
HAL Id: hal-04883528
https://hal.science/hal-04883528v1

Preprint submitted on 13 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Adaptive Orthogonal Convolution Scheme for
Efficient and Flexible CNN Architectures

Thibaut Boissin, Franck Mamalet, Thomas Fel, Agustin Martin Picard,
Thomas Massena, Mathieu Serrurier

To cite this version:
Thibaut Boissin, Franck Mamalet, Thomas Fel, Agustin Martin Picard, Thomas Massena, et al..
An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN Architectures. 2025.
�hal-04883528�

https://hal.science/hal-04883528v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN
Architectures

Thibaut Boissin1,2,3 Franck Mamalet1 Thomas Fel5 Agustin Martin Picard1 Thomas Massena3,4

Mathieu Serrurier2,3
1 Institut de Recherche Technologique Saint-Exupery, France

2Artificial and Natural Intelligence Toulouse Institute
3IRIT 4 Innovation & Research Division, SNCF

5 Kempner Institute, Harvard University

Abstract

Orthogonal convolutional layers are the workhorse of
multiple areas in machine learning, such as adversar-
ial robustness, normalizing flows, GANs, and Lipschitz-
constrained models. Their ability to preserve norms and en-
sure stable gradient propagation makes them valuable for a
large range of problems. Despite their promise, the deploy-
ment of orthogonal convolution in large-scale applications
is a significant challenge due to computational overhead
and limited support for modern features like strides, dila-
tions, group convolutions, and transposed convolutions.

In this paper, we introduce AOC (Adaptative Orthogo-
nal Convolution), a scalable method for constructing or-
thogonal convolutions, effectively overcoming these limita-
tions. This advancement unlocks the construction of archi-
tectures that were previously considered impractical. We
demonstrate through our experiments that our method pro-
duces expressive models that become increasingly efficient
as they scale. To foster further advancement, we provide an
open-source library implementing this method, available at
https://github.com/thib-s/orthogonium.

1. Introduction and Related Works
Orthogonal layers have become fundamental components
in various deep learning architectures due to their unique
mathematical properties, which offer benefits across mul-
tiple applications. For instance, robustness against adver-
sarial attacks can be achieved by managing a model’s Lip-
schitz constant [54] – with 1-Lipschitz networks being a
prime candidate [2] – an approach that requires the use of
orthogonal layers. Initially, researchers experimented with
regularization techniques [12]; however, constrained net-
works, especially those employing orthogonal layers, soon
became central, as they provided the advantage of tighter

certification bounds. Beyond robustness, orthogonal layers
also play a key role in enhancing performance in normal-
izing flows. Normalizing flows are generative models that
transform simple distributions into complex ones via invert-
ible mappings [19, 42]. Orthogonal convolutions enable
these transformations with a computable Jacobian determi-
nant, thus improving training efficiency [29] and forming
the basis for invertible residual networks [6] Additionally,
orthogonal layers stabilize training deep and recurrent neu-
ral networks (RNNs) by preserving gradient norms through
time, essential in capturing long-term dependencies in time-
series, such as language and speech tasks [5, 27, 40]. Lastly,
in Wasserstein GANs (WGANs) [4] orthogonality in both
the discriminator and generator [35, 36] supports stability
and expressivity without requiring weight clipping or gradi-
ent penalties [23], making it essential for large-scale GAN
training [11].

However, despite these benefits, extending orthogonal-
ity to convolutional layers remains challenging. The or-
thogonalization of large Toeplitz matrices—structures cen-
tral to convolution—presents difficulties without compro-
mising convolutional properties. Efficient orthogonaliza-
tion of these structured matrices has theoretical importance,
affecting generalization [7] and indicating when orthogo-
nal convolution is feasible [1]. Early approaches [40, 60]
explored regularization, yet practical constraints led to the
following solutions:
Explicit Construction Methods. Building on [64], ap-
proaches like BCOP [31], SC-Fac [53], and ECO [68] con-
struct orthogonal convolutions directly in the spatial do-
main. These methods maintain orthogonality but often lack
flexibility in kernel size control and do not support opera-
tions like striding and transposed convolutions.
Frequency Domain Approaches. Methods such as Cayley
Convolution [55], LOT [66], and ProjUNN-T [27] enforce
orthogonality by parameterizing kernels in Fourier space,

https://github.com/thib-s/orthogonium

Method Orthogonal Equivalent
Kernel Size

Code
available

Change
Channels

Stride Conv
Transpose

Groups Dilation

BCOP [51] ✓ k ✓ ✓ ≈ ✗ ✗ ✗
SC-FAC [53] ✓ k separable ✗ ✓ ✓ ≈ ✓ ✓
ECO [68] ✓ Iw × Ih ✗ ≈ ≈ ✗ ✗ ≈
Cayley [55] ✓ Iw × Ih ✓ ≈ ≈ ≈ ✗ ✗
LOT [66] ✓ Iw × Ih ✓ ✓ ≈ ✗ ✗ ✗
ProjUNN-T [27] ✓ Iw × Ih ✓ ✗ ✗ ✗ ✗ ✗
SLL [3] ✗ composed ✓ ✗ ✗ ✗ ✗ ✗
Sandwich [61] ✗ composed ✓ ≈ ≈ ✗ ✗ ✗
AOL [38] ✗ k ✓ ✓ ✓ ✗ ✗ ✗

SOC [51] ✓ k + (nk
2) ✓ ≈ ≈ ✗ ✗ ✗

AOC (Ours) ✓ k ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of orthogonal convolution methods. A check mark (✓) indicates full support for the feature, a cross mark (✗)
indicates lack of support (in the implementation), and an approximate symbol (≈) indicates partial support (emulation). Here, k denotes
the kernel size, and Iw × Ih represents the input dimensions. AOC is the first method to support strides, dilations, group convolution and
transposed convolution.

albeit at the cost of increased computational complexity and
constraints on spatial or grouped convolutions.
Composite Layer Techniques. Skew Orthogonal Convo-
lutions [51] and Dynamical Isometry methods [3, 34] com-
bine multiple convolutional layers to approximate orthogo-
nality, increasing flexibility but adding layers and parame-
ters, which can heighten model complexity.
Relaxed orthogonality approaches. In some cases, strict
orthogonality is relaxed to mitigate vanishing gradients,
avoiding the computational demands of full orthogonaliza-
tion [3, 34, 38].
Finally, some studies question the overall impact of orthog-
onality on performance; for example, [39] noted inconsis-
tencies when standardizing conditions, and [26] showed
that architecture and dataset size could outweigh the ben-
efits of orthogonal layers.

Our Contributions. In response to the limitations of
existing methods, we introduce Adaptive Orthogonal
Convolution (AOC), a novel approach for constructing con-
volution layers that adress key constraints in orthogonaliza-
tion while remaining efficient:

• Orthogonal: AOC enforces strict orthogonality, allowing
convolutional layers to retain essential properties across
applications.

• Explicit: In constrast to frequency domain methods,
AOC generates explicit convolution kernels in the spatial
domain, allowing straightforward implementation in stan-
dard deep learning frameworks without specialized oper-
ations or significant computational overhead.

• Flexible: Supporting a range of essential operations – in-
cluding striding, transposed convolutions for upsampling,
grouped convolutions, and dilation – AOC adapt effec-
tively to modern neural network architecture.

• Scalable: Designed for large-scale applications, our im-
plementation maintains efficiency, incurring only a 10%
slowdown compared to unconstrained models in realistic
IN1K [17] training setup, as tested on ResNet [24] archi-
tecture.
To underscore the advantages of our method, we include

a comparative summary in Table 1, highlighting support
for key features across different methods. By combining
orthogonality, explicit construction, and flexibility, our ap-
proach seamlessly bridges theoretical rigor with practical
efficiency in deep learning models.

The paper is organized as follows: Section 2 outlines the
three main aspects of AOC – its core tools, kernel construc-
tion, and scalable implementation. Section 3 presents an
evaluation of the method’s performance in terms of speed
and expressive power. Finally, Section 4 discusses how our
methodology can enhance existing methods in the litera-
ture.

2. An Adaptive scheme to build Orthogonal
Convolution (AOC)

We will first recall what is the Block Convolution in 2.1.
This tool allows the explicit construction of orthogonal ker-
nels, which also support modern features depicted in 2.2.
Finally, 2.3 provides implementation details that allow the
method to scale.

2.1. Core tool: Block Convolution

Our approach builds upon three foundational papers: [64],
which generalized orthogonal initialization to convolution
to enable training networks with 10 000 layers, though with-
out addressing constrained training; [53], which tackled this
for separable convolutions; and [31], which extended it to
general 2D convolutions. These works rely heavily on a

tool known as block convolution. In this section, we review,
clarify, and extend this mathematical framework.

Notations: We consider convolutional layers character-
ized by co, the number of output channels; ci, the number
of input channels; k1 × k2, the kernel size; s, the stride pa-
rameter; and g, the number of groups. For simplicity in the
notation, we fix the group parameter to g = 1 by default (all
proofs hold for other values of g, see Section 2.2.4). Also,
we assume circular padding in all proofs. The kernel ten-
sor of the convolution is denoted K ∈ Rco×ci×k1×k2 , while
x ∈ Rci×h×w denotes the input tensor. We describe the
convolution operation with three different notations:

y = K ⋆s x (Kernel notation) (1)
ȳ = SsKx̄ (Toeplitz notation) (2)

y = convK(x, stride = s) (Code notation) (3)

Equation 1 defines the convolution operation with kernel
K and stride s applied on x. Equation 2 highlights that this
convolution is equivalent to a linear operation defined by a
matrix product between a Toeplitz matrix K ∈ Rcohw×cihw

and a vector x̄ ∈ Rcihw, which is obtained by flattening
x. The striding operation is represented by a masking diag-
onal matrix Ss ∈ Rco

h
s

w
s ×cohw with ones on the selected

entries and zeros elsewhere. When s = 1, we have S1 = I,
the identity matrix (with kernel I). Equation 3 shows these
notations in pseudo-code form.

