
HAL Id: hal-04883539
https://hal.science/hal-04883539v1

Submitted on 13 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Considering the Aeronautics Cyber-Security Standards
for Multi-Core Platforms

Anthony Fernandes Pires, Julien Brunel, Kevin Delmas

To cite this version:
Anthony Fernandes Pires, Julien Brunel, Kevin Delmas. Considering the Aeronautics Cyber-Security
Standards for Multi-Core Platforms. ERTS 2024 Embedded Real Time Systems, Jun 2024, Toulouse,
France. �hal-04883539�

https://hal.science/hal-04883539v1
https://hal.archives-ouvertes.fr

Considering the Aeronautics Cyber-Security
Standards for Multi-Core Platforms

Anthony Fernandes Pires
ONERA

Toulouse, France
anthony.fernandes pires@onera.fr

Julien Brunel
ONERA

Toulouse, France
julien.brunel@onera.fr

Kevin Delmas
ONERA

Toulouse, France
kevin.delmas@onera.fr

Abstract—New complex functions are emerging for avionic sys-
tems. These new functions ask for high performance computing,
which mean the need to embed new type of hardware such as
hybrid architectures integrating multi or many-core processors.
However, these processors are often Commercial Off-The-Shelf
and suffer a lack of documentation and predictability. In the
all-connected trend of today digital world, these issues can lead
to new security vulnerabilities exploitable by malicious people.
In the context of the PHYLOG 2 research project aiming at
defining a certification framework for multi-core platforms, we
study the aeronautics standards ED-202A/DO-326A and ED-
203A/DO-356A about airworthiness security. The objective is
to take into account these standards at the level of the multi-
core processors in order to ensure the compliance of security
assessment and development for certification. We present our
review and understanding of the standards and their projection
at the level of multi-core platforms. In addition, we describe our
application on a use case and report our feedback.

Index Terms—cyber-security, multi-core processors, aeronau-
tics, certification

I. INTRODUCTION

New types of hardware are making their way to avionic
systems as new complex functions are emerging, such as
pilot assistance or flight supervision coupled to machine
learning. These new functions are indeed asking for high
performance computing. This implies the need to embed
hybrid architectures integrating multi or many-core processors
and accelerators. However, these processors are mainly COTS
(Commercial Off-The-Shelf), so they suffer from low pre-
dictability and a significant lack of documentation. This lack
of documentation and the complexity of these processors open
new vulnerabilities for cyber-attacks. In addition, the avionic
systems are becoming more open and connected in the modern
digital era (e.g. the use of Electronic Flight Bag), leaving these
vulnerabilities more accessible to malicious persons.

Standards such as ED-202A/DO-326A and ED-203A/DO-
356A offer guidelines, considerations and certification ob-
jectives to address airworthiness security. The airworthiness
corresponds to the capacity of an aircraft and its systems to
operate safely and to carry out their expected function. The
airworthiness security consists in the protection of the aircraft
against intentional unauthorized electronic interactions. How-
ever, these standards have been created to be applicable at the
classical levels of aeronautics development: aircraft, system
and item. To be able to reason about airworthiness security

for the multi or many-core processors, we need to refine these
standards to assess cyber-security at the level of the platform,
i.e. the processors architecture (hardware) and its executive
layer. This is not the system level or the item level, but a level
in between.

PHYLOG 2 is a research project1 supported by DGAC,
which aims at defining a certification framework for multi-
and many-core hybrid architectures. In this context, we study
the security standards ED-202A/DO-326A and ED-203A/DO-
356A. The objective is to understand the guidelines and con-
siderations expressed in these standards and how to apply them
at a platform level to gain confidence on the airworthiness
security of multi-core platforms and ensure compliance with
certification.

In this paper, we present the work done to achieve this
objective in the context of COTS. It is organised as follows. In
Section II, we introduce the cyber-security standards by giving
a summary of our understanding of the standards contents
and our understanding of the application of a part of the
Airworthiness Security Process on the use case example given
in the ED-203A/DO-356A. In Section III, we present the
challenges brought by the use of multi-core architecture in
terms of existing cyber-attacks for processors, and in terms
of considered level of development for the application of
the standards. In Section IV, we present how we interpret
the cyber-security standards at the development level of the
platform and we apply this interpretation on a revised version
of the Air Management System use case based on a simplified
version of a Texas Instruments platform. In Section V, we
discuss our feedback and the applicability of the standards at
platform level. We conclude in Section VI.

II. UNDERSTANDING THE STANDARDS

A. Overview

Standard ED-202A/DO-326A (Airworthiness Security Pro-
cess Specification) [14] and companion document ED-
203A/DO-356A (Airworthiness Security Methods and Consid-
erations) [15] describe the process, guidelines and regulatory
considerations to address airworthiness security. From our un-
derstanding, the standards offer different kind of information.
First, a definition of the fundamental concepts required to

1https://w3.onera.fr/phylog/

understand and to conduct the Airworthiness Security Process.
Second, an overview of the process, activities and suggested
methods to be carried out. Third, a list of Security Assurance
Objectives to satisfy at the different level of development.
Finally, a set of appendixes on methods and examples of
application on different use cases. In this section, we focus
on giving an overview of the Airworthiness Security Process,
introducing the necessary concepts along the way, and we
present our understanding of the application of a part of
this process on the use case coming from the ED-203A/DO-
356A. We finish with an introduction to the Security Assurance
Objectives.

B. The Airworthiness Security Process

A simple representation of the recommended process is
visible Figure 1.

Security Scope
Definition

Security Risk
Assessment

Security
Development

Architecture
Development
(ARP4754,...)

Safety
Assessment
(ARP4754,

ARP4761, ...)

Security Risk
Assessment

Implementation
(DO178, DO254,
AMC20-193, ...)

INTERFACES WITH
OTHER STANDARDS

AIRWORTHINESS SECURITY RISK MANAGEMENT

INTERFACES WITH HIGHER RISK MANAGEMENT LEVELS

Activity Artifact Flow

Legend

Fig. 1. Airworthiness Security Process preview

It is based on three major activities. First, the security scope
definition activity identifies the elements under consideration
in the process. The security scope is composed of the assets
considered for the airworthiness security, their security perime-
ter i.e. the border between the assets and the external world,
and their security environment i.e. all the elements external to
the security perimeter that can interact with the assets.

