Probability Ratio Test (SPRT) [42] and the
CUSUM [29] are, under mile condition, optimal for minimizing the
worst-case average delay before detection. However, in our case,
we want to maximize the detection under a strict maximal delay.

The latter problem is presented in more detail in Section 3.1
while the former is addressed in Sections 3.2 and 3.3.

2.2 Detection in Time Series With Deep
Learning

Since the present paper aims at exploiting the latest artificial intel-
ligence methods to detect anomalies in time series, we shall give a
brief overview of the state of the art in this field. Interested readers
can find comprehensive surveys on deep learning for time series
in [3, 15], more specific reviews on transformers in time series
in [43] and on autoencoders for anomaly detection in [25, 33].

Transformers have been effectively applied to anomaly detection
in time series [22, 43], taking advantage of their ability to model
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temporal dependencies and improve detection quality [44]. Sev-
eral studies, including TranAD [41] and TransAnomaly [46], have
combined transformers with neural generative models used as an
efficient data augmentation means, hence improving performance.
TranAD [41] uses adversarial learning to amplify reconstruction
errors, addressing transformers’ tendency to miss small anomalies,
while TransAnomaly [46] uses autoencoders with the aim of re-
ducing training costs. More generally, the reconstruction error has
been widely used for anomaly detection and transformers have
been used to approximated the inspected data hence generating
reconstruction error, see for instance [45]. AnomalyTrans [44] as-
sociates Transformers with a Gaussian a priori to distinguish better
anomalies, optimizing the model using a minimax strategy to im-
prove association divergence. Last but not least, transformers have
been extensively used in time-series for forcasting and this can also
be used for anomaly detection with the underlying idea that when
an anomaly occurs the forecasting is less accurate. The interested
reader is reader, for example, to [17] and the references therein.

On the other hand, autoencoders (AEs) and variational autoen-
coders (VAEs) [18] have been widely applied for anomaly detection
due to their ability to learn representation of complex signals [4]. In
supervised anomaly detection, AE are generally trained first to learn
the patterns of normal data, then self-refined on combined normal
and abnormal data to distinguish between them by minimizing the
reconstruction error. After training, test data are classified as abnor-
mal if the reconstruction error exceeds a predefined threshold [30].
This approach combines the feature learning capabilities of AEs
with the discriminating power of supervised classifiers, improving
the accuracy of anomaly detection in real-world applications such
as fraud detection [9], network security [20], and fault detection in
industrial processes [8].

In unsupervised tasks, AEs are trained solely on normal data
with the goal of minimizing reconstruction error with respect to
input data. When abnormal data passes through the network, the
reconstruction error is higher. A threshold is set based on this error
to classify the data as abnormal [4]. The versatility of EAs and
their ability to adapt to various types of data make this method
efficient in various applications, especially when the dataset is
highly imbalanced. This includes, for example, cybersecurity to
identify network intrusions [19], manufacturing to spot defects [31]
and finance to detect fraud [16]. Data contribute to their widespread
use in unsupervised anomaly detection scenarios, enhancing system
security and reliability.

3 STATISTICAL DETECTION IN NUISANCE
PARAMETERS

In order to understand the contribution of the present paper, this
section presents how we addressed the three main difficulties pre-
sented in Section 2.1. First, Section 3.1 recalls primers on the quick-
est detection problem and explains the originality of our work and
the proposed sequential method. Next, the general methodology
for dealing with nuisance parameters is presented in Section 3.2.
Last, but not least, the model of the abnormal temperature due to a
blockage, that is the signal it is aimed at detecting, is presented in
the Section 3.3.

3.1 Quickest Detection Problem
The temperature of nuclear rods must be monitored in real time to
detect blockages. This setting, where data are analysed one-by-one
as they are received, is referred to as sequential detection [36].

Let𝑇𝑖;𝑥,𝑦 denote the temperature of the rod at location (𝑥,𝑦) ∈ X
at time 𝑖 ∈ [1, . . . , 𝐼 ]. The temperature surface of all 𝑝 rods at time
𝑖 is denoted by T𝑖 ∈ R𝑝 . The sequential problem can be stated as
follows:

H0 T𝑖 ∼ P𝜽 𝑖
∀𝑖 ≤ 𝐼 (1)