Definition 2.1 (Block-convolution ⊛1). The block convolu-
tion, denoted as B ⊛A, computes the equivalent kernel of
the composition of two convolutional kernels, A and B, en-
abling their combined effect without performing each con-
volution separately.

(B⊛A) ⋆s x = B ⋆s (A ⋆1 x) (4)
Ss(BA)x̄ = (SsB)Ax̄ (5)

convB⊛A(x, s) = convB(convA(x, 1), s) (6)

This operator assumes that the number of input chan-
nels of the second convolution B matches the num-
ber of output channels of the first convolution A
(condition denoted as A ⋊⋉ B). Given A ∈
Rcint×ci×kA

1 ×kA
2 and B ∈ Rco×cint×kB

1 ×kB
2 , then B ⊛

A ∈ Rco×ci×(kA
1 +kB

1 −1)×(kA
2 +kB

2 −1). The computation of
Block-convolution kernel weights is given by:

(B⊛A)m,n,i,j =

cint−1∑
c=0

kB
1 −1∑
i′=0

kB
2 −1∑
j′=0

Bm,c,i′,j′ ·Ac,n,i−i′,j−j′

where A is zero-padded, i.e., Ac,n,i,j = 0 if i /∈ [0, kA1 [
or j /∈ [0, kA2 [. While a classic result, for completeness,

1Initially denoted by [31] as □

we provide the proof for 1D convolution kernels in Ap-
pendix E.2. This operator ⊛, using matrix products be-
tween order 4 tensors, should not be confused with stan-
dard convolution, which takes a 4-dimensional tensor and a
3-dimensional input tensor. The complexity of these weight

computations is O(cocicint
2∏

p=1
(kAp + kBp − 1)kBp), neces-

sitating an efficient implementation, detailed in Section 2.3.
Among others, this operator enjoys several properties:

Proposition 2.2 (Associativity). The ⊛ operation is asso-
ciative (given compatible kernels A ⋊⋉ B and B ⋊⋉ C):

A⊛ (B ⊛ C) = (A⊛B)⊛ C

Proposition 2.3 (Bi-linearity). : Given two convolutions
A and B with the same channel sizes, a third convolution
C compatible with A and B (A ⋊⋉ C, B ⋊⋉ C), and two
scalars λ1, λ2 ∈ R:

(λ1A+ λ2B)⊛ C = λ1A⊛ C + λ2B ⊛ C

Proposition 2.4 (Non-Commutativity). : Even when A ⋊⋉
B and B ⋊⋉ A hold, Block-convolution is not commutative,
as convolution composition is generally not commutative:

AB ̸= BA =⇒ A⊛B ̸= B⊛A

2.2. Construction of Strided, Transposed, Grouped,
Dilated, Orthogonal Convolutions with AOC

We first recall the concept of orthogonality for convolutions:

Definition 2.5 (Orthogonal Convolution). A convolution
defined by a kernel K is row or column orthogonal if:

(SsK)(SsK)T = I (row orthogonal)

(SsK)T (SsK) = I (column orthogonal)

The type of orthogonality (row or column) is given by the
matrix in the toeplitz notation (Eq. 2). When cis

2 > co,
SsK is column orthogonal [1]. When cis

2 = co, SsK is a
square matrix, and the two conditions are equivalent. Fi-
nally, when s = 1, the condition on the Toeplitz matrices is
equivalent to K⊛KT = I (resp. KT ⊛K = I). A formal
definition of KT can be found in Definition 2.9.

On one side, methods like BCOP and SC-Fac support
any kernel size, but striding is emulated in a way that makes
the convolution more costly than without striding. This lim-
itation is even more pronounced in methods such as SOC,
LOT, ECO, and Cayley, which handle channel changes
(when ci ̸= co) through padding or channel dropping. On
the other side, RKO [47, 48] offers advantages like effective
channel handling and efficient striding, but it is not orthog-
onal when stride ̸= kernel size (see 2.2.2). By leveraging
the ability to fuse kernels, we explore whether combining
methods can offset the drawbacks of each component.

Figure 1. AOC enables the construction of orthogonal kernels with customizable sizes and strides. By leveraging the ⊛ operator, we
can fuse kernels obtained from two existing methods, namely BCOP and RKO. With this approach, we can build orthogonal kernels that
support native striding, effectively canceling the drawbacks of the two base methods.

2.2.1 Standard Orthogonal Convolution

We unify the works of [64], [31], and [53] within a consis-
tent notation framework, highlighting similarities and dif-
ferences among their approaches to constructing standard
orthogonal convolutions (i.e., without stride, transposition,
grouping, or dilation). These methods primarily rely on
constructing elementary blocks (1× 1, 1× 2, and 2× 1 or-
thogonal convolutions) and assembling these blocks to cre-
ate orthogonal convolutions of the desired size and shape.

From Matrices to Orthogonal 1 × 1 Convolutions. A
substantial body of research exists on building orthogonal
matrices M ∈ Rco×ci . One common approach involves
applying a differentiable projection operator to an uncon-
strained weight matrix, yielding an orthogonal matrix such
that MMT = I or MTM = I . Various methods exist,
including the Björck and Bowie orthogonalization scheme
[8], the exponential method [51], the Cayley method [55],
and QR factorization [57]. An orthogonal matrix can easily
be reshaped into a convolution kernel with a 1 × 1 kernel
M ∈ Rco×ci×1×1, and such a convolution is orthogonal if
M is orthogonal. These convolutions are mainly used to
change the number of channels (Fig. 1-1).

From Matrices to 1 × 2 Orthogonal Convolutions.
Stacking two orthogonal 1 × 1 convolution kernels along
their last dimensions2 leads to a 1 × 2 convolution, though
it is generally not orthogonal. Authors of [53, 64] noted
that additional constraints are needed, proposing a half-rank
symmetric projector to construct a 1× 2 orthogonal convo-
lution: from a column-orthogonal matrix M ∈ Rc× c

2 3, the

2Done in practice with torch.stack([K 1, K 2], axis=-1)
3This implies that c ≥ 2. When c is even, ⌊ c

2
⌋ is used in practice

matrix N = MMT ∈ Rc×c is a symmetric projector that
satisfies:

N = N2 = NT and (I −N) = (I −N)2 = (I −N)T

These two matrices can be reshaped into c×c×1×1 convo-
lution kernels, and stacking them along the last dimension
results in an orthogonal c× c× 1× 2 convolution kernel:

P = stack([N, I−N], axis = −1)⇒ P⊛PT = I

Similarly, stacking along the penultimate dimension, Q =
stack([N, I− N], axis = −2), results in an orthogonal c×
c×2×1 kernel. Although already proven by previous work,
proof of this can be found in Appendix E.

From 1 × 2 to k1 × k2 Orthogonal Convolutions. The
three papers propose to build standard orthogonal convolu-
tions by composing smaller kernels based on the following
properties:

Proposition 2.6 (Composition of Orthogonal Convolu-
tions). The composition of two row orthogonal convolutions
is a row orthogonal convolution:

AAT = I and BBT = I =⇒ AB(AB)T = I

The same applies to two column orthogonal convolutions.
However, the composition of a row orthogonal with a col-
umn orthogonal convolution is, in general, not orthogonal.

Using block convolutions, we can represent the compo-
sition of 1×2 and 2×1 kernels4 to obtain a kernel with any
desired shape. The differences among the three approaches

4As indicated in Definition 2.5, k1 and k2 parameters do not affect row
or column orthogonality

lie in the composition order: Authors of [53] chose to com-
pose (k1 − 1) 2× 1 kernels Pi, followed by a 1× 1 kernel
M, and (k2− 1) 1× 2 kernels Qi to form a k1× k2 kernel:

KSC-Fac = Pk1−1 ⊛ . . .⊛P1︸ ︷︷ ︸
all 1x2 kernels

⊛ M︸︷︷︸
1x1

⊛Q1 ⊛ . . .⊛Qk2−1︸ ︷︷ ︸
all 2x1 kernels

On the other hand, authors of [31][64] alternated 2× 1 and
1× 2 kernels, ending with a 1× 1 convolution:

KBCOP = (Pk−1 ⊛Qk−1)︸ ︷︷ ︸
pairs of 1x2 and 2x1 kernels

⊛ . . .⊛ (P1 ⊛Q1)⊛ M︸︷︷︸
1x1

Both approaches have incomplete parametrizations: the first
is limited to separable convolutions, while the second shows
counterexamples in the general 2D convolution case. How-
ever, both methods use the same number of parameters
for a given kernel size. Building a complete parametriza-
tion of 2D convolutions remains an open question, dis-
cussed in Appendix D. We thus base our work on the BCOP
parametrization [31] for two main reasons: (1) any 2 × 2
convolution not parametrizable by BCOP can be repre-
sented with a 3 × 3 kernel – a feasible solution given the
trend toward larger kernels [18, 56]; (2) BCOP enables a
faster and less memory-intensive implementation (see Sec-
tion 2.3), unlocking larger networks that compensate for any
potential expressiveness loss.

2.2.2 Native Striding for Orthogonal Convolutions

Classical convolutional networks use strided convolutions.
However, most existing work on orthogonal convolutions
does not support stride directly, instead emulating striding
via a reshaping operation [49]: transforming the ci×Ih×Iw
tensor into a cis

2 × Ih
s ×

Iw
s tensor, followed by a non-

strided convolution. This emulation requires more parame-
ters (cis2k1k2) than its non-strided counterpart, unlike na-
tive striding. Beyond this limitation, emulated striding also
prevents native implementation of transposed convolutions
(see Section 2.2.3). In this section, we propose a method to
construct orthogonal kernels that support native striding.