The second activity is the security risk assessment that iden-
tifies and qualifies the security risks. Based on the definition of
the security scope, this activity identifies the threat conditions
and their effects, i.e. the conditions resulting from potential
attacks, the threat scenarios leading to these threat conditions,
and the existing security measures. From this information,
it allows evaluating the risk for security by calculating the
level of threat and evaluating the severity of threat conditions
effects. The Level of threat represents the likelihood of a threat
condition to occur, while the severity provides a qualitative
evaluation of the level of harm of their effect.

The security development activity focuses on the design of
security related development (e.g., security measures) adapted
to the evaluated security risks and the verification of their
effectiveness.

The process always starts by conducting a preliminary
Security Risk Assessment at design phase and proceed with

one or many iterations of the Security Risk Assessment once
the implementation is available. Indeed, once the security risk
is evaluated and the security development to mitigate this risk
is achieved by modifying the architecture, it is necessary to
re-evaluate the risk to find out whether it is acceptable.

The airworthiness security process also interfaces with
other activities. It particularly interacts with the airworthiness
security process at a higher level. Moreover, the process
interfaces with activities linked to other standards. The archi-
tecture issued from the Architecture Development following
the standard ED-79A/ARP-4754A [17] is necessary to conduct
the airworthiness security process. In addition, the failure con-
ditions coming from the Safety Assessment following standard
ED-135/ARP-4761 [16] and the implementation following
standards ED-12C/DO-178C [13], ED-80/DO-254 [12] and
AMC20-193 are required for the Security Risk Assessment.
So these interfaces are mainly represented as inputs to the
airworthiness security process.

C. Illustration on The Air Management System from ED-
203A/DO-356A

The standards illustrate the application of the different
activities of the Airworthiness Security process on practical
examples. One of this example is the Air Management Sys-
tem (AMS) described in ED-203A/DO-356A. The standard
presents the application of the the Security Scope Definition
activity and the Security Risk Assessment activity on this
particular use case. The Security Development for this use
case is not described in the standards and is out of the scope
of this paper. The following is our understanding based on the
material available in the standard.

1) Description: As described in ED-203A/DO-356A, the
AMS of an aircraft fulfils five functions: it provides cabin
acclimatization, cabin pressurization, In-Flight information,
support for maintenance and support for manufacturing. To
manage these functions, the AMS is composed of a Tempera-
ture Controller and a Pressurization Controller as depicted in
Figure 2.

Software

Storage

Firmware

Software

Storage

Firmware ARINC664

 CAN

USB

Ethernet

ARINC664

CAN

Air Management System (AMS)

Temperature Controller Pressurization Controller

Ethernet

Logical

Logical

Fig. 2. AMS overview

Each of these controllers contains a software, a firmware and
a data storage but also interfaces to the external world. First,
there are physical interfaces such as Ethernet interface, ARINC
664 interface, CAN (Controller Area Network) interfaces.
The Pressurization Controller is connected to the Temperature
Controller via an Ethernet connection. The Pressurization
Controller is also the only controller to be equipped with an

USB port. Second, there are logical interfaces that represent
digital connections to equipment, such as Aircraft Systems,
most of the time via a network of intermediate equipment, e.g.
an Ethernet switch. In addition to these descriptive elements,
a list of identified Failure Conditions for the AMS is also
available in the ED-203A/DO-356A. In this paper, we will
primarily focus on the Loss of pressurization for crew and
passengers which is identified as catastrophic.

2) Definition of the Security Scope: The representation of
the complete security scope for the AMS is described in
Figure 3 (This figure is based on representations from the
ED-203A/DO-356A and [19]). It is composed of the assets
under consideration, their security perimeter and their security
environment.

a) Assets under consideration: The security scope def-
inition of the AMS starts by the identification of the as-
sets under consideration. Here, the Temperature/Pressurization
controllers are considered in their entirety. Each of them
includes, as assets: their constituents (e.g. micro-processor),
their functions (e.g. ”Provide Cabin pressurization”), their
information (e.g. software, firmware, data storage, etc), their
interfaces.

b) Security Perimeter: The Security Perimeter is the
border between the assets and the external world. For the
AMS, it is composed of the physical and logical interfaces
of the two controllers. The physical interfaces include the
interfaces to A664 Switch, to ethernet switch, to Maintenance
Ground Support Equipment (GSE) and the USB interface. The
logical interfaces are composed of the interfaces to Bleed
System, to EFB, to QAR, to IFE File Server, to Avionic
Systems and to Airline and Manufacturer network.

c) Security Environment: The Security Environment rep-
resents the external world of the assets and what can interact
with them. It is the place where attacks originate. In the case of
the AMS, the security environment includes MRO personnel,
pilot, first officer, operator’s personnel, operator’s maintenance
personnel, airline ground infrastructure, manufacturer ground
infrastructure and avionic systems. The security environment
also covers security assumptions that have been made. One
example for the AMS is ”The Pressurization Controller can
be updated via GSE or embedded Ethernet switch”.

3) Security Risk Assessment: A part of the security risk
assessment activity on the AMS is described in the ED-
203A/DO-356A. Here we summarize the threat conditions
identification, the threat scenario identification and the security
measure characterisation available in the standard. We then
carry out ourselves a level of threat evaluation on a security
measure of a scenario in order to illustrate this particular part.

a) Threat condition identification: An example of Threat
Conditions identification on the AMS as presented in ED-
203A/DO-356A is given in Table I. It describes a threat
condition impacting the asset ”Logical interface to the Bleed
system” and resulting in the loss of pressurization for the crew
and passengers. It is is associated to the failure condition
coming from the safety assessment, Loss of pressurization
for crew and passengers. This threat condition considers

the corruption of the pressurization controller leading to the
dispatch of misleading commands to bleed system. In terms
of impact, each threat condition affects a security attribute of
an asset. There are typically three security attributes which are
considered: confidentiality, integrity and availability. They are
referred as CIA. Here, the threat condition is considered as a
loss of integrity for the logical interface to the Bleed system
and the severity of the effect is identified as catastrophic.