H1,𝜈 T𝑖 ∼
{
P𝜽 𝑖

∀𝑖 < 𝜈

P𝜽 𝑖
+ a𝑖−𝜈 ∀𝑖 ∈ {𝜈, . . . 𝐼 },

(2)

where P𝜽 𝑖
is a known distribution parametrized by 𝜽 𝑖 describ-

ing the regular rod’s temperature, and 𝜈 is the (unknown) time of
change point. The quickest detection means that upon occurrence,
hypothesis H1,𝜈 must be detected with minimal delay 𝐼 − 𝜈 . The
distribution parameter a𝑛 represents the temperature drift after the
TIB occurs and, of course, it changes over time.
We can already note that the detection problem is complex be-
cause hypothesis H1,𝜈 is composite in the sense that at each time 𝑖
there are many possible possibilities for the changepoint hence the
“different alternative hypothesis” for the occurrence of the blockage.

A sequential detection scheme is a stopping rule 𝑆 onT1, T2, . . . , T𝑖
that indicates when to take a final decision. The stopping time 𝑡𝑆 is
the first time 𝑖 at which the stopping rule 𝑆 decides that the change
point 𝜈 has been reached. False alarms occur if 𝑡𝑆 ≤ 𝜈 , and the
detection delay 𝑡𝑆 − 𝜈 should be minimized.
Two criteria are widely used for sequential detection; On the one
hand, a popular choice is the so-called Lorden criterion [21] which
focusses on the worst possible detection delay

sup
𝜈∈N

supE [𝑡𝑆 − 𝜈] . (3)

Here E stands for the expectation operator. This quantity represents
the worst-case expected value for the detection delay over all pos-
sible change-point locations 𝜈 and all observations of temperature
distribution parameters 𝜽 𝑖 . Focussing only on this worst possible
detection delay is clearly a pessimistic approach.
Alternatively, a Bayesian approach was proposed in [34] consid-
ering that the change point 𝜈 is drawn from a known statistical
distribution 𝝅 : 𝜋𝑘 = P[𝜈 = 𝑘], 𝑘 ∈ N. In this case, it has been
proposed to minimize the average detection delay :

E𝜋 [𝑡𝑆 − 𝜈] . (4)

In our case, neither the worst detection delay nor the average
detection delay are a relevant criterion. Indeed, the change point in
our problem is a deterministic but unknown value, and the goal is
to minimize the probability that the change point is detected with
a prescribed strict maximal delay. This constraint is dictated by the
operational context: if the TIB is not detected within 6 seconds,
the core begins to melt, causing irreversible damage. Conversely, it
does not matter whether the change point is detected after one or
five seconds, as long as it is identified before the maximum delay
of six seconds, allowing for an emergency shutdown of the fission
reaction without any damage.
In this operational context, our goal is to find a stopping rule such
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Figure 2: Illustration of the methodology to deal with lin-
ear nuisance parameters: the non-anomalous background
lies within 𝑅(𝐻 ) which is spanned by the green vector ; the
orthogonal complement is the blue surface onto which the
observations are projected to subtract the normal temper-
ature and obtain residuals (in purple). The statistical test
consists in projecting the residual onto the red vector that
defines the anomaly it is aimed at detecting.

that the worst probability of detecting a change point 𝜈 with maxi-
mal delay𝑀 is maximized. The power function of the stopping rule
𝑆 is:

𝛽
(𝑀 )
𝑆

= inf
𝜈∈N
P[𝑡𝑆 < 𝜈 +𝑀 |𝑡𝑆 ≥ 𝜈] . (5)

Additionally, the largest probability of false alarm over a run length
of 𝐿 observations is:

𝛼
(𝐿)
𝑆

= sup
𝑖∈N
P[𝑡𝑆 ∈ 𝑖 − 𝐿 + 1, . . . , 𝑖 |𝜈 > 𝑖] . (6)

To this end we will use a sliding window likelihood ratio test
(SW-LRT) which has been shown to be optimal for the worst possi-
ble power function (5), over all possible stopping time 𝜈 , under a
prescribed mean time to false alarm (6), see details in [14, 39, 40]
and the references therein.
Before presenting in more detail this sliding window likelihood
ratio test detection procedure, we need to explain how to deal with
the nuisance parameters that normal temperatures are.

3.2 Dealing with Nuisance Parameters
As already explained, the regular temperature of the rods, without
any anomaly, is a nuisance parameters in the sense that they have
no interest for the detection of an anomaly but it must be considered
carefully in order to detect an anomaly from this “non-anomalous
background”.

Dealing with such nuisance parameters has always been an
important research topic in the field of statistical detection, see for
instance [10, 11] and the references therein.