To our knowledge, only two works [47, 48] claim to use
native stride. These rely on a method referred to by [31]
as Reshaped Kernel Orthogonalization (RKO). This method
involves reshaping the kernel KRKO ∈ Rco×ci×k1×k2 into a
matrix K ′ ∈ Rco×cik1k2 and orthogonalizing it. In general,
with the adequate multiplicative factor, the resulting convo-
lution is 1-Lipschitz but not orthogonal. In this work, we
prove that no additional factor is required when k = s to
obtain an orthogonal convolution:

Proposition 2.7 (RKO gives an orthogonal kernel when
k1 = k2 = s). When K ′ ∈ Rco×cikk is orthogonal, the
convolution with the reshaped kernel KRKO ∈ Rco×ci×k×k

and a stride s = k is orthogonal. The formal proof can be
found in Appendix E.

The proposed method, called AOC, combines the BCOP
and RKO methods to construct a Strided Convolution with
Arbitrary Kernel Size:

KAOC = KRKO ⊛KBCOP (7)

As shown in Fig. 1, KBCOP ∈ Rc×ci×(k1+1−s)×(k2+1−s)

is fused with KRKO ∈ Rco×c×s×s, resulting in a kernel
k1 × k2 that can be used with stride s. This formulation
uses an internal channel size c, which is set to max(ci, ⌊ cos2 ⌋)
to preserve orthogonality. According to [1], no orthogonal
kernel exists when s > k. Our proposed approach thus cov-
ers all valid configurations of orthogonal convolutions since
k + 1− s ≥ 0.

Proposition 2.8 (Orthogonality of strided AOC (Informal)).
Setting c = max(ci, ⌊ cos2 ⌋) yields an orthogonal convolu-
tion. The complete proof can be found in Appendix E.

The proof relies on the fact that Proposition 2.6 also
holds for strided convolutions applied on SsKRKO. We
prove that when min(ci, co

s2) ≤ c ≤ max(ci, co
s2), the

two matrices KBCOP and SsKRKO are either both row-
orthogonal or both column-orthogonal. The choice of
c = max(ci, ⌊ cos2 ⌋) maximizes the expressiveness of the
parametrization while ensuring that the resulting convolu-
tion is orthogonal.

2.2.3 Native Transposed Orthogonal Convolutions:

In addition to the practical verification of definition 2.5,
transposed convolutions are mostly used as learnable up-
scaling layers in architectures such as U-Net [43] or
VAEs [28, 58]. For a given convolution with stride defined
in 2, it corresponds to the application of the transposed ma-
trix (SsK)T , inverting the role of ci and co. The resulting
operation can be defined by the three notations:

Definition 2.9 (Transposed Convolution). A transposed
convolution is defined as follows:

y = KT ⋆ 1
s
x (8)

ȳ = (SsK)T x̄ = KTSTs x̄ (9)
y = ConvTransposeK(x, stride = s) (10)

The code notation (Equation 10) corresponds to the imple-
mentation in PyTorch parametrized by the original kernel
K. The equation 9 corresponds to the transposition of the
underlying Toeplitz matrix. The kernel notation (Equation
8) can be viewed as a standard convolution with a trans-
posed kernel and fractional striding. The kernel KT ∈
Rci×co×k1×k2 is obtained by transposing the channel di-
mensions (the first ones) and reversing the kernel ones (the
last two).

(a) Fast block convolution. We optimized the
2D convolution in order to compute the ⊛ op-
erator with maximum parallelism.

(b) Parallelize BCOP iterations. By leveraging associativity of
⊛, we can compute the n iteration in O log(n) steps using parallel
associative scan.

(c) Parsimonious parametriza-
tion. The method can some-
times simplify to quicker equiva-
lent parametrization.

Figure 2. Beyond BCOP and RKO. We achieve a highly scalable parametrization thanks to optimizations at every level of our method:
starting from the ⊛ operator 2a, to BCOP 2b, to our complete method 2c. It results in a method with a lower overhead as scale increases.

This construction results in an orthogonal transposed
convolution. Although the proof is straightforward, its
practical application requires the explicit construction of a
strided orthogonal convolution kernel (as detailed in 7).

Proposition 2.10 (Transposed Convolution). The transpo-
sition of a row orthogonal convolution is a column orthog-
onal convolution, and vice versa. The proof follows from
combining Definitions 2.5 and 9.

2.2.4 Native Grouped Orthogonal Convolutions:

Most modern CNNs use grouped convolutions [25, 33, 65].
Beyond its advantages in terms of parameters and com-
putational efficiency, it makes AOC more efficient as its
parametrization can be parallelized, similarly as [21, 32].
Given a group number g, the kernel of a grouped convolu-
tion K ∈ Rco×

ci
g ×k×k can be viewed as a stack of g kernels

Ki ∈ R
co
g × ci

g ×k×k, each constructed independently. Note
that co and ci must be multiple of g.

Proposition 2.11 (Grouped Orthogonal Convolution). A
grouped convolution composed of g kernels (Ki)g is or-
thogonal if and only if each individual convolution of kernel
Ki is orthogonal.

The proof uses the fact that the Toeplitz matrix of a
grouped convolution is block diagonal. This matrix is or-
thogonal if and only if each block is orthogonal. When g =
ci = co, each kernel Ki has a single channel ci = co = 1
that cannot be built with BCOP which requires c ≥ 2.

2.2.5 Native Orthogonal Convolutions with Dilation:

Introduced by [67], Dilation is an effective means to in-
crease the receptive field of a convolution without increas-
ing its number of parameters or its computational cost. In
[53], the authors stated in an appendix that ”any filter bank

that is orthogonal for a standard convolution is also orthog-
onal for a dilated convolution and vice versa.” While this
is mathematically accurate, it is essential to note that circu-
lar padding must be adjusted accordingly to remain within
the scope of their theorem. Our method thus also supports
orthogonal convolution with dilation.

2.3. Efficient implementation of AOC

Beyond a mathematical framework that unlocks a more
flexible use of orthogonal convolutions, we propose sev-
eral design choices for an implementation that scales
well to larger kernels, larger images and larger batch
sizes. Although AOC includes the construction of
BCOP and RKO kernels, our implementation improves
the original ones at many stages. It results in
an 8x reduction of the original overhead in realis-
tic settings. Our implementation will be integrated at
https://github.com/thib-s/orthogonium.

Fast implementation of the block convolution: To the
best of our knowledge, the only differentiable implementa-
tion of the BCOP method is available in the reference code
[31]. However, since there is no cuda kernel available for
block convolution, the authors relied on nested loops to per-
form all matrix multiplication to compute the resulting ker-
nel. Unfortunately, this approach prevents PyTorch from
parallelizing the nested loops.

However, our analysis have shown that this can be ef-
ficiently paralleled in a single operation. Inspired by [60]
and [15], which aimed to compute A⊛AT to prove orthog-
onality, we propose to replace the computation B ⊛ A by a
convolution with zero padding between B and AT . This ap-
proach can also be seen as a specific case of convolutional
einsum [41]. This operation can be rewritten by re-ordering
the summation to use a 2D convolution at its core. The
strategy is to use the 2D convolution to compute one output

https://github.com/thib-s/orthogonium

Name Batch Size Train Time (ms) Train Memory (GB) Test Time (ms) Test Memory (GB)
Conv2D (ref) 128 137 (1.00x) 4.7 (1.00x) 50 (1.00x) 1.4 (1.00x)
AOC (ours) 128 239 (1.75x) 5.3 (1.15x) 53 (1.06x) 1.4 (1.02x)
BCOP 128 389 (2.85x) 8.6 (1.84x) 62 (1.25x) 1.5 (1.06x)
SOC 128 664 (4.86x) 12.8 (2.73x) 429 (8.55x) 1.8 (1.30x)
Cayley 128 584 (4.27x) 19.0 (4.07x) 247 (4.94x) 2.0 (1.45x)
Conv2D (ref) 256 284 (1.00x) 9.1 (1.00x) 91 (1.00x) 2.7 (1.00x)
AOC (ours) 256 354 (1.25x) 9.8 (1.07x) 97 (1.06x) 2.7 (1.01x)
BCOP 256 624 (2.20x) 13.9 (1.53x) 135 (1.48x) 2.8 (1.03x)
Conv2D (ref) 512 550 (1.00x) 17.9 (1.00x) 172 (1.00x) 5.3 (1.00x)
AOC (ours) 512 622 (1.13x) 18.6 (1.04x) 176 (1.02x) 5.4 (1.01x)
BCOP 512 1116 (2.03x) 24.6 (1.38x) 256 (1.48x) 5.4 (1.02x)

Table 2. AOC benefits from scale. As demonstrated on a ResNet-34, previous methods impose significant overhead when input images
are large (224×224). In contrast, since our method’s computational cost is independent of layer input size, its overhead decreases as batch
size increases. Furthermore, the low memory overhead enables larger batches at scale.

filter. Then, the batch dimension can be used to compute all
output filters in parallel. The code is detailed in the Fig. 2a.

Reducing time complexity of BCOP: Beyond the effi-
cient parallelism of the ⊛ operation, we propose to paral-
lelize the whole kernel computation: the parametrization
can be seen as the composition of many small kernels. Not
only can those be created in parallel, but they can also
be combined efficiently. As the ⊛ is an associative oper-
ation (prop 2.2), we can leverage the parallel associative
scan [13, 69] to parallelize the iterations of the original al-
gorithm. The original 2∗(k−s) sequential ⊛ operations can
then be done in O(log(k − s)) iterations (Fig. 2b). This is
unlocked in practice if ⊛ implementation supports batching.
Unfortunately, the batch dimension of our efficient imple-
mentation already uses the dimension originally dedicated
to batching to compute the co channels, so it cannot be used
directly. We propose to circumvent this by using grouped
conv2d implementation. By concatenating g kernels and
setting groups = g, we can compute the batched ⊛ in par-
allel.