TABLE I
EXAMPLE OF A THREAT CONDITION FOR THE AMS

Threat
Cond.

Asset Attribute
(CIA)

Description Effects Severity

TC.1 Logical
Interface
to Bleed
system

Loss of
Integrity

Misleading com-
mands to bleed
due to Pressuri-
sation Controller
corruption

Loss of pres-
sure control
for crew and
occupants

Catastrophic

b) Threat scenario identification: An example of threat
scenario identification is given in Table II. It represents a
scenario where a criminal, terrorist or insider uses the Wire-
less Connection to bypass security measures2, to access the
Pressurization Controller Storage and to achieve the threat
condition presented in Table I.

TABLE II
EXAMPLE OF A THREAT SCENARIO FOR THE AMS

Threat
Sc.

Threat Sources Attack Path Security
Measures

Threat
Cond.

Attacker Attack Vector

TS.1 Criminal,
Terrorist,
Insider

Wireless con-
nection

Wireless Bridge,
Ethernet switch,
Pressurization
Controller storage

Flight Phase
(SR1), Wireless
Bridge Access
Control

TC.1

c) Security Measures Characterization: In the ED-
203A/DO-356A, the Wireless Bridge and its access control
is used as example for Security Measures Characterization, as
it is on the attack path of the scenario defined in Table II.
A summary of this characterization extracted from the ED-
203A/DO-356A is presented in Table III. It offers password
protection to access the wireless network but its main vulner-
ability is that it comes with default login and password at the
delivery of the aircraft. If the credentials are not changed by
the operator, an attacker with knowledge of the default settings
can exploit this vulnerability.

d) Level Of Threat Evaluation: Following the examples
of methods available in ED-203A/DO-356A, the assessment
of the level of threat can be carried out in different ways.
Here, we consider the assessment of the level of threat based
on the evaluation of the effectiveness of protection. This kind
of evaluation depends on three criteria. First, the preparation
means i.e. is previous knowledge required to conduct the

2In the table, SR1 represents the Security Requirement 1 as defined in ED-
203A/DO-356A: ”The Pressurization Controller shall only accept external
connections routed via Wireless Bridge when the aircraft is on-ground and
engine is off.”

Wireless Bridge

Cockpit
Electronic Flight Bag (EFB)

Ethernet Switch

A664 Switch

Quick Access Recorder (QAR)

AMS USB connection

Manufacturer
Network

Airline Network

Temperature
Controller

Pressurization
Controller

Pilot

First Officer

Operator's
Personnel

Maintenance,
Repair and

Overhaul (MRO)
Personnel

Operator's
Maintenance

Personnel

Avionic
Systems

Bleed
System

Airline Ground
Infrastructure

Manufacturer
Ground

Infrastructure

Security
Environment

Assets

Physical
Interface

Logical
Interface

Legend

Cabin Service Director (CSD)
Electronic Flight Bag (EFB)

In-Flight Entertainement (IFE)
File Server

Maintenance
Ground Support
Equipment (GSE)

Fig. 3. AMS Security Scope from ED-203A/DO-356A

TABLE III
EXAMPLE OF CHARACTERISATION OF THE SECURITY MEASURE

WIRELESS BRIDGE ACCESS CONTROL

Description Protected
Assets

Capability Type of
effect

Position
in the
architec-
ture

Known
vulnerabil-
ity

Dependencies

Standard
wireless
access point
with optional
channel
encrypting and
access controls

AMS
system,
functions
and data

Provide
password
protection,
interface
hardening,
etc

Preventive In the
security
perimeter
border

Delivered
with
standard
user
name and
password

Need to
enforce
password
definition
after
delivery or
replacement

attack? Second, the window of opportunity i.e. when will
the attack be possible? Finally, the execution means, which
prerequisites need to be carried out?

For each of this criterion, a score table is presented in ED-
203A/DO-356A in order to give a score depending on pre-
defined answers for the associated question. By combining
the three scores, the user obtains an effectiveness score of
the protection, denoted A. The level of threat can then be
decided following the score table presented in Table IV. It is
then up to the user to combine the effectiveness scores of the
different security measures, following specific rules defined in
ED-203A/DO-356A annex E, to obtain the total score of the
effectiveness of protection and so the level of threat of the
threat scenario.

For the AMS use case, we tried to carry out this assessment
on the Wireless Bridge Access Control in the context of
the scenario presented in Table II, as the illustration on this
example does not seem to be available in the standards.
In terms of preparation means, the Wireless Bridge Access
Control corresponds to a standard equipment and uncontrolled
information, as the equipment is delivered with standard login

TABLE IV
LEVEL OF THREAT DEPENDING ON EFFECTIVENESS SCORE

Level of threat Effectiveness A

Very High None < 7
High Basic ≥ 7
Moderate Moderate ≥ 13
Low High ≥ 19
Extremely Low Very High ≥ 25

and password. The obtained score for this criterion is then 2.
In terms of window of opportunity, the access to the wireless
bridge is only available on ground engine off which is a
reduced window. The evaluated score is then 2. In terms of
execution means scale, the attacker needs to be proficient with
standard equipment to gain access. The given score is then 4.

The total computed effectiveness score for the Wireless
Bridge Access Control is 8. Following Table IV, it corresponds
to a basic effectiveness and a high level of threat for this
protection. However, other security measures are available for
this particular threat scenario and would need to be taken into
account to obtain the final level of threat.

D. Assurance Objectives

Finally, the standards also defined security assurance ob-
jectives for certification. There are 39 objectives organised
following 13 categories (e.g. security risk assessment, design,
verification, etc). Each objective is tagged with its scope of
application, i.e. Aircraft development, System development or
Item development and its level of application according to the
Security Assurance Level (SAL). In the same vein as the DAL,
the SAL represents the level of rigor to demonstrate, in terms
of security, for a product and its development process. It goes

from level 0, no protective effect, to a maximum level of 3. It
is determined based on the severity of threat condition effects
to which the product is exposed to and it is assigned to the
security measures and assets of the product. SAL is considered
out of the scope of this paper, as we reviewed every objective
in our work.