A usual simple approach that is convenient as a basis for expla-
nation is when the nuisance parameters is linear. More precisely,
this model assumes that under normal operating conditions, the
temperature at time index 𝑖 of all the rods can be modelled as:

T𝑖 ∼ N
(
𝝁𝑖 , 𝜎

2I𝑝
)
, (7)

where 𝝁𝑖 is the expected value of all the rods’ temperature at index
time 𝑖 , 𝜎2 is the variance of all the rods, and I𝑝 is the identity matrix
of size 𝑝 × 𝑝 with 𝑝 the number of rods.
The linear nuisance parameters model consists in assuming that
the average values of the temperature can be represented with a
small set of basis vectors:

T𝑖 ∼ N
(
H𝜽 𝑖 , 𝜎2I𝑝

)
, (8)

where H is a known full-column rank matrix of size 𝑝 × 𝑞 and
𝜽 ∈ R𝑞 is a vector representing the𝑞-dimension nuisance parameter.
This model has been widely used in signal processing because
it is simple and can be accurate enough in several applications.
Under this model, which is depicted in the Figure 2, everything
that falls within the column space spanned by H, denoted 𝑅 (H) is
considered as the nuisance parameters. Therefore, the rejection of
the nuisance parameter can be carried out by simply projecting the
vector ofmeasured temperatureT𝑖 onto the orthogonal complement
𝑅 (H)⊥ of the column space 𝑅 (H). This projection is defined with
the orthonormal matrix W =

(
𝑤1, . . . ,𝑤𝑝−𝑞

)
, where 𝑤𝑖 are the

eigenvectors of the projection matrix P⊥H = I𝑝 − H
(
H⊤H

)−1 H⊤

corresponding to eigenvalues 1. The matrixW verifies the following
properties:

W⊤H = 0, , WW⊤ = P⊥H, W⊤W = I𝑝−𝑞 . (9)

The rejection of a linear nuisance parameter is represented in the
Figure 2, it can be simply carried out asW⊤T𝑖 such that:

W⊤T𝑖 ∼ N
(
0, 𝜎2I𝑝−𝑞

)
, (10)

However, it is also well known that it is very limited in the case of
a complex “non-anomalous background”, such as the temperatures
of the rods are [28].
Recently it was proposed to use a locally adaptive model which uses
the last measurements in order to adjust the linear model ; such
an approach has been used, for instance, for industrial inspection
systems in [37, 38], and for network traffic monitoring in [5, 13, 26,
27].

In this paper, we propose an original adaptive model based on
deep learning. Specifically, autoencoders (AEs) are well-known
models with latent variables that are particularly effective for man-
ifold learning, which involves representing data as a complex sub-
space. It consists of a deep learning unsupervised model trained to
minimize the reconstruction error, which is given is the case of the
usual binary cross entropy (BCE):

𝐿𝑜𝑠𝑠 =
∑︁
𝑝

[
T𝑖,𝑝 log

(
T̂𝑖,𝑝

)
+ (1 − T𝑖,𝑝 ) log

(
1 − T̂𝑖,𝑝

)]
, (11)

where T̂𝑖 = 𝐴𝐸 (T𝑖 ) represents the reconstructed temperature by
the Autoencoder 𝐴𝐸.

In our case, we leveraged the knowledge on the monitoring sys-
tem and especially the statistical properties of the noise defined as
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Figure 3: Illustration of the model of TIB contribution on
both the central rod and its neighbours.

an uncorrelated Gaussian random field (7). To this end we proposed
to use a Variational Autoencoder (VAE) in which the latent variable
z is drawn from a random distribution, whose parameters depend
on the input T𝑖 , and add to the loss function it is aimed at minimiz-
ing a constraint on the minimal distance between input and output
distribution. Typically, with the usual ELBO (Expectation Lower
BOund) this loss function is defined as

𝐿𝑜𝑠𝑠 = Ez
[
log

(
𝑝𝜂 (T𝑖 |z)

) ]
+ 𝐷𝐾𝐿

(
𝑞(z|T𝑖 ) | |𝑝𝜂 (z)

)
, (12)

where, simply stated, 𝑝𝜂 (𝑥) is the probability distribution of data
point 𝑥 by the model 𝜂 and the expectation is computed over the
latent variables 𝑧, drawn from an auxiliary distribution𝑞𝜂 (𝑧 𝑗𝑥). The
first term corresponds to the reconstruction error and the second
ter the Kullbach-Leibler divergence used as a distance between
input and output distribution, which, in our case, is known with
fairly good accuracy.