Efficient implementation. By examining Definition 7,
one observes that, depending on the values of s and k,
the parametrization can be simplified to either KAOC =
KBCOP or KAOC = KRKO. While BCOP is generally not
suited for handling stride directly, we have identified spe-
cific cases – namely when ci < co – where stride can indeed
be applied directly to a BCOP kernel (see Proof E.5) with-
out requiring the full parametrization. Although not pro-
posed in [31], this observation refines our overall charac-
terization of BCOP’s limitations with stride, showing that
exceptions exist under certain conditions. The complete de-
cision tree used in our implementation is shown in Figure
2c, with each branch’s orthogonality rigorously validated
throughout the paper.

3. Evaluation

Scalability. As observed by [39], a method’s implemen-
tation is a key factor for its success: a slow implementation
leads to increased training time and, consequently, lower
performances in practical contexts like robust training. In
this section, we demonstrate that AOC offers a key advan-
tage: its computational cost does not depend on the input
size or shape, making it well-suited for large-scale datasets
like ImageNet [17], where handling large images is cru-
cial. Although other methods may perform better on smaller
datasets such as CIFAR [30] or Tiny ImageNet [63], they
struggle to scale to widely used architectures like ResNet-
34 [24], as shown in Table 2. On the other end, our method’s
low memory cost enables larger batch sizes, and since our
parameterization is batch-size independent, the overhead
decreases as batch size increases. Ultimately, this results
in a training time only 13% slower than its unconstrained
counterpart.

Experiments were conducted on a minimally modified
ResNet-34 architecture, chosen for its compatibility with
various orthogonal layers and its status as a standard bench-
mark for ImageNet training. The transition blocks were re-
placed by a single, strided convolution to maintain simplic-
ity and ensure compatibility with existing orthogonal lay-
ers. For each method, we measured the average training and
testing times over 100 batches and recorded peak memory
consumption. Starting with a batch size of 128, we doubled
the batch size incrementally until encountering an out-of-
memory error. Each method’s performance was compared
to a standard convolution baseline, with results reported as
overhead percentages. All experiments were performed on
a consumer-grade computer equipped with two NVIDIA
RTX 4090 GPUs.

To ensure a fair comparison, the hyperparameters of
SOC and Cayley were set to their default values. We ad-
justed the number of Björck iterations to the same values

for BCOP and AOC. While originally set to 20 iterations,
our unit testing scheme (see appendix B) shows that 12 it-
erations are sufficient to ensure a stable rank [44] of 99.9%
of the full rank. Finally, standard Conv2D is used with
circular padding to evaluate the overhead induced by our
parametrization rather than the overhead induced by the
padding.

C
IF

A
R

10

Models
Acc-
uracy

Provable
Accuracy
ϵ = 36

255

Trainable
Parameters

BCOP 72.2 58.26 2.6M
GloRo 77.0 58.40 8.0M

Local-Lip-B 77.4 60.70 2.3M
Cayley Large 74.6 61.40 21.0M

SOC 20 78.0 62.70 27.0M
SOC+ 20 76.3 62.60 27.0M
CPL XL 78.5 64.40 236.0M

AOL Large 71.6 64.00 136.0M
SLL Small 71.2 62.60 41.0M

SLL Medium 72.2 64.30 78.0M
SLL Large 72.7 65.00 118.0M

SLL X-Large 73.3 65.80 236.0M
AOC m = 72

255
80.0 60.12 41.3M

AOC m = 3
√

2
2

74.0 64.33 41.3M

IN
1K AOC Cosine 68.2 00.00 53.0M

AOC m = 3
√

2
2

42.1 26.31 53.1M

Table 3. AOC is competitive on small-scale datasets and en-
ables affordable training on large-scale datasets. For both CI-
FAR10 (top) and Imagenet-1K (bottom), we evaluate our model
under two settings: one emphasizing clean accuracy and another
emphasizing robustness.

Expressive power. The most straightforward way to eval-
uate the expressiveness of our layers is to apply them to
classification problems. It is well known that 1-Lipschitz
constrained networks face an inherent trade-off between ac-
curacy and robustness [7]. Fortunately, this trade-off can
be controlled using the loss’s parameters: we can then eval-
uate our model at two different points of the trade-off to
show that it can achieve both a decent accuracy and a de-
cent certifiable robustness. Our approach is not expected to
improve the expressiveness of the original building blocks
like BCOP and RKO. However, authors of [39] observed
that improvement of the state of the art in certifiable adver-
sarial robustness comes along with larger architectures and
longer training times. Therefore, given the same computa-
tional budget, we can expect that our efficient implementa-
tion unlocks larger networks and more training steps, which
in turn should improve final performance.

In our evaluation on CIFAR10, we scaled the network
from [31] to be wider and deeper: our model consists of
4 blocks of 3 convolutions interleaved with strided convo-
lutions where the number of channels was increased by a
factor of 2x. The head of the network consists of 5 dense
layers. The number of channels of the first block was set to
128, and the size of dense layers was set to 1024. A detailed
description of our training setting can be found in Appendix
F. We changed the loss to the CrossEntropy loss as in [38],
which allows us to control the accuracy/robustness trade-
off. We did not use techniques such as last layer normaliza-
tion, certificate regularization [51], or DDPM augmentation
[26] to obtain our results, which are shown in the first part
of Table 3. We controlled three elements during the hyper-
parameter tuning process:

• Loss parameters: Increasing the margin in the loss func-
tion helps improve training robustness, but reduces train-
ing accuracy.

• Model size: Increasing the model size generally improves
training accuracy.

• Data augmentation: Increasing data augmentation re-
duces training accuracy but can improve validation ac-
curacy, especially when training accuracy is greater than
validation accuracy.

The tuning process begins with a given model. We first
tune the learning rate and increase the margin in the loss
function to improve robustness until training accuracy drops
below 100%. Then, we increase the model size and apply
more data augmentation until training accuracy falls below
validation accuracy.

In our evaluation on ImageNet1K, we leveraged the flex-
ibility of our layers to design more complex blocks. A com-
prehensive description of the whole architecture is given in
Appendix F. Each block consists of a depthwise convolu-
tion that doubles the number of channels, followed by a
MaxMin activation function [2], and a pointwise convo-
lution that reduces the number of channels. These lay-
ers are encapsulated within a skip connection featuring a
learnable factor to ensure a Lipschitz constant of 1. The
network was constructed by repeating these blocks, using
strided convolutions to progressively reduce the spatial di-
mensions while increasing the channel dimensions. The ar-
chitecture ends with L2 Norm Pooling [10], followed by a
single dense layer for classification. We evaluated the net-
work under two distinct settings. In the first setting, we
used Cosine similarity to maximize accuracy, focusing on
achieving optimal performance for clean data. In the second
setting, we applied categorical cross-entropy with a margin
of m = 1.5

√
2 to emphasize robustness against adversarial

examples. The results for both settings are presented in the
second part of Table 3.

4. Conclusion and Broader Impact
We introduced AOC, a method for constructing orthogonal
convolutions that supports essential features such as stride,
transposition, groups, and dilation. Our results demon-
strate that this layer is both expressive and scalable. Be-
yond its standalone benefits, our framework enhances ex-
isting layers: in Appendix C , we integrate our method
with SLL [3] to build an efficient downsampling residual
block, propose optimizations to reduce the memory foot-
print of SOC [50], and present a strategy to make Sand-
wich layers [61] scalable for convolutions. Also, although
our experiments used AOC in isolation, we think this layer
is intended to be seamlessly combined with other meth-
ods, such as SLL, where each approach’s strengths can
amplify the other’s capabilities. We believe this work
opens pathways for advancing modern convolutional ar-
chitectures. In support of further research and devel-
opment, we have made our implementation available at
https://github.com/thib-s/orthogonium.

5. Acknowledgement
This work has benefited from the support of the DEEL
project, 5 with funding from the Agence Nationale de la
Recherche, part of the ANITI AI cluster.

References
[1] El Mehdi Achour, François Malgouyres, and Franck

Mamalet. Existence, stability and scalability of or-
thogonal convolutional neural networks. Journal of
Machine Learning Research, 23(347):1–56, 2022. 1,
3, 5

[2] Cem Anil, James Lucas, and Roger Grosse. Sorting
out lipschitz function approximation. In International
Conference on Machine Learning, pages 291–301.
PMLR, 2019. 1, 8, 12, 18

[3] Alexandre Araujo, Aaron J Havens, Blaise Delattre,
Alexandre Allauzen, and Bin Hu. A unified alge-
braic perspective on lipschitz neural networks. In
The Eleventh International Conference on Learning
Representations, 2023. 2, 9, 14

[4] Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. Wasserstein generative adversarial networks. In
International conference on machine learning, pages
214–223. PMLR, 2017. 1, 13

[5] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang.
Can we gain more from orthogonality regularizations
in training deep networks? Advances in Neural
Information Processing Systems, 31, 2018. 1, 13

[6] Jens Behrmann, Will Grathwohl, Ricky TQ Chen,
David Duvenaud, and Jörn-Henrik Jacobsen. Invert-

5https://www.deel.ai/

ible residual networks. In International conference on
machine learning, pages 573–582. PMLR, 2019. 1, 12

[7] Louis Béthune, Thibaut Boissin, Mathieu Serrurier,
Franck Mamalet, Corentin Friedrich, and Alberto
Gonzalez Sanz. Pay attention to your loss: under-
standing misconceptions about lipschitz neural net-
works. Advances in Neural Information Processing
Systems, 35:20077–20091, 2022. 1, 8

[8] Åke Björck and Clazett Bowie. An iterative algorithm
for computing the best estimate of an orthogonal ma-
trix. SIAM Journal on Numerical Analysis, 8(2):358–
364, 1971. 4

