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Abstract—Training Deep Neural Networks (DNNs) is compu-
tationally demanding, leading to a growing interest in reduced
precision formats to enhance hardware efficiency. Several frame-
works explore custom number formats with parameterizable pre-
cision through software emulation on CPUs or GPUs. However,
they lack comprehensive support for different rounding modes
and struggle to accurately evaluate the impact of custom precision
for FPGA-based targets. This paper introduces MPTorch-FPGA,
an extension of the MPTorch framework for performing custom,
multi-precision inference and training computations in CPU,
GPU, and FPGA environments in PyTorch. MPTorch-FPGA can
generate a model-specific accelerator for DNN training, with
customizable sizes and arithmetic implementations, providing
bit-level accuracy with respect to emulated low precision DNN
training on GPUs or CPUs. An offline matching algorithm selects
one of several pre-generated (static) FPGA configurations using
a custom performance model to estimate latency. To showcase
the versatility of MPTorch-FPGA, we present a series of training
benchmarks using diverse DNN models, exploring a range of
number format configurations and rounding modes. We report
both accuracy and hardware performance metrics, verifying the
precision of our performance model by comparing estimated and
measured latencies across multiple benchmarks. These results
highlight the flexibility and practical value of our framework.

I. INTRODUCTION

Deep Neural Networks (DNNs) have revolutionized Al,
enabling significant advancements but at the cost of substantial
computational demands. As models scale in size and complex-
ity, developing efficient training methods is crucial. Mixed-
precision training emerges as a promising solution to boost
performance without compromising accuracy. However, most
frameworks exploring custom mixed precisions for DNN train-
ing rely on software emulation, with limited direct evaluation
on hardware platforms like FPGAs.

This paper introduces MPTorch-FPGA, illustrated in Fig-
ure 1, an extension of the MPTorch framework [1], that
integrates custom mixed-precision arithmetic for DNN training
in CPU-GPU-FPGA environments. Our framework is designed
for researchers and developers who seek to explore and
optimize hardware designs with minimal accuracy loss. By
combining software emulation and hardware execution within
a unified framework, MPTorch-FPGA offers flexibility and
precision, allowing for detailed exploration of custom number
formats, rounding modes, and arithmetic configurations. The
main contributions are:

e Unified Emulation and Hardware Framework
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Fig. 1. MPTorch framework overview. It includes CPU, GPU, and the new
FPGA component. The MPTorch-FPGA component is the focus of this paper.

hardware exploration, seamlessly combining software and
FPGA components. This enables rapid and precise explo-
ration of custom number formats and arithmetic modes.
We also provide detailed and fine-grained performance
and accuracy benchmarks for various Floating-Point (FP)
and Fixed-Point (FXP) configurations across different
stages of DNN training.

o Model-Specific Accelerator Optimization: Our frame-
work offers a complete flow for selecting an optimized
accelerator configuration tailored to each model, optimiz-
ing FPGA usage based on the training workload.

o Efficient Hardware Design: MPTorch-FPGA uses a sin-
gle bitstream for each training task, eliminating the need
for bitstream switching, and leverages High-Bandwidth
Memory (HBM) to efficiently manage multiple cores,
addressing FPGA memory constraints in the context of
DNN training.

The manuscript is organized as follows. In Sec. II, we
discuss previous work, while in Sec. III we discuss the concept
and ideas behind MPTorch and MPTorch-FPGA. Sec. IV
delves into the implementation aspects of MPTorch-FPGA.
Results are presented in Sec. V, followed by a conclusion. The
MPTorch-FPGA framework will be released as open-source
within the same repository as MPTorch.

II. BACKGROUND AND RELATED WORK
A. Custom precision for DNN training

Custom arithmetic precision in DNN training seeks to
reduce memory consumption while improving computational
efficiency. In this section, we review prominent techniques for
custom low-precision training.

General Matrix Multiplications (GEMM), the most compu-
tationally expensive operations in DNN training, have been a



primary focus of precision reduction research [2]-[10]. Many
studies explore the use of 8-bit Floating-Point (FP8) formats
for GEMM [2]-[6], [10], though accumulations are often still
performed with higher 16- or 32-bit precision. To reduce accu-
mulator overhead, other works [6], [10] perform accumulations
using lower-precision adders (e.g., FP12). Additionally, [3],
[5], [6] use loss scaling and different FP8 formats for the
FWD and BWD passes to minimize accuracy loss and memory
access overhead.

Beyond FP8, BFloat16 [8], [11] and block floating-point for-
mats [9] have been explored. Some approaches also investigate
integer arithmetic [9], [12]-[16]. Stochastic rounding has also
been proposed to mitigate rounding errors in low-precision
training, in particular due to stagnation [10], [17].