After training a simple, yet efficient, VAE with a short sequence
of input temperature, in order to learn the temperature model in
time as well as in space, we subtract the reconstructed temperature.
This is an original alternative to deal with complex nuisance param-
eters exploiting, on the one hand, powerful unsupervised learning
methods and, on the other hand, leveraging the known statistical
model of observation within the framework of hypothesis testing
theory.
The methodology is illustrated in the Figure 2 except that with our
original approach the residuals are obtained but subtracting the
temperature estimated by the Variational Autoencoders instead of
using a fixed linear projector.

3.3 Modelling Blockage Impact on
Temperatures

In order to model the impact of a blockage-induced anomaly (TIB)
on temperatures, we used numerical data measured at a Sodium
Fast Reactor (SFR) station. The temperature measurements were ob-
tained using K-type thermocouples, whose transfer function is well
documented. The impulse response function of the thermocouples
is given by:

ℎ(𝑡) = 1
𝜏
exp

(−𝑡
𝜏

)
, (13)

where 𝜏 is the time constant of the thermocouple, approximately
0.5-1 seconds in our setting. We used a time constant of 𝜏 = 1
second for our simulations.

Due to the impracticality of creating a real TIB to measure its
impact on rod temperatures, we relied on numerical simulations
using the model of the ASTRID reactor. The simulations accounted
for relevant thermodynamic parameters, such as materials, assem-
bly geometry, and sodium cooling flow. However, the simulated
temperatures did not exactly match the measured temperatures due
to differences in sampling frequency and thermocouple response.

To transform the simulated temperatures into realistic observ-
able temperatures, we applied the thermocouple response function,
defined in (13) and subsampled the data by averaging tempera-
tures over one second. This resulted in a model for the anomalous
temperature due to the TIB, denoted as a. Figure 3 illustrates the
temperature after TIB occurs for both the rod at which the blockage
happens and its neighbours.

The figure shows that the temperature at neighbours increases
at a rather constant pace of about 0.6◦C per second, while the
temperature of the central rod drops suddenly after TIB, followed
by a sudden increase of about 150◦C after about 7 seconds, due to
local vaporization of sodium. The difference between the simulated
and observable temperatures is evident, especially for the central
rod. We assumed a spatially invariant model of TIB impact, but the
proposed methodology can be adapted to more accurate models
by modifying the vector a according to inspected rod position and
temperature.

All in all, with this model for the anomaly temperature it is aimed
at detecting, the global decision function is given by:

Λ(T𝑖 ) =
(
T𝑖 − T̂𝑖

)⊤
a, (14)

where T̂𝑖 is the regular temperature estimated by the variational
encoder model and a is set to the maximal admissible detection
delay. That is, we focus on detection with a delay of the longest
admissible duration to maximize the probability of detection before
the time detection delay is exceeded, see details in [14, 39, 40] and
the references therein.

4 AUTOENCODERS-BASED MODEL FOR
DEALINGWITH NUISANCE PARAMETER

We have designed an original mode of a variational autoencoder
(VAE) whose architecture is depicted in Figure 4. First of all, one of
the main originality is that the model accepts as input a series of
16 temperature measurements T𝑖−31, . . . ,T𝑖 . The first convolution
layer is made of 8 kernels of size 16 × 9 : the idea is on allows time
modelling of the temperature thanks to this layer. However, the
loss function is measured only the very last temperature T𝑖 .
Then the proposed variational autoencoder is makde of three con-
volution layers followed by two connection layers for modelling the
temperature surface of the core of an experimental nuclear power
plant. The decoder is made of the reciprocal three convolution lay-
ers to obtain a set of 8 tempertures of rods which are finally pooled
in a last convolution layer with kernel size 1 × 1. This proposed
model therefore output from a time series of the last 16 temperature
a probabilistic representation of the temperature surface.
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Figure 4: Illustration of the proposed VAE model architecture .