[9] Ali Ebrahimpour Boroojeny, Matus Telgarsky, and
Hari Sundaram. Spectrum extraction and clipping for
implicitly linear layers. In International Conference
on Artificial Intelligence and Statistics, pages 2971–
2979. PMLR, 2024. 13

[10] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A the-
oretical analysis of feature pooling in visual recog-
nition. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages
111–118, 2010. 8

[11] Andrew Brock, Jeff Donahue, and Karen Simonyan.
Large scale gan training for high fidelity natural image
synthesis. In International Conference on Learning
Representations, 2018. 1, 13

[12] Moustapha Cisse, Piotr Bojanowski, Edouard Grave,
Yann Dauphin, and Nicolas Usunier. Parseval net-
works: Improving robustness to adversarial exam-
ples. In International conference on machine learning,
pages 854–863. PMLR, 2017. 1, 12

[13] Hillis W Daniel. Data parallel algorithms. Commun.
AGM, 29(12):1170–1183, 1986. 7

[14] Aaron Defazio, Xingyu Alice Yang, Harsh Mehta,
Konstantin Mishchenko, Ahmed Khaled, and Ashok
Cutkosky. The road less scheduled, 2024. 18

[15] Blaise Delattre, Quentin Barthélemy, Alexandre
Araujo, and Alexandre Allauzen. Efficient bound of
lipschitz constant for convolutional layers by gram
iteration. In International Conference on Machine
Learning, pages 7513–7532. PMLR, 2023. 6, 13

[16] Blaise Delattre, Quentin Barthélemy, and Alexan-
dre Allauzen. Spectral norm of convolutional lay-
ers with circular and zero paddings. arXiv preprint
arXiv:2402.00240, 2024. 13

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierar-
chical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–
255. Ieee, 2009. 2, 7

[18] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and
Guiguang Ding. Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns. In Proceedings

https://github.com/thib-s/orthogonium
https://www.deel.ai/

of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11963–11975, 2022. 5, 14

[19] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 1, 12

[20] Mahyar Fazlyab, Alexander Robey, Hamed Hassani,
Manfred Morari, and George Pappas. Efficient and ac-
curate estimation of lipschitz constants for deep neural
networks. Advances in neural information processing
systems, 32, 2019. 13

[21] Mikhail Gorbunov, Nikolay Yudin, Vera Soboleva,
Aibek Alanov, Alexey Naumov, and Maxim Rakhuba.
Group and shuffle: Efficient structured orthogonal
parametrization. arXiv preprint arXiv:2406.10019,
2024. 6

[22] Ekaterina Grishina, Mikhail Gorbunov, and Maxim
Rakhuba. Tight and efficient upper bound on spectral
norm of convolutional layers, 2024. 13

[23] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky,
Vincent Dumoulin, and Aaron C Courville. Improved
training of wasserstein gans. Advances in neural
information processing systems, 30, 2017. 1, 13

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.
2, 7

[25] Andrew G Howard. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017. 6

[26] Kai Hu, Klas Leino, Zifan Wang, and Matt Fredrik-
son. A recipe for improved certifiable robustness.
In The Twelfth International Conference on Learning
Representations, 2023. 2, 8

[27] Bobak Kiani, Randall Balestriero, Yann LeCun, and
Seth Lloyd. projunn: efficient method for training
deep networks with unitary matrices. Advances in
Neural Information Processing Systems, 35:14448–
14463, 2022. 1, 2, 12

[28] Diederik P Kingma. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013. 5

[29] Durk P Kingma and Prafulla Dhariwal. Glow: Gener-
ative flow with invertible 1x1 convolutions. Advances
in neural information processing systems, 31, 2018. 1,
12

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.
7

[31] Qiyang Li, Saminul Haque, Cem Anil, James Lucas,
Roger B Grosse, and Jörn-Henrik Jacobsen. Prevent-
ing gradient attenuation in lipschitz constrained con-
volutional networks. Advances in neural information

processing systems, 32, 2019. 1, 2, 3, 4, 5, 6, 7, 8, 16,
17, 18

[32] Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu,
Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen Liu,
Juyeon Heo, Songyou Peng, et al. Parameter-efficient
orthogonal finetuning via butterfly factorization. In
The Twelfth International Conference on Learning
Representations. 6

[33] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph
Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 11976–11986, 2022. 6

[34] Laurent Meunier, Blaise J Delattre, Alexandre Araujo,
and Alexandre Allauzen. A dynamical system per-
spective for lipschitz neural networks. In International
Conference on Machine Learning, pages 15484–
15500. PMLR, 2022. 2

[35] Takeru Miyato, Toshiki Kataoka, Masanori Koyama,
and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International
Conference on Learning Representations, 2018. 1, 13

[36] Jan Müller, Reinhard Klein, and Michael Wein-
mann. Orthogonal wasserstein gans. arXiv preprint
arXiv:1911.13060, 2019. 1, 13

[37] Patricia Pauli, Dennis Gramlich, and Frank Allgöwer.
Lipschitz constant estimation for general neural net-
work architectures using control tools, 2024. 13

[38] Bernd Prach and Christoph H Lampert. Almost-
orthogonal layers for efficient general-purpose lips-
chitz networks. In European Conference on Computer
Vision, pages 350–365. Springer, 2022. 2, 8

[39] Bernd Prach, Fabio Brau, Giorgio Buttazzo, and
Christoph H Lampert. 1-lipschitz layers com-
pared: Memory speed and certifiable robustness.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages
24574–24583, 2024. 2, 7, 8

[40] Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and
Jitendra Malik. Deep isometric learning for visual
recognition. In International conference on machine
learning, pages 7824–7835. PMLR, 2020. 1, 13

[41] Tahseen Rabbani, Jiahao Su, Xiaoyu Liu, David Chan,
Geoffrey Sangston, and Furong Huang. conv einsum:
A framework for representation and fast evaluation of
multilinear operations in convolutional tensorial neu-
ral networks. arXiv preprint arXiv:2401.03384, 2024.
6

[42] Danilo Rezende and Shakir Mohamed. Variational
inference with normalizing flows. In International
conference on machine learning, pages 1530–1538.
PMLR, 2015. 1, 12

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical im-
age segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241.
Springer, 2015. 5

[44] Amartya Sanyal, Philip H Torr, and Puneet K Doka-
nia. Stable rank normalization for improved general-
ization in neural networks and gans. In International
Conference on Learning Representations. 8

[45] Hanie Sedghi, Vineet Gupta, and Philip M
Long. The singular values of convolutional lay-
ers. In International Conference on Learning
Representations, 2018. 13

[46] Alexandra Senderovich, Ekaterina Bulatova, Anton
Obukhov, and Maxim Rakhuba. Towards Practical
Control of Singular Values of Convolutional Layers.
Advances in Neural Information Processing Systems,
35:10918–10930, 2022. 13

[47] Mathieu Serrurier, Franck Mamalet, Alberto
González-Sanz, Thibaut Boissin, Jean-Michel
Loubes, and Eustasio Del Barrio. Achieving ro-
bustness in classification using optimal transport
with hinge regularization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 505–514, 2021. 3, 5

[48] Mathieu Serrurier, Franck Mamalet, Thomas Fel,
Louis Béthune, and Thibaut Boissin. On the explain-
able properties of 1-lipschitz neural networks: An
optimal transport perspective. Advances in Neural
Information Processing Systems, 36, 2024. 3, 5

[49] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes
Totz, Andrew P Aitken, Rob Bishop, Daniel Rueck-
ert, and Zehan Wang. Real-time single image and
video super-resolution using an efficient sub-pixel
convolutional neural network. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 1874–1883, 2016. 5

[50] Sahil Singla and Soheil Feizi. Fantastic four: Dif-
ferentiable and efficient bounds on singular values of
convolution layers. In International Conference on
Learning Representations. 9

[51] Sahil Singla and Soheil Feizi. Skew orthogonal con-
volutions. In International Conference on Machine
Learning, pages 9756–9766. PMLR, 2021. 2, 4, 8

[52] Sahil Singla and Soheil Feizi. Improved techniques
for deterministic l2 robustness. Advances in Neural
Information Processing Systems, 35:16110–16124,
2022. 14

[53] Jiahao Su, Wonmin Byeon, and Furong Huang.
Scaling-up diverse orthogonal convolutional networks
by a paraunitary framework. In International

Conference on Machine Learning, pages 20546–
20579. PMLR, 2022. 1, 2, 4, 5, 6

[54] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural net-
works. In International Conference on Learning
Representations, 2014. 1, 12

[55] Asher Trockman and J Zico Kolter. Orthogonal-
izing convolutional layers with the cayley trans-
form. In International Conference on Learning
Representations, 2021. 1, 2, 4, 15

[56] Asher Trockman and J. Zico Kolter. Patches Are
All You Need? Technical Report arXiv:2201.09792,
arXiv, 2022. Issue: arXiv:2201.09792
arXiv:2201.09792 [cs] type: article. 5

[57] Rianne Van Den Berg, Leonard Hasenclever, Jakub M
Tomczak, and Max Welling. Sylvester normalizing
flows for variational inference. In 34th Conference on
Uncertainty in Artificial Intelligence 2018, UAI 2018,
pages 393–402. Association For Uncertainty in Artifi-
cial Intelligence (AUAI), 2018. 4

[58] Aaron Van Den Oord, Oriol Vinyals, et al. Neural
discrete representation learning. Advances in neural
information processing systems, 30, 2017. 5

[59] Aladin Virmaux and Kevin Scaman. Lipschitz regular-
ity of deep neural networks: analysis and efficient es-
timation. Advances in Neural Information Processing
Systems, 31, 2018. 13

[60] Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and
Stella X Yu. Orthogonal convolutional neural net-
works. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
11505–11515, 2020. 1, 6

[61] Ruigang Wang and Ian Manchester. Direct param-
eterization of lipschitz-bounded deep networks. In
International Conference on Machine Learning, pages
36093–36110. PMLR, 2023. 2, 9, 15