To give an example of Assurance Objective, let us consider
for the remainder of the paper the objectives O1.1, O1.2 and
O1.3 from the Security Risk Assessment category, all applying
to the Aircraft and System development level. They are respec-
tively: The security scope is established and validated (O1.1),
the Threat Condition Identification and Evaluation is com-
plete and validated (O1.2), the Preliminary Aircraft/System
Security Risk Assessments and Aircraft/System Security Risk
Assessments are performed and consistent with related air-
craft/system safety assessments (O1.3).

III. THE SECURITY CHALLENGES BROUGHT BY
MULTI-CORE PLATFORM

A. Cyber-Attacks at the level of the processors

Many works of the literature have identified cyber-attacks
targeting processors, including multi and many-core proces-
sors. For instance, [21] presents a sophisticated attack that
retrieves information on a secret cipher key by observing the
shared Last Level Cache (LLC) of a platform. This attack
is called Flush + Reload and illustrates a larger category
of attacks called side channel attacks. Side channels attack
principle is to infer information by observing a phenomenon
correlated to the computation (e.g. power consumption, execu-
tion time, sound, etc.). Here the attack context is a multi-core
platform with shared LLC. On one core, a victim program
encrypts a message with its secret key. On another core, an
attacker program seeks to retrieve the key to decrypt the
message. All encryption programs are considered accessing
the same memory location where its instructions are stored.
The cache structure of the platform is said to be inclusive, i.e.,
when a user flushes a line in cache, the line is flushed from
all cache levels and for all users. The encryption algorithm
used is a non-protected version of RSA. The RSA algorithm is
composed of three basic operations: square, multiply, modulo.
In a non-protected version of RSA, the order of execution
of these operations depends on the bit stream of the secret
key. Hence, the order of the operations executed by the victim
informs on the secret key. The scenario of the attack is the
following. When the victim is encrypting data, only one out of
the three operations will have a reduced access time, meaning
that it has been loaded in cache by the victim. After the
attacker measured the time of access to all the commands and
found the one executed by the victim, it flushes all the three
operations from the cache and waits for the victim to execute
another operation. Repeated during the whole encryption, this
process gives the sequence of executed commands, which
informs on the secret key used by the victim. In terms of
security measures, it is quite easy to protect against some of
this type of attacks. However, it is very difficult to protect

against all of them. Some security measures may need hard-
ware modification or could be only software. For instance, an
easy way of protection for the case described in [21] is to make
the algorithm load all the operations at each step whatever the
one it executes currently. The observation of the exploitable
phenomena is then mitigated.

Other versions exist such as Prime + Probe [10] or Flush +
Flush [5] that are all based on the same concept of obvervable
phenomena but with different configurations and efficiency.
Additional ways to exploit those phenomena via side channel
attacks are described in [22]. From another perspective, work
such as [20] studies protection mechanisms against side chan-
nels attacks in the context of Simultaneous Multi-Threading
(SMT) processors. Indeed, SMT architecture allows multiple
threads to compete for shared resources on a single core. Even
if it offers performance benefits, it comes at the cost of higher
security risks, especially from side channels attacks which
exploit shared resources. The protection mechanism described
in [20] is based on a spatial and time partitioning of the
execution units and ports to prevent side-channel execution
on this kind of processor.

Side channel attacks can also be part of more recent
sophisticated attacks, such as Meltdown [7] or Spectre [6].
Both of these attacks take advantage of a specific feature
that is implemented in modern processors called out-of-order
execution. This feature allows a processor to speculate on
future operations and schedule them to idle execution units.
If the speculation becomes correct, the changes induced by
the operations are applied otherwise they are discarded. It
increases performance but provides observable side effects
which can be exploited. For instance, Spectre attacks trick a
victim into speculatively performing operations that would not
happen during the nominal program execution and which leak
confidential information. The side effects can then be exploited
to retrieve this information via side channel attacks.

In a different vein, [9] describes an attack on the In-
put–Output Memory Management Unit (IOMMU) of a plat-
form that, in a particular configuration, gives a malicious hard-
ware access to the whole memory space. On some processors,
Direct Memory Access (DMA) can make direct accesses to
the shared memory. It allows to bypass the CPU (and thus the
OS if any) so that other devices, such an Field-Programmable
Gate Arrays (FPGA), could access in parallel the memory.
For example, an FPGA dedicated to cryptographic operations
could encrypt and decrypt messages in parallel to the main
OS running. But such an unlimited access is not without
dangers if the code on the device is malicious or simply
flawed. An IOMMU can then be implemented to filter memory
access requests. It serves both as a protection against illegal
access and as an abstracted interface since it translates vir-
tual addresses to physical addresses. However, at the start
of the system, the IOMMU is not immediately configured
while the DMA access is enabled immediately after the CPU
initialization. The IOMMU is set after some time in the boot
process, which leaves a time window for unlimited memory
access. This is exploited in this attack. The attack context is

a heterogeneous architecture with one or more CPUs and a
Linux OS. The architecture also includes hardware devices
like FPGA, external to the OS. These hardware devices are
connected to the main memory via DMA and an IOMMU is
set to protect the main memory. It is considered that one of the
hardware devices is infected by a malicious program at startup.
The scenario is the following. On startup, the Linux kernel
creates the configuration table of the IOMMU that contains the
access policy rules. This table is in the main memory before
it is loaded in the IOMMU internal register, where it becomes
protected. However, while this table is in the main memory
and before it is loaded, the malicious hardware will rewrite it
to give itself access to the whole memory space. This scenario
is based on the assumption that the DMA access is enabled by
default at startup. Nowadays, this is true for many platforms
because of legacy reasons, as explained in [9]. Concerning
security measures, this work also illustrates the vulnerability
that a security mechanism at the level of the platform (the
IOMMU) can have and that could be exploited to bypass the
protection.