More precisely the the architecture of the encoder is the fol-
lowing, see also the Figure 4. After the initial convolution which
generates 8 output of the same size as the original temperature
measurement, that is 11 × 11. Then the first convolutional layer
takes the 2D input temperatures and applies 3𝑥3 convolution with
16 filters, followed by a GELU. We applied a “same” padding of size
1 prior to the convolution and then using a stride size of 2 to reduce
the size to 6 × 6 padding prior to the The output of this layer is a
feature map with 16 which is given to the second layer with the
same architecture: 3 × 3 convolution with 32 follwed by GELU acti-
vation and strided with stride 2. A last convolution with the same
architectire except with 64 filters is applied. We thus eventually
end up with 64 layers of size 2 × 2.
This resullts of the encoder is given to a first connection layer: the
input is flattened and passed through a fully connected layer with
128 units, followed by a GELU activation function. A second con-
nection layer with the same architecture of a function connected
model with 128 units, followed by a GELU activation function. This
constitutes our final latent space.
The VAE learns a probabilistic representation of the temperature
surface via the encoder: its outputs a mean and variance for each di-
mension of the latent space, which are used to sample a latent vector.
The decoder takes this latent vector and generates a reconstructed
temperature surface.

The decoder consists of the reciprocal architecture as the encoder
: it is made of three time the same convolution layer with kernel
of size 3 × 3 together with outper padding of size 1 to increase the
dimension. The number of filters is halved at each layer from 64 to
32, 16 and eventually 8 which are merged with a GELU activation
function and pooling ; empirically the average pooling gave the

best only at this layer, all other pooling are carried out using the
maximal value.

In the present paper we obtained best results using a loss function
which is the sum of the mean squared error ( the latest temperatures
and the reconstructed values) and the Kullbach-Leibler divergence
used to regularize the latent space and encourage the model to learn
a meaningful representation of the temperature surface.

5 NUMERICAL RESULTS, SIMULATION AND
EVALUATION

5.1 Common Core of All Experiments
The primary dataset analysed in this study originated from the
French Commission of Atomic and Alternative Energies (CEA) and
was obtained from the experimental French Phenix Nuclear Reactor.
The dataset consisted of synchronized one-week time stamps from
February 16th to February 22nd and from March 2nd to March 09th
2009, encompassing approximately 1, 201, 600 temperature obser-
vations per rod, across 120 rods. Due to the reactor’s construction
date and experimental goals, a sampling frequency of 1 Hz was
adopted to avoid excessive data accumulation over the years.

The proposed Variational Autoencoder model was implemented
using the PyTorch deep learning framework and the FastAI library.
We randomly split the samples into training (40%), validation (10%),
and testing (50%) sets. This choice was motivated by the need for
a large testing dataset to evaluate low false-alarm rates. During
our simulation, the statistical test was carried out using a small
subset of 3x3 temperature values (a central rod subject to blockage
and its neighbours). We maximized the number of simulations by
computing the detection statistics on all possible subsets of rods
and for all possible measurement times. The statistical test was



Autoencoder-Based Model of Nuclear Power Plant Core Temperature for Blockage Event Detection ACM ICCAI ’25, March 28–31, 2025, Kyoto, Japan
A
ut
oc
or
re
la
tio

n
fu
nc
tio

ns
fo
re

ac
h
ro
d

-50 -40 -30 -20 -10 0 10 20 30 lag 50
0

0.2

0.4

0.6

0.8

1

(a) Autocorrelation function of all rods’ residuals
using the polynomial “fixed” model.
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(b) Autocorrelation function of all rods’ residuals
using the proposed adaptive model.
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(c) Autocorrelation function of all rods’ residuals
using the polynomial with ARMAX model [28].

Figure 5: Comparison of the autocorrelation functions, plotted as a function of the lag, obtained with different models.
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Figure 6: Theoretical and empirical distributions of the de-
tection statistics (14). The results obtained with the proposed
model are much closer to the theoretical results than those
obtainedwith an adaptive linearmodel as proposed in [5, 38].

applied randomly to all possible blockage locations at all possible
times, resulting in approximately 35 million test data points under
each hypothesis.

5.2 Assessement of Proposed Model Accuracy
To evaluate the proposed VAE’s performance, we examined its abil-
ity to learn temperature representations and the characteristics
of the resulting residual noise. Figure 5 presents the normalized
autocorrelation function of all residual rod temperatures. On the
left-hand side, the residuals obtained with a simple linear model
based on a polynomial approximation of the temperature surface
are shown. The residuals are heavily biased due to the model’s
lack of accuracy. In contrast, the results obtained using a simple
Autoregressive-Moving Average model with exogenous inputs (AR-
MAX) model, as proposed in [28], where the input is the power
produced by the core, show much better performance. The noise
residuals are only loosely autocorrelated in time, demonstrating
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Figure 7: Performance of the detectors via a ROC curve plot-
ting the true-positive rate (TPR) as a function of the false-
positive rate (FPR). The theoretical results are based on mea-
surements noise variance and the BTI signal computed as in
Section 3.3.