[62] Zi Wang, Bin Hu, Aaron J Havens, Alexandre Araujo,
Yang Zheng, Yudong Chen, and Somesh Jha. On the
scalability and memory efficiency of semidefinite pro-
grams for lipschitz constant estimation of neural net-
works. In The Twelfth International Conference on
Learning Representations, 2024. 13

[63] Jiayu Wu, Qixiang Zhang, and Guoxi Xu. Tiny ima-
genet challenge. Technical report, 2017. 7

[64] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein,
Samuel Schoenholz, and Jeffrey Pennington. Dy-
namical isometry and a mean field theory of cnns:
How to train 10,000-layer vanilla convolutional neu-
ral networks. In International Conference on Machine
Learning, pages 5393–5402. PMLR, 2018. 1, 2, 4, 5,
16

[65] S Xie, RB Girshick, Piotr Dollár, Z Tu, and K He. Ag-
gregated residual transformations for deep neural net-
works. corr. arXiv preprint arxiv:1611.05431, 2016.
6

[66] Xiaojun Xu, Linyi Li, and Bo Li. Lot: Layer-wise or-
thogonal training on improving l2 certified robustness.
Advances in Neural Information Processing Systems,
35:18904–18915, 2022. 1, 2

[67] F Yu. Multi-scale context aggregation by dilated con-
volutions. arXiv preprint arXiv:1511.07122, 2015. 6

[68] Tan Yu, Jun Li, Yunfeng Cai, and Ping Li. Con-
structing orthogonal convolutions in an explicit man-
ner. In International Conference on Learning
Representations, 2022. 1, 2

[69] Anastasios Zouzias and William F McColl. A paral-
lel scan algorithm in the tensor core unit model. In
European Conference on Parallel Processing, pages
489–502. Springer, 2023. 7

A. Applications of orthogonal convolutions
Orthogonal layers have become fundamental components
in various deep learning architectures due to their unique
mathematical properties, which benefit multiple applica-
tions.

Provable Robustness with 1-Lipschitz Networks. En-
suring robustness against adversarial attacks is a critical
challenge. Early work in this field [54] identified a link be-
tween a network’s adversarial robustness and its Lipschitz
constant, which led to the development of networks with
a Lipschitz constant of one (1-Lipschitz networks). Ini-
tially, regularization techniques were used [12], but interest
in constrained networks quickly grew. Orthogonal layers,
in particular, have an inherent Lipschitz constant of one, as
they preserve the input norm through each transformation.
This property is instrumental in achieving provable robust-
ness by allowing for certified bounds on the network’s out-
put perturbations in response to adversarial inputs [2]. By
controlling the network’s sensitivity to input changes, or-
thogonal layers play a crucial role in building models re-
silient to adversarial manipulations.

Enhancing Performance in Normalizing Flows. Nor-
malizing flows are a class of generative models that trans-
form simple probability distributions into complex ones
through a series of invertible and differentiable mappings.
Although they have different objectives, this domain in-
tersects with the field of provable adversarial robustness.
For instance, [19, 42] employs a channel masking scheme,
which was later used to emulate striding in Lipschitz layers
designed for adversarial robustness. Separately, Lipschitz
layers can be applied to build invertible residual networks
[6]. In both fields, orthogonal convolutions are essential, as
they facilitate the construction of invertible transformations
with tractable Jacobian determinants. The use of orthogonal
layers ensures that the Jacobian determinant is constant or
easily computable, simplifying likelihood estimation dur-
ing training [29]. This property enables efficient and stable
training of normalizing flow models, leading to improved
performance in density estimation and generative tasks.

Stabilizing Training in Deep and Recurrent Neural Net-
works. Training recurrent neural networks (RNNs) in-
volves propagating gradients through time, which can lead
to vanishing or exploding gradients due to the multiplica-
tive nature of sequential weight applications. Orthogonal
weight matrices in RNNs help preserve the gradient norm
across time steps, thus preventing degradation of the learn-
ing signal [27]. By constraining recurrent weights to be or-
thogonal, the network maintains a consistent flow of infor-
mation, enabling it to capture long-term dependencies more

effectively. This stabilization is essential for tasks requiring
understanding long-range dependencies in time series, such
as language modeling and speech recognition. These ap-
proaches also facilitate the training of very deep networks
[40] with improved generalization properties [5].

Improving Stability in Wasserstein Generative Ad-
versarial Networks. Generative Adversarial Networks
(GANs) are powerful models for generating realistic data,
but they often suffer from training instability. Wasserstein
GANs (WGANs) [4] address this issue by optimizing the
Wasserstein distance between the real and generated data
distributions. A key requirement for WGANs is that the dis-
criminator (or critic) function must be Lipschitz continuous.
Orthogonal layers naturally satisfy this Lipschitz condition,
eliminating the need for techniques like weight clipping or
gradient penalties [23], which can adversely affect train-
ing dynamics. By incorporating orthogonal convolutions
into the discriminator, WGANs achieve more stable train-
ing [35, 36] and produce higher-quality generative results.
Orthogonality has been integral to the successful scaling of
GAN training [11].

B. Empirical evaluation of the Lipschitz con-
stant of our method

Evaluating the Lipschitz constant of a network Beyond
the creation of a constrained layer, the evaluation of the Lip-
schitz constant of a layer is by itself an active field: early
work used fast Fourier transform to evaluate a lower bound
of the Lipschitz constant of a convolutional layer with cir-
cular padding [45]. This work was later improved with a
method that is quicker [46], supports other types of padding
[22], or allows the extraction of a larger part of the spec-
trum [9]. The work of [15] [16] allows us to compute a
certifiable upper bound efficiently under different types of
padding. It is worth recalling that inferring the global Lip-
schitz constant of a network given the Lipschitz constant of
each layer is an NP-Hard problem[59]. Then, [20, 37, 62]
aim to tackle using SDP (Semi-definite programming) tools.
Our work can also contribute to this issue as the orthogonal
layer allows a tighter product bound (ie. bound using the
product of the Lipschitz constant of each layer to evaluate
the constant of the whole network).

The need for an empirical evaluation of the Lipschitz
bound of AOC. Despite the theoretical guarantees ensur-
ing orthogonality in our construction, empirical checks are
necessary to confirm implementation correctness. Such ver-
ification prevents two types of issues:
1. Checking of numerical Instabilities: Issues arising

from floating-point precision, such as those introduced
by small epsilon values added to avoid division by zero.

2. Checking for implementation Discrepancies: Differ-
ences between mathematical formalism and its transla-
tion to popular frameworks (e.g., SOC proofs assume
circular padding, while its implementation uses zero
padding).

Checking the orthogonality of a layer under stride,
group, transposition, and dilation conditions. The nu-
merical stability and the convergence of an orthogonal layer
is dependent on the training hyper-parameters: mainly the
number of iterations used in most methods, but the learning
rate and weight decay can also play a significant role. We
then need an evaluation method that scales along with the
convolution and that can be used at the end of each training.
On the other hand, as scalable methods can be imperfect, we
also need a method that computes very precise bounds with-
out making any assumptions on the layer parameters (like
padding, or stride). In order to overcome this, we tested our
layers with two distinct methods:
1. Explicit SVD on Toeplitz Matrices: Using the impulse

response approach, we construct the Toeplitz matrix for
any padding and stride, allowing direct computation of
singular values. This method, though accurate, is com-
putationally expensive for large input images.

2. Product Bound for BCOP and RKO Kernels: The up-
per bound for the BCOP kernel is computed using stan-
dard methods, while the SVD of the reshaped RKO ker-
nel is used for direct evaluation.

Unit testing of the implementation. We used both of
these two approaches in our unit tests. This enables us to
ensure that the second method (which is faster and more
scalable) is correct to check that our layer is effectively
orthogonal. Also, our layer unlocks the use of the trans-
posed convolution, which can be used to compute directly
the equation of orthogonal layers:

(SsK)(SsK)T = I (row orthogonal)
convK(ConvTransposeK(x, stride = s), stride = s)

Naturally, the other direction can also be verified for column
orthogonal layers.

To follow the optimization depicted in fig 2c, we tested
each branch independently. For each branch, we tested mul-
tiple values for kernel size, stride, dilation, input channels,
and output channels. For the kernel size, along with stan-
dard configurations of 3× 3 and 5× 5 kernels, we also cov-
ered cases for 1 × 1 kernels and even-sized kernels. For
input/output channels, we covered various values and all
the inequalities discussed in this paper (for instance when
co > cis

2). We ran similar tests for transposed convolution.
As the computation of the singular values using the explicit
construction of the Toeplitz matrix is quite expensive, we

used it on small 8 × 8 images, this is also a good way to
check for padding issues, as the kernel size is not negligible
with respect to the image size. All the checks over the sin-
gular values for both methods were done with a tolerance of
1e−4.

Finally, we tested independently the properties of the
block convolution and the batched block convolution.

This amounts to 1442 tests that have the following repar-
tition:
• bloc convolution: 640 tests
• convolution: 418 tests

– common configurations in CNN: 72 tests
– extended strided configurations: 150 tests
– even kernel size: 24 tests
– depthwise: 24 tests
– kernel size = stride : 100 tests

• conv transpose: 384 tests
• RKO: 370 tests

This test bank was of precious use to confirm that all
parameters can be combined together in practice.

C. Using the content of this paper to improve
Cayley, SLL, SOC, and Sandwish

In this section, we will explore how the content of this paper
can be used to improve existing layers from the state of the
art.

Improving skew orthogonal convolution (SOC)[52]
This method uses the fact that an exponential of a skew-
symmetric matrix is orthogonal. The initial implementation
builds a skew-symmetric kernel and computes the exponen-
tial convolution. However, without proper tools to compute
the exponential of a convolution kernel, this exponential
was computed implicitly for each input by using the Tay-
lor expansion of the exponential (see eq 11).