In [4], the authors list a number of attacks targeting
Network-on-Chip (NoC). A NoC is a network between
System-on-Chips (SoC) which are integrated circuit contain-
ing processors. A NoC design combines notions from the
network and the hardware domains, including their security
vulnerabilities, and creates a completely new set of attack
possibilities between processors. For example, we present one
of the attacks described in [4], the attack concerning packet
corruption at routers. In this attack, a Trojan hardware is
inserted in a router of the network and is able to either copy
and resend packets, send forged packets or tamper the data
inside a transiting packet. The context of the attack is based
on two CPU clusters on the network, a sender and a receiver,
which need to communicate. A hardware element has been
introduced into a router of the network that is on the path
between the sender and the receiver. There is no encryption
or authentication mechanism implemented on the network
and the Trojan is sufficiently stealthy to not be detected by
traditional means of network monitoring. The attack scenario
is quite simple. The message from the sender to the receiver
is intercepted by the Trojan and is modified or additional
messages are forged. In terms of security measures, detecting
a Trojan hardware is very difficult if not impossible. Current
research works are more focused on protecting the network in
case of such compromising. Protection mechanisms include
what is already done in networks, i.e. error-correcting codes,
encryption, authentication, etc. However, this attack requires
the installation of hardware on the network, which makes the
feasibility of the attack more difficult.

Despite the numerous processor level attacks identified
in the literature, we did not find any example of attacks
in the aeronautics domain or any practical applications of
ED-202A/DO-326A and ED-203A/DO-356A on a multi-core
platform.

B. The need to consider a development level of the platform

In this paper, we consider that a platform is composed of
several hardware and software items interacting between them.
It includes a processor architecture, a platform configuration,
which can be hardware and/or software, and an executive layer,
i.e. the hypervisor. Cyber-attacks reported in the literature
show that it exists many attacks happening at the level of
processors and their interactions. Security measures are also
defined at this level of details. In this case, it becomes essential
to consider the whole content of a platform to carry out
the Airworthiness Security process. As seen in Section II,
the standards ED-202A/DO-326A and ED-203A/DO-356A
consider the traditional development level of an aeronautic
development. However, the platform is neither a system nor
an item. It is something in-between. It is then necessary to
consider an alternative level of development to apply the
recommendations of the cyber-security standards. We suggest
studying their application at the level of the platform.

IV. INTERPRETATION OF THE STANDARDS AT THE
PLATFORM LEVEL

Based on our review of the standards ED-202A/DO-326A
and ED-203A/DO-356A and the need to reason at platform
level, we first extracted the concepts needed to carry out
the activities, along with their definitions and relationships.
Accordingly, we designed a representation of the security
process as we understood it and we outlined it at the level of
the platform, along with the Security Assurance Objectives. In
addition, we took the AMS example described in Section II-C
and we brought it at the platform level to review the activities
at this specific level. The work achieved for the process, the
assurance objectives and the use case is summed up in this
section.

A. Interpretation of the Standards at the Level of Multi-Core
Platforms

1) Interpretation of the Airworthiness Security Process:
We present our understanding of the Airworthiness Security
Process in Figure 4.

In particular, we describe the precise links between the
different activities of the Airworthiness Security Risk Man-
agement introduced in Figure 1. Three activities are out of
the Airworthiness Security Risk Management. The architecture
development provides the architecture to the three main activi-
ties of the Airworthiness Security Risk Management. The Plat-
form Safety Assessment provides the failure conditions to the
Platform Security Risk Assessment and the Implementation
activity provides the implementation and derived requirements.
From this point, the Security Scope Definition is carried
out and supplies the security scope (Assets under consider-
ation, security perimeter, security environment and security
assumption) to both the Platform Security Risk Assessment
and the Platform Security Development. Based on the pro-
vided artefacts, the Platform Security Risk Assessment is first
conducted and supplies security requirements, the evaluation
of the security risks and their level of threat to enable the

AIRWORTHINESS SECURITY RISK MANAGEMENT

Derived Requirements

Security
Requirements
Security Measures
Security Guidance
Vulnerability Dossier
Security
Architecture

Legend

Objective Activity

Artifact Flow

System Item Level Platform Level

Traceability

Architecture

Security Scope Definition

Level of Threat
Security Requirements

Security Assumptions

Security Scope
Definition

Architecture

Security Risks Security Perimeter

O1.1

O1.3

Threat Conditions

Architecture
Development

Safety
Assessment

Security Risk
Assessment

Failure Conditions

Security Risk Assessment

Security Measures
Characterization

Level of Threat
Evaluation

Threat Scenario
Identification

Threat Conditions
Identification and

Evaluation

Security Measures
Characterization

Threat Scenario

System/Item Level

Platform Level

Platform Level

Platform LevelPlatform Level

Platform Level

Security Environment

Architecture

Security Development

Implementation

Security Requirements

Platform Level

Implementation
O1.2

O1.3

Fig. 4. Extract of our interpretation of the standards of the Airworthiness Security Process

Platform Security Development. The detailed activities of the
Security Risk Assessment follow the representation available
in ED-203A/DO-356A. Once the Security Development is
conducted, it provides all the necessary information to the
architecture development in order to take into account the
required modifications to mitigate the security risks.

All the mentioned activities happen at platform level. Fol-
lowing Figure 1, there are also links between the activities of
the Airworthiness Security Risk Management and the Security
Risk Assessment carried out at an upper level. Here we
consider that this upper level could be the System level or
the Item level.

2) Interpretation of the Assurance Objectives: Assurance
objectives have been interpreted for the platform regardless
their SAL application. The idea was to obtain an overview
of their relevance at the level of the platform. Our review
shows that most of them can be interpreted as they are
specified at platform level, as long as they now specifically
mentioned the platform level. For example for O1.3 mentioned
in Section II-D, it becomes The Preliminary Platform Security
Risk Assessments and Platform Security Risk Assessments
are performed and consistent with related Platform Safety
Assessment. Only two objectives are deemed not interpretable
at the level of platform. They correspond to objectives linked
to configuration management process and credentials, which
are not specific to the platform, but to the development process
of the overall system.