a great capability to remove the content. However, this model is
not accurate enough, as will be seen in the next section 5.3. The
autocorrelation obtained by subtracting the temperature recon-
structed by the proposed VAE model is shown in the middle. The
autocorrelation of the noise residuals is very small and quickly
decreases to zero. Obtaining these results is challenging, and it is
encouraging because it indicates that the proposed model can learn
a sparse representation of the temperature, such that errors do not
affect subsequent samples. This result is a necessary but insufficient
condition for the statistical test, based on the projection of residuals
onto the anomaly vector, to perform accurately. Indeed, the model
can remove a large part of the anomaly if it is not sharp enough. In
contrast, results such as those presented on the left-hand side, using
a simple polynomial approximation, result in non-zero mean test
statistics and biased detection statistics, which corrupt the decision.
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Figure 8: False-positive rate (FPR) as a function of the detec-
tion threshold ; comparison between the theoretical values,
the empirical results obtained with the proposed hybrid au-
toencoders/transformers model and using a linear adaptive
mode as proposed in [5, 38].

5.3 Detection performance
We now move to the evaluation of the performance of the proposed
overall detection method. Figure 7 presents the ROC (Receiver
Operating Characteristic) curve, showing the true-positive rate,
also referred to as the sensitivity of the test, as a function of the
false-positive rate. In addition to the performance of the proposed
detection methodology based on the original VAE, the performance
of an advanced auto-adaptive model is reported. This model, as
proposed in [5, 38], uses the principal components of the last tem-
perature measurement to improve the polynomial model, whose
residuals were presented in Figure 5. In other words, this model
takes advantage of both the linear model and the ARMAX model,
which models temperature over time. While this model performs
quite well, it is clear that the proposed method for subtracting the
residuals using the original Variational Autoencoders performs
much better. Lastly, Figure 8 shows the distribution of the false-
positive rate as a function of the decision threshold. Interestingly,
the plot presents a comparison with the theoretical false-alarm
probability if one had a model that could perfectly remove the nor-
mal temperature. This curve is calculated using the noise of all
thermocouples, which is known with a fairly good accuracy. It is
noticeable that the proposed detection method leveraging the VAE
is quite close to the theoretical false-positive rate, indicating that
the subtraction of the non-abnormal temperature is nearly optimal.
This capability remains true even for very low false-positive rates
of about 10−5. In contrast, the false-positive rates obtained with the
adaptive model are good but are much further from the theoretical
values. More importantly, this simpler model is not relevant for
very low false-positive rates, which is the operational context, as a
false-positive rate of only 10−3 would be hardly usable in real-life
applications.

6 CONCLUSION AND FUTUREWORKS
This paper investigates the detection of Total and Instantaneous
Blockage (TIB) of coolant flow around a fuel rod in a nuclear power
plant core. This problem is particularly challenging because, when
the coolant flow is obstructed, the measured temperature does
not accurately reflect the true temperature of the rod due to the
placement of the instrumentation. Additionally, the problem is sta-
tistically complex for two primary reasons: first, the temperature
of the rods is complex and it fluctuates over time; second, the usual
sequential detection criterion is not relevant, as it is necessary to
detect the blockage with a maximal fixed delay.
To model the "normal" temperature variations in a nuclear power
plant core, a simple yet efficient variational autoencoder is pro-
posed. Numerical results demonstrate the accuracy of this adaptive
model and its effectiveness for TIB detection. The detection of
non-stationary temperature changes is addressed using a fixed size
sliding likelihood ratio test. This approach matches the maximal de-
lay criterion and has the significant advantage of providing bounds
on its statistical performance, which is crucial in the industrial
operational context of nuclear power plants.
Numerical results using real data validate the effectiveness of the
proposed two Fixed Length Windows method for sequential TIB
detection. Theoretical results also confirmes the reliability and
sharpness of the proposed original methodology.
An important possible barrier to the practical application of the
method proposed in the present paper lies in the lack of explain-
ability of deep learning in general [6, 7]. This could limit the ac-
ceptability of users, as well as the occurrence of false alarms may
undermine trust in the decision of the proposed automatic surveil-
lance system.
Our future work will focus on integrating contrastive learning
into the detection process, more specifically by incorporating the
projection onto the anomaly during the learning phase.
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