Theorem C.1 (Explicit conv exponential). We can use eq 4
to compute explicitly the exponential of a kernel K:

x+
K ∗ x
1!

+
K ∗K ∗ x

2!
+ . . . (11)

=

(
Id+K+

K⊛K

2!
+

K⊛K⊛K

3!
+ . . .

)
∗ x (12)

Equation 12 shows that we can compute the exponential
of a convolution kernel a single time, while the formulation
11 needs to be done for each input x. In other words, we can
apply one conv instead of niter convs. Note that the result-
ing kernel is then larger than the original one (as stated in
table 1). In theory, this could unlock large speedups, but the
gain is limited in practice as the implementation of convolu-
tion layers is optimized for small kernels and large images

Figure 3. The ⊛ can be used enable s ̸= 1 and ci ̸= co on SLL.
The flexibility of the ⊛ allows for operations resulting in a block
with a similar structure as the original ResNet block.

[18]. However, the original implementation require the stor-
age of niter maps, whereas our implementation only one.
This, in practice, unlocks larger networks and batch sizes.

Also, it is possible to handle a change in the number of
channels and striding using a similar approach as AOC lay-
ers.

Improving SDP-based Lipschitz Layers (SLL)[3] SLL
layer for convolutions, proposed in [3], is a 1-Lipschitz
layer defined as:

y = x− 2KT ⋆ (σ(K ⋆ x+ b))

Note that in the original paper, the equation is noted with
product of two matrices WT− 1

2 , for convolutions it repre-
sents toeplitz matrix, i.e. WT− 1

2 = K.
SLL layer does not natively support neither strides nor

changes in the channel size. We propose to use the ⊛ to
derive a block, based on SLL, that supports stride and ci ̸=
co, and can replace the strided convolutions of the residual
branch in architectures like ResNet.

A natural first step is to append a strided convolution af-
ter a SLL block. This layer, convKpost ◦ SLL, can then be
fused in the SLL block thanks to Proposition 2.3:

y =Kpost ⋆s (x− 2KT ⋆ (σ(K ⋆ x+ b)))

=Kpost ⋆s x− 2(Kpost ⊛KT) ⋆s (σ(K ⋆ x+ b)))

This allows to build a block based on SLL and that supports
stride and channel changes. However, this creates an asym-
metry between the convolution before the activation and the
one after the activation (that has a larger kernel size).

We propose also to add a second convolution before the
SLL block, convKpost

◦SLL◦convKpre
allowing better con-

trol over the kernel size of each convolution:

y =Kpost ⋆s Kpre ⋆ x

− 2(Kpost ⊛KT) ⋆s (σ(K ⋆ Kpre ⋆ x+ b)))

=(Kpost ⊛Kpre) ⋆s x

− 2(Kpost ⊛KT) ⋆s (σ((K⊛Kpre) ⋆ x+ b)))

The proposed block is still a 1-Lipschitz layer (as a com-
position of 1-Lipschitz and orthogonal layers), and support
efficiently strides and changes of kernel sizes. A visual de-
scription is provided in fig 3. This approach is more effi-
cient than the explicit construction that uses 3 distinct con-
volutions, as kernels are merged once per batch, and inter-
mediate activations of extra convolutions do not need to be
stored backward. Typically, when K, Kpre and Kpost are
2× 2 convolutions, this results in a residual block with two
3× 3 convolutions in one branch and a single 4× 4 convo-
lution (with stride 2) in the second. This is very similar to
transition blocks found in typical residual networks.

Improving Sandwich Layers. This approach aims to
construct a 1-Lipschitz network globally rather than con-
straining each layer independently. In practice, this can
be done either by (i) adding constraints between layers or
(ii) creating layers that incorporate a non-linearity internally
(a.k.a. sandwich layers). However, sandwich layers require
an orthogonal matrix at their core. For convolutional lay-
ers, this is achieved by performing the orthogonalization of
the layer in the Fourier domain, as described in the method
from [55] and shown in their Algorithm 1.

Algorithm 1 Sandwish convolutional layer (from [61])

Require: hin ∈ Rp×s×s, P ∈ R(p+q)×q×s×s, d ∈ Rq

1: ĥin ← FFT(hin)

2: Ψ← diag(ed),
[
Ã B̃

]∗ ← Cayley(FFT(P))

3: ĥ[:, i, j]←
√
2B̃[:, :, i, j]ĥin[:, i, j]

4: ĥ← FFT(σ(FFT−1(ĥ) + b))

5: ĥout[:, i, j]←
√
2Ã[:, :, i, j]Ψĥ[:, i, j]

6: hout ← FFT−1(ĥout)

We can leverage AOC to construct the kernel of an
orthogonal convolution, replacing the expensive operation
performed in the Fourier domain. Thus, we can construct
two kernels, A and B, with appropriate constraints between

the two and apply the rescaling and non-linearity directly in
pixel space:

hout =
√
2A⊤ ⋆ Ψσ

(√
2Ψ−1B ⋆ hin + b

)
The use of the Fourier transform is costly for two reasons:
first, it necessitates computation with complex values; and
second, the cost of the operation depends on the input size,
which can be prohibitive in large-scale settings with 224 ×
224 images. Consequently, our approach can make such a
layer more scalable.

Extending Applicability to Other Methods. Beyond the
previously discussed approaches that show meaningful op-
portunities for improvement, our method can enhance a
wide range of orthogonal convolutional layers. Specifically,
we can incorporate our framework into any alternative or-
thogonal layers, enabling native support for strides in those
layers. Furthermore, our approach can unlock features such
as grouped convolutions, transposed convolutions, and dila-
tions, broadening its utility and adaptability.

D. About the incomplete parametrization of
BCOP and SC-fac

As mentioned earlier, both BCOP and SC-Fac exhibit an
incomplete parametrization. BCOP has an incomplete
parametrization for 2D convolutions, while SC-Fac offers
a complete parametrization but only for separable convolu-
tions.

D.1. Understanding the Limitations of BCOP

The limitations of BCOP parametrization have significant
implications for its use in practical applications. Below, we
provide a detailed discussion of the known limitations:

• The authors presented a counterexample involving a 2×2
convolution that is orthogonal but cannot be parametrized
by BCOP. This highlights the incomplete nature of BCOP
for parametrizing certain convolutional layers.

• However, this counterexample can be parametrized by a
3 × 3 BCOP convolution, which suggests that increasing
the kernel size can potentially address the issue of incom-
plete parametrization.

• This does not imply that all 2×2 orthogonal convolutions
can be parametrized using 3× 3 BCOP convolutions, but
it provides a useful starting point. It indicates that while
BCOP may struggle with certain cases at smaller kernel
sizes, increasing the kernel size could offer a pathway to
improve coverage.

This problem is more complex than initially expected:
the parametrization space of BCOP is disconnected. In sim-
ple terms, the disconnected nature of the parametrization

space means that certain transformations cannot be contin-
uously reached from others within the same parametriza-
tion framework. Nevertheless, a BCOP convolution with c
channels can have a connected component that represents
all convolutions with c/2 channels. This property indicates
that, although BCOP may not cover the entire space of or-
thogonal convolutions, it has subsets that can be effectively
utilized for lower-dimensional problems.

Another noteworthy point is that the disconnected nature
of the parametrization space could limit the efficiency of
optimization algorithms that rely on continuous transforma-
tions during training. In practice, this means that certain op-
timal configurations may not be reachable through gradient-
based methods, which could hinder the overall performance
of models employing BCOP convolutions.

The issue of incomplete parametrization can be miti-
gated by increasing the number of channels and kernel size,
highlighting the need for a scalable approach to address the
challenge effectively. Increasing the number of channels
provides more degrees of freedom, which may help cover
more of the orthogonal convolution space while increasing
the kernel size expands the range of spatial features that can
be represented.

Research on the complete parametrization of orthogonal
convolutions with controlled kernel sizes remains an open
question, AOC could benefit from further improvements in
this area.

E. Proofs

E.1. Proof of the ⊛ property:

Although already shown in previous papers [31], [64], we
provide the proof in the 1D case to help the reader un-
derstand the mechanism of the ⊛ operator. Given a vec-
tor x ∈ Rcin×w, and two kernels A ∈ Rcint×ci×kA and
B ∈ Rco×cint×kB . We suppose that A is zero-padded, i.e.,
Ac,n,i = 0 if i < 0 or i ≥ kA.

y = A ⋆ x, such as,

yc,j =

ci−1∑
n=0

kA−1∑
j′=0

Ac,n,j′xn,j−j′

z = B ⋆ y = (B⊛A) ⋆ x, such as,

zm,l =

cint−1∑
c=0

kB−1∑
i′=0

Bm,c,i′yc,l−i′

=

cint−1∑
c=0

kB−1∑
i′=0

Bm,c,i′

ci−1∑
n=0

kA−1∑
j′=0

Ac,k,j′xk,l−i′−j′

=

ci−1∑
k=0

kA−1∑
j′=0

cint−1∑
c=0

kB−1∑
i′=0

Bm,c,i′Ac,k,j′xk,l−i′−j′

=

ci−1∑
k=0

kA+kB−1∑
l′=0

cint−1∑
c=0

kB−1∑
i′=0

Bm,c,i′Ac,k,l′−i′xk,l−l′

=

ci−1∑
k=0

kA+kB−1∑
l′=0

(B⊛A)m,k,l′xk,l−l′

with thus

(B⊛A)m,n,i =

cint−1∑
c=0

kB−1∑
i′=0

Bm,c,i′ .Ac,n,i−i′

E.2. Proof of the construction of 1x2 kernel

Given the construction explained in section 2, we can show
that given a symmetric orthogonal projectors N ∈ Rc×c

such as:

N = N2 = NT and (I −N) = (I −N)2 = (I −N)T

Using N and I − N as Rc×c×1×1 convolution kernels, we
can build an orthogonal convolution kernel P ∈ Rc×c×1×2

by.