In addition, each objective was mapped to the activity
we judged it was related to in our process interpretation.
For example, the objectives O1.1, O1.2 and O1.3 mentioned
in Section II-D are positioned on the process presented in
Figure 4. The three of them are mapped to the respective
activities they referred to. In addition, O1.3 mentioned the
need of consistency between the security risk assessment and
the related safety assessment. This need is interpreted in

Figure 4 as a traceability link between both activities.

B. Bringing the AMS use case to the platform level

1) Description: To reason at platform level, the AMS de-
scribed in Section II is adapted on a simplified representation
of the KEYSTONE TCI6630K2L multi-core platform from
Texas Instruments composed of only three cores. This rep-
resentation is presented in Figure 5. It describes the structure
of the platform itself and the location of the assets of the AMS.
The representation of the structure of the platform follows an
initiator-target modelling described in [3]. This modelling is
based on three types of components. The initiator component
can initiate a transaction, i.e. a request for resources. The
target component is the final destination of the transaction. The
transporter component routes the transaction from the initiator
to the target.

In terms of assets, the two controllers composing the
AMS are hosted on two different cores. The Pressurization
Controller is hosted on a C66 DSP core, namely CorePac0.
Its software and specific data (computation data, part numbers,
certificates, cryptographic keys) are stored in the core SRAM.
The Temperature Controller is hosted on an ARM core. Its
software is stored in the MSMC SRAM and the regular
controller data (Health Monitoring, CAN Messages, ARINC
messages, configuration) are stored in the external DDR mem-
ory, along the regular controller data for the Pressurization
Controller. The firmwares of both controllers are stored in
the Boot ROM. In addition to these two cores, only one
another core C66 DSP core, namely CorePac1, is present in
the platform. The core is unused by the AMS but still present
for the sake of the example.

2) Security Scope Definition: We conduct the security
scope definition on the use case by identifying the assets
under consideration, the security perimeter and the security
environment.

Memory
Subsystem

Network Coprocessor

MPAX

C66X
CorePac0

L2SRAM

SRAM
L1P

SRAM
L1D MMU

A15
ARM

L1P

L1D

AXI Bus

MSMC
Controller

DDR3
EMIF

MSMC
SRAM

DDR
Memory

TeraNet

Boot ROM

Semaphores

Power Mgmt

PLL

EDMA

G
PI

O

I2
C

U
SB

U
AR

T

SP
I

PC
Ie

1GBE

Ethernet
switch 1GBE

Pressurization
Controller
(P_CTL)

Temperature
Controller
(T_CTL)

P_CTL Crypto
Keys

P_CTL
Certificates

Firmware

P_CTL
SW/FW PN

T_CTL SW

P_CTL SW

Configuration
Logs

ARINC
Messages

CAN
Messages

Health
Monitoring

MPAX

C66X
CorePac1

L2SRAM

SRAM
L1P

SRAM
L1D

Bleed System

P_CTL
Computation

Data

Security Perimeter

Security
Environment

(cf ED-203)

Avionic System

Quick Access Recorder (QAR)

Manufactuer Network

Airline Network

Electronic Flight Bag (EFB)

Ground Support Equipment (GSE)

Malicious
Code

Initiator

Transporter

Target

Legend

Asset

Fig. 5. AMS adapted on a simplified keystone platform

a) Assets under consideration: The assets under consid-
eration correspond to the same assets as in the original AMS
example in ED-203A/DO-356A described in Section II, but
mapped on different elements (e.g. the cores). In this way, we
consider both controllers in their entirety (constituents, data
and interfaces) as assets.

b) Security Perimeter: Here the security perimeter in-
cludes the security perimeter of the AMS defined in ED-
203A/DO-356A. It contains the physical and logical interfaces
to different equipment, to Bleed System, to IFE File Server, to
Avionic Systems and to Airline and Manufacturer network. In
addition, at platform level, the security perimeter includes the
logical interface with an external code, most likely malicious,
present in the unused C66 DSP core CorePac1. This choice
is based on an assumption that the external code, which is
not part of the AMS, is already uploaded on the platform
and executes on CorePac1. This assumption has been made in
order to reason about cyber-security at platform level.

c) Security Environment: The security environment is the
same as the original AMS example described previously with
the difference that it now includes the malicious code.

3) Security Risk Assessment: We conduct the four steps of
the Security Risk Assessment on this use case. We start by
the identification of threat conditions. We identify two threat
conditions representative of our problematic. We continue by
the identification of threats scenarios. Finally, we give an
example of security measures characterisation and evaluate the
level of threat.

a) Threat condition identification: An example of Threat
Conditions identification on the AMS platform example is
described in Table V. The first threat condition, TC.1, is
similar to the one presented in the original AMS example
in Section II-C3. It considers the sending of erroneous data
to bleed system. It is considered as a loss of integrity for the
logical interface to the Bleed system. The second threat con-

TABLE V
EXAMPLES OF THREAT CONDITIONS FOR THE AMS PLATFORM EXAMPLE

Threat
Cond.

Asset Attribute
(CIA)

Description Effects Severity

TC.1 Logical
Interface
to Bleed
system

Loss of
Integrity

Pressurization
controller sends
erroneous data to
the Bleed system

Loss of pres-
sure control
for crew and
occupants

Catastrophic

TC.2 Logical
Interface
to Bleed
system

Loss of
Avail-
ability

Pressurization
controller does
not send data to
the Bleed system

Loss of pres-
sure control
for crew and
occupants

Catastrophic

dition, TC.2, has been identified especially for this use case.
It considers the blocking of data sent by the pressurization
controller to the Bleed system. It is considered as a loss of
availability for the logical interface to the Bleed system. Both
threat conditions can lead to the loss of pressurization for the
crew and passengers and are identified as catastrophic.

b) Threat scenario identification: Two threat scenarios
related to the previously described threat conditions are iden-
tified and given in Table VI. The first scenario deals with
threat condition TC.2 and considers that the malicious code
executing on CorePac1, modifies the MPAX (Memory Protec-
tion and Address eXtension) configuration register in order to
block CorePac0, i.e. the pressurization controller, to access the
Ethernet switch of the platform and so to communicate data to
the Bleed system. The second threat scenario is associated to
threat condition TC.1. It also considers that the malicious code
present in CorePac1, modifies the MPAX configuration register
but in this case to give itself writing rights on CorePac0 and
to corrupt the pressurization controller. In this case, use of
side channel attacks can inform the malicious code on where
are stored the Pressurization Controller Computation data to
corrupt. Note that these scenarios follow the assumption that

TABLE VI
EXAMPLES OF THREAT SCENARIOS FOR THE AMS PLATFORM EXAMPLE

Threat
Sc.

Threat Sources Attack Path Security
Measures

Threat
Cond.

Attacker Attack Vector

TS.1
Criminal,
Terrorist,
Insider

CorePac1 1- Malicious code modi-
fies MPAX configuration
register to block CorePac0
access to Eternet Switch

MPAX,
OS
Access
Control

TC.2

2- Logical Interface to
Bleed system is blocked

TS.2
Criminal,
Terrorist,
Insider

CorePac1 1- Malicious code modi-
fies MPAX configuration
register to give itself writ-
ing rights on CorePac0
L2SRAM

MPAX,
OS
Access
Control

TC.1

2- Logical Interface to
Bleed system is corrupted

the malicious code has already been uploaded on the platform.
Also note that both the MPAX, which is in charge of enforcing
the rules included in the configuration register, and the OS,
which is in charge of loading the configuration table into the
MPAX configuration register, are countermeasures.

c) Security Measures Characterization: An example of
security measure characterization on the platform is conducted
on the OS access control. It is a preventive security measure
that corresponds to a Linux Operating System (Symmetric
Multi Processing). The access control protects the memory
storage of the platform but presents a known vulnerability at
boot time, as described in Table VII and as seen in Section III.

TABLE VII
EXAMPLE OF CHARACTERISATION OF THE SECURITY MEASURE OS

ACCESS CONTROL

Description Protected
Assets

Capability Type of
effect

Position
in the
architec-
ture

Known vulnera-
bilities

Dependencies

Linux
Operating
System
(Symmetric
Multi
Processing)

Memory
storage
of the
platform

Provide
memory
access
protection

Preventive Inside the
security
perimeter

During activation
of access con-
trol mechanisms
at boot time, it is
possible to mod-
ify configuration
tables [9]

N/A

d) Level Of Threat Evaluation: For this use case, we
used the same type of effectiveness of protection assessment
as in the section II-C3, but carried out at a global level on the
platform for the considered scenarios. In terms of preparation
means, the platform can be considered as a special equipment
with a specific configuration to host the AMS. So insider
knowledge or significant preparation time would be needed for
the attack. The obtained score for this criterion is then 6. In
terms of window of opportunity, the identified attack can only
be carried out during a very restricted time slot independent
from the flight phase, e.g. during system reboot. The evaluated
score is then 8. In terms of execution means scale, the attack
requires experts in multiple domain in order to be carried out
on the platform. The given score is then 12.

The total computed effectiveness score for the platform
and the considered scenarios is 26. Following Table IV, it

corresponds to a very high effectiveness of protection and a
very low level of threat.

V. FEEDBACK AND DISCUSSIONS ON THE CONSIDERATION
OF THE INTERNAL PLATFORM FOR SECURITY

We presented our understanding of the standards ED-
202A/DO-326A and ED-203A/DO-356A through the AMS
use case and we adapted this use case to the platform level
in order to reason about cyber-security in the context of the
PHYLOG 2 project. The AMS as described in ED-203A/DO-
356A lacks some details that made it challenging to under-
stand. The projection at platform level was not an easy task
either, example of attacks, or application of the standards, on
aeronautic use case were not available in the literature. We
had to make assumptions to reason about cyber-security at
platform level.

The strongest assumption was made on the attack origin:
the malicious code is already uploaded on the platform and
executes on CorePac1. The question of how to get to this
situation is the most difficult one. The starting point of the
attack pathway is in fact external to the platform. We can make
the same observation on the attacks on processors described
in the literature. As we have seen, the work presented in [9]
and [4] consider that the infected hardware device is already
present in the architecture. From our point of view, adding a
malicious element to the platform would require a lot of effort
to bypass a number of existing security measures, e.g. physical
access to the platform, ability to load malicious code, etc. This
particular problem of loading malicious code challenges the
plausibility of the attack as we understand it today. However,
cases of more sophisticated attacks on information systems,
i.e. attacks composed of a series of attacks on different
assets to target another specific asset, are appearing today. For
instance, the supply-chain attack reported in [11] started by
gaining access to the source code of a particular software
developed by a company to directly insert malware in it.
In this way, the malware was automatically distributed to
all the customers in the next update via official channels,
allowing the attackers to gain access to customer’s information
without directly attacking them. The update containing the
malware was installed by thousands of customers, including
numerous U.S. federal agencies. We could imagine a similar
sophisticated scenario happening for the update of a COTS
platform. We could also imagine the same scenario for an
Open Hardware platform where the shared high-level hardware
description of the platform is targeted to impact the final
users. This increasing sophistication of cyber-security attacks
reinforces our idea of the necessity to study cyber-security
at the level of multi-core platforms in aeronautics in order
to gain confidence on the protection against attacks reaching
this level. However, the security analysis cannot start at the
platform level. It needs first to be conducted at an upper level
to get a global picture of the origin of the attack and the attack
path itself.