P = stack([N, I−N], axis = −1)⇒ P⊛PT = I

For readability, we can write P using a compact notation to
describe stacked kernels:

P = [N, I −N]

Proof: As we assume s = 1, we can say that P is orthog-
onal if P ⊛ PT = PT ⊛ P = I. We can then compute

explicitly the resulting kernel for P⊛PT :

P⊛PT =

= [N, I −N]⊛
[
(I −N)T , NT

]
=

[
N(I −N)T , NNT + (I −N)(I −N)T , (I −N)NT

]
=

[
N(I −N), N2 + (I −N)(I −N), (I −N)N

]
=

[
N −N2, N2 + I − 2N +N2, N −N2

]
=

[
N −N,N + I − 2N + 2N2, N −N

]
= [0, I, 0]

The third line is the application of the ⊛ with two 1 × 2
convolutions. The following lines are based on the trivial
application of the symmetric projector property.

Construction of symmetric projectors. Following the
construction described in [31] a symmetric projectors N ∈
Rc×c can be constructed using by using an orthogonal ma-
trix N0 ∈ Rc× c

2 :

given N0 ∈ Rc× c
2 , NT

0 N0 = I

N = N0N
T
0 =⇒ N = NT = N2

=⇒ (I −N) = (I −N)T = (I −N)2

E.3. RKO is orthogonal when k = s

The proof is given by the property that when k = s the
convolution can be decomposed into a reshaping operation
(invertible downsampling with factor s) followed by a 1× 1

convolution with kernel K ′ ∈ Rco×cis
2×1×1. The kernel

K ′ is the orthogonal matrix built by RKO method.

E.4. AOC convolutions are orthogonal

The construction of our method consists in composing a
BCOP kernel KBCOP ∈ Rc×ci×k−s×k−s followed by an
RKO kernel KRKO ∈ Rco×c×s×s. As we already proved
that each kernel is orthogonal, we know that

KBCOP KT
BCOP when ci ≥ c

KT
BCOP KBCOP when ci ≤ c

and that

(SsKRKO)(SsKRKO)
T when c ∗ s2 ≥ co

(SsKRKO)
T (SsKRKO) when c ∗ s2 ≤ co

As c (the intermediate number of channels) is a free param-
eter we can demonstrate that our construction is orthogonal
when the convolutions are either both row orthogonal, or
both column orthogonal, i.e when:

ci ≥ c and c ≥ co
s2

or ci ≤ c and c ≤ co
s2

In the first case, when ci ≥ co
s2 The resulting convolution is

orthogonal for any c such as co
s2 ≤ c ≤ ci:

(SsKRKO KBCOP)(SsKRKO KBCOP)
T

=(SsKRKO)KBCOP KT
BCOP (SsKRKO)

T

=(SsKRKO)(SsKRKO)
T

=I

The maximum possible value for c is c = ci. The second
case when ci ≤ c ≤ co

s2 can be proven the same way.

E.5. We can apply stride directly on BCOP

When ci > co, stride can be directly applied on the BCOP
kernel without the need to construct the RKO kernel to han-
dle striding. First we need to show that Ss STs = I. We can
leverage the proof that RKO is orthogonal when k = s and
note that RKO can build the identity kernel. Then we can
show that (Ss I)(Ss I)T = I (def 2.5, given that ci < co

s).
This proves that Ss STs = I. However, the other direction
is trivially false.

As Ss is row orthogonal, we can use proposition 2.6 to
show that if K is row orthogonal, then the strided convolu-
tion is also row orthogonal. As K is built using BCOP, we
know that it is row orthogonal if ci ≥ co. The strided ver-
sion of the convolution using the BCOP kernel is thus also
row orthogonal.

F. Architecture and training details

Layer Type Configuration
Feature Extractor 3 x AOC (128 channels)

AOC (256 channels, stride=2)
3 x AOC (256 channels)
AOC (512 channels, stride=2)
3 x AOC (512 channels)
AOC (1024 channels, stride=2)
4 x AOC (1024 channels)
Flatten

Fully Connected 4 x OrthogonalDense (1024 units)
OrthogonalDense (nb classes)

Table 4. Summary of the network architecture used.

CIFAR 10 The CIFAR10 network architecture used in
our evaluation is summarized in Table 4. Each block uses
circular padding with a kernel size of 3, ensuring consis-
tency in spatial dimensions throughout the network. This
design explores the impact of deep, wide layers combined
with orthogonality, aiming to maintain expressiveness while
ensuring certifiable robustness. We used the ScheduleFree

Figure 4. We can construct complex blocks. These blocks can
reduce the number of parameters of our models, thanks to the flex-
ibility of AOC.

optimizer [14] with a learning rate of 1 × 10−4 and no
weight decay.

Layer Type Output
Shape Config

Input [224, 224]
Convolution Layer 1 [112, 112] 5x5 kernel
Activation Layer 1 [112, 112] MaxMin
Block 1
Residual Depthwise Block x 3 [56, 56] 5x5 kernel
Convolution Layer [28, 28] 3x3 kernel
Block 2
Residual Depthwise Block x 3 [28, 28] 5x5 kernel
Convolution Layer [14, 14] 3x3 kernel
Block 3
Residual Depthwise Block x 3 [14, 14] 5x5 kernel
Convolution Layer [7, 7] 3x3 kernel
Block 4
Residual Depthwise Block x 3 [7, 7] 5x5 kernel
L2 Pooling [1, 1] 3x3 kernel
Flatten [2048]
Fully Connected Layer [1000]

Table 5. Summary of our architecture used on Imagenet-1K.

Imagenet-1K We leveraged the flexibility of our layer to
design more complex blocks tailored for ImageNet1K. Each
block consists of a depthwise convolution that doubles the
number of channels, followed by a MaxMin activation func-
tion [2] to enhance non-linearity, and a pointwise convolu-
tion that reduces the number of channels. These layers are
encapsulated within a skip connection featuring a learnable
factor to ensure a Lipschitz constant of 1, represented by
y = αx+(1−α)f(x) (where α ∈ [0, 1]). A visual descrip-
tion can be found in Fig. 4. The entire architecture consists
of a sequence of such blocks interleaved with strided con-
volutions, an exhaustive description of the architecture is
provided in table 5.

G. Reproducing the results from BCOP paper

Models
Acc-
uracy

Provable
Accuracy
ϵ = 36

255

BCOP - Small net (original seeting) 72.2 58.26
AOC - Small net (all optimizations) 62.3 49.18

AOC - Small net (opt 2c removed) 71.8 58.25
AOC - Large net (all optimizations) 74.0 64.33

Table 6. Mitigating AOC limitations in small scale setting: as
AOC uses less parameters for strided convolutions, this can impact
its expressive power in small scale setting. However, by removing
the optimization 2c this increase the number of parameters enough
to correct this issue. Results from table 3 added for reference.

As mentioned earlier, AOC is built on top of compo-
nents like BCOP and RKO. Hence, any accuracy gain must
come from the fact that our implementation allows larger
networks and more training steps within the same compute
budget. To illustrate this, we reproduced the baseline results
from [31] and switched the implementation to ours. Results
are shown in table 6. We can observe a notable difference
in performance between the original implementation and
ours. This is due to the difference in the parametrization
of strided convolutions: the original paper uses invertible
downsampling to emulate striding followed by a standard
convolution whose number of input channels is multiplied
by s2, such convolution has a s2× more parameters than
the proposed AOC strided convolution. This is accentu-
ated by the specific small architecture used in BCOP paper
(and reproduced in this experiment) which has 84% of the
convolutional layers parameters that are located in strided
convolutions. Also, invertible down-sampling has a 2 × 2
receptive field, which increases the global convolution’s re-
ceptive field. However, when we remove the optimization
depicted in fig. 2c and only resort to the parametrization de-
scribed in fig. 1, the increase in the number of parameters
results in improved results close to the results of the orig-
inal paper. This observation is non-trivial since this mod-
ification is not equivalent to the original implementation:
instead of parametrizing a co × 4 ci × k × k AOC parame-
terized one max(ci,

co
s2)×ci×k−s+1×k−s+1 and one

co ×max(ci,
co
s2)× s× s kernels which are much smaller.

We recall that all the results of this paper were obtained
with the optimization in Fig. 2c. We evaluated the unopti-
mized version in the same context as in table 2 and found,
for a batch size of 512, a slowdown of 1.21× in train time
(instead of 1.13×) and no notable increase in train memory
consumption.

Finally, it is worth noting that the optimization depicted
in Fig. 2c should not affect the expressive power if we were

able to parameterize the complete set of orthogonal convo-
lutions.

	. Introduction and Related Works
	. An Adaptive scheme to build Orthogonal Convolution (AOC)
	. Core tool: Block Convolution
	. Construction of Strided, Transposed, Grouped, Dilated, Orthogonal Convolutions with AOC
	Standard Orthogonal Convolution
	Native Striding for Orthogonal Convolutions
	Native Transposed Orthogonal Convolutions:
	Native Grouped Orthogonal Convolutions:
	Native Orthogonal Convolutions with Dilation:

	. Efficient implementation of AOC

	. Evaluation
	. Conclusion and Broader Impact
	. Acknowledgement
	. Applications of orthogonal convolutions
	. Empirical evaluation of the Lipschitz constant of our method
	. Using the content of this paper to improve Cayley, SLL, SOC, and Sandwish
	. About the incomplete parametrization of BCOP and SC-fac
	. Understanding the Limitations of BCOP

	. Proofs
	. Proof of the property:
	. Proof of the construction of 1x2 kernel
	. RKO is orthogonal when k=s
	. AOC convolutions are orthogonal
	. We can apply stride directly on BCOP

	. Architecture and training details
	. Reproducing the results from BCOP paper