Considering the security risk of a multi-core platform comes
with challenges. It would first mean study the vulnerability,

threat conditions, threat scenarios and the security measures
at this level. In Section III, we reported on existing at-
tacks, scenarios and security measures on processors, in-
cluding multi-core platforms. In the general case, hardware
and software cyber-attacks have been documented in cyber-
security databases online. For instance, as mentioned in [8],
there are databases dedicated to vulnerabilities found in ex-
isting systems such as CVE [2]. This database provides a
catalogue of known vulnerabilities in applications, operating
systems and hardware products. There are also databases
reporting attack patterns as mentioned in [8] and [18], such
as Common Attack Pattern Enumeration and Classification
(CAPEC) [1]. The CAPEC database provides more than
500 known cyber-security attack patterns, including hardware-
related ones. While all these databases are not dedicated
especially to multi-core platforms, they offer a more global
overview of actual known attacks in the cyber-security domain.
But vulnerabilities, attacks scenarios and security measures at
the level of multi-core platform might be very well dependent
of the studied architecture. As we have seen in the example
in Section IV, they seem specific to the architecture we
used. The use of COTS and their lack of predictability and
documentation may also make the task more complex. Further
work would be necessary to understand precisely all these
challenges by studying the application of the airworthiness
security process on a larger panel of multi-core platforms,
including Open Hardware solutions.

VI. CONCLUSION

To conclude, we presented our understanding of the Security
Airworthiness process as described in ED-202A/DO-326A
and ED-203A/DO-356A and assurance objectives that are
relevant at platform level. Our main feedback is that even
though the standards provide rich details on the different
cyber-security concepts and lay the foundation of a sound
assessment process, the process as described in these standards
may lack some details that made it challenging to understand
for non-insiders. The standards would benefit from a use case
which would serve as a common thread for an application of
the Security Airworthiness process in order to give an end-
to-end example to the future applicant. In addition of our
understanding, we applied our interpretation of the Security
Assessment process on a platform use case and we opened
the discussion on the usefulness of considering the internal
platform in the context of cyber-security analysis. Our work
is limited to the study of a fictitious use case inspired from ED-
203A/DO-356A and to an exploratory overview of the current
literature on attacks on processors. Nevertheless, it introduces
an example of application of the standards in the case of a
multi-core platform. In this sense, it gives a first glance on the
difficulties behind an attack inside a multi-core platform, but
the increasing sophistication of today cyber-attacks suggests
it might be worth starting discussing the application of the
standards at platform level.

ACKNOWLEDGMENT

The work presented in this paper is part of the PHYLOG 2
project supported by the Directorate General of Civil Aviation
(DGAC). It is funded by the French government through
the France Relance program, based on the funding from the
European Union through the NextGenerationEU program.

REFERENCES

[1] CAPEC. http://capec.mitre.org/. Last access: 2024-03-27.
[2] CVE. www.cvedetails.com/vulnerabilities-by-types.php. Last access:

2024-03-27.
[3] F. Boniol, Y. Bouchebaba, J. Brunel, K. Delmas, C. Pagetti, T. Polacsek,

and N. Sensfelder. A service-based modelling approach to ease the
certification of multi-core COTS processors. In SAE AEROTECH®
Europe, Bordeaux, France, Sept. 2019.

[4] S. Charles and P. Mishra. A survey of network-on-chip security attacks
and countermeasures. ACM Computing Surveys, 54(5), 2021.

[5] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+flush: A
fast and stealthy cache attack. In J. Caballero, U. Zurutuza, and R. J.
Rodrı́guez, editors, Detection of Intrusions and Malware, and Vulnera-
bility Assessment, pages 279–299, Cham, 2016. Springer International
Publishing.

[6] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 1–19, 2019.

[7] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, and R. Strackx.
Meltdown: reading kernel memory from user space. Commun. ACM,
63(6):46–56, may 2020.

[8] N. Messe, N. Belloir, V. Chiprianov, I. Cherfa, R. Fleurquin, and
S. Sadou. Development of secure system of systems needing a rapid
deployment. In 2019 14th Annual Conference System of Systems
Engineering (SoSE), pages 152–157, 2019.

[9] B. Morgan, E. Alata, V. Nicomette, and M. Kaaniche. IOMMU
protection against I/O attacks: A vulnerability and a proof-of-concept.
Journal of the Brazilian Computer Society, 24, 12 2018.

[10] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermea-
sures: The case of aes. In D. Pointcheval, editor, Topics in Cryptology
– CT-RSA 2006, pages 1–20, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[11] S. Peisert, B. Schneier, H. Okhravi, F. Massacci, T. Benzel, C. Landwehr,
M. Mannan, J. Mirkovic, A. Prakash, and J. B. Michael. Perspectives
on the solarwinds incident. IEEE Security & Privacy, 19(2), 2021.

[12] RTCA, Inc / EUROCAE. DO-254 / ED-80 Design Assurance Guidance
for Airborne Electronic Hardware, 2005.

[13] RTCA, Inc / EUROCAE. DO-178 / ED-12C - Software Considerations
in Airborne Systems and Equipment Certification, 2011.

[14] RTCA, Inc / EUROCAE. DO-326A / ED 202A - Airworthiness Security
Process Specification, 2014.

[15] RTCA, Inc / EUROCAE. DO-356A / ED 203A - Airworthiness Security
Methods and Considerations, 2018.

[16] SAE / EUROCAE. ARP-4761/ED-135 Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment, 1996.

[17] SAE / EUROCAE. ARP-4754A/ED-79A Guidelines for development of
civil aircraft and systems-enhancements, novelties and key topics, 2011.

[18] A. Shaked and Y. Reich. Model-based threat and risk assessment for
systems design. In Proceedings of the 7th International Conference on
Information Systems Security and Privacy - Volume 1: ICISSP,, pages
331–338. INSTICC, SciTePress, 2021.

[19] P. Skaves. Electronic flight bag (EFB) policy & guidance information,
paper # 263. In 2011 IEEE/AIAA 30th Digital Avionics Systems
Conference, pages 1–30, 2011.

[20] D. Townley and D. Ponomarev. Smt-cop: Defeating side-channel attacks
on execution units in smt processors. In 2019 28th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
pages 43–54, 2019.

[21] Y. Yarom and K. Falkner. FLUSH+RELOAD: A high resolution,
low noise, l3 cache Side-Channel attack. In 23rd USENIX Security
Symposium, pages 719–732. USENIX Association, 2014.

[22] Y. Zhou and D. Feng. Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security testing.
IACR Cryptology ePrint Archive, 2005:388, 01 2005.