B. Emulation frameworks

Several tools (see Table I) have been proposed in recent
years to assess the impact of various hardware and arithmetic
choices on DNN training accuracy.

In terms of FPGA-oriented work, Langroudi et al. [18]
introduced Cheetah, a co-design framework for DNN inference
and training that emulates FP and posit formats using CPU
cores and compiles a softcore of Multiply And Accumulate
(MAC) operators on FPGA to evaluate hardware characteris-
tics. Tatsumi et al. [6] introduce Archimedes-MPO, a C++-
based mixed-precision inference and training framework for
FPGAs. Models compiled with Archimedes-MPO use custom
templated data types for each low-level operation. These
types support up to 32-bit FP or FXP with custom policies
including exponent/mantissa/integer/fractional word lengths,
optional subnormals, and whether the multiplier output in a
MAC is fused or rounded. The FPGA component accelerates
GEMM using one single SA synthesized using a single MAC
design that supports a fixed mixture of data types and policies.

Table I compares existing frameworks and their features.
While frameworks like [6], [18] allow synthesizing custom
FPGA operators, their lack of integrated support compli-
cates performance benchmarking across arithmetic configura-
tions. In contrast, MPTorch-FPGA provides a built-in, model-
specific FPGA implementation with customizable operators,
facilitating easier performance evaluation and supporting vari-
ous rounding options, including Stochastic Rounding (SR) [19]
and Round to Odd (RO) [20].

C. FPGA DNN training accelerators

While simulation frameworks explore precision impact on
accuracy, other research focuses on hardware architectures for
custom precision DNN training on FPGAs. Vink et al. [26]
introduced the Barista toolchain to simplify DNN accelerator
deployment on FPGAs. Integrated with the Caffe framework
[27], it allows users to define networks and includes an FPGA-
based accelerator with an OpenCL runtime for CNN training.
Convolutions use a compile-time sized 2D systolic array,
and the authors optimize performance by evaluating various
tile sizes to identify the best configuration for specific CNN
models. Luo et al. [28] introduced DARK FPGA, a training

framework for FPGA accelerators that employs batch-level
parallelism and a hardware/software co-design approach for
mixed precision training. DARK FPGA enhances computation
by determining optimal tile sizes and accelerator parameters.

Previous works [26], [28], [29] provide user-friendly FPGA
acceleration frameworks connected to x86 hosts, facilitating
quick testing and integration of their designs. However, they
are often difficult to adapt for custom arithmetic configurations
and do not investigate the impact of these configurations
on overall performance and accuracy. In contrast, our work
supports easy evaluation of various arithmetic configurations
through a versatile GEMM accelerator.

III. THE MPTORCH FRAMEWORK AND ITS FPGA
EXTENSION

The goal of MPTorch is to offer a comprehensive resource
for researchers investigating DNN acceleration at the arith-
metic level, with a strong focus on mixed-precision DNN
training. MPTorch includes GPU and CPU components. This
paper focuses on its new FPGA component.

As illustrated in Figure 1, MPTorch is built on top of
PyTorch. The CPU and GPU components are designed to offer
bit-accurate emulation of arithmetic operations. For the CPU,
custom precision operators and quantization functions are
implemented in C++, while CUDA is leveraged for GPU im-
plementations. These implementations are exposed to Python
via PyBind and seamlessly integrated as PyTorch extensions,
ensuring compatibility within the PyTorch ecosystem.

MPTorch-FPGA extends MPTorch with support for FPGA
accelerator implementations. FPGA logic is designed using
C++ High-Level Synthesis (HLS), controlled through an
OpenCL-based Python interface. A detailed discussion of the
FPGA accelerator architecture is presented in Section IV.

Figure 2 illustrates the mixed-precision training process in
MPTorch-FPGA for a single training iteration. During both
forward and backward passes, inputs are quantized to the
desired precision before undergoing matrix multiplication. Our
framework emphasizes the impact of custom precisions on
GEMM operations'.

MPTorch-FPGA enables FPGA-based GEMM computation
or emulation on GPU/CPU. Results are cast back to full pre-
cision. Additionally, the framework supports custom precision
simulation for weight updates, where weights are quantized,
updated in custom precision, and stored in full precision.

Our framework integrates seamlessly with the PyTorch
workflow. Custom-precision operations are easily defined
within layer declarations, as illustrated in Figure 3. The
parameters for these layers mirror those of standard PyTorch
layers, and an extra parameter group to specify the arithmetic
configuration for forward and backward passes and quantiza-
tion formats for executing the layers’ GEMM operations.

MPTorch-FPGA provides fine-grained control over arith-
metic configurations, allowing independent customization of

IConvolution operations are transformed into GEMM computations using
the im2col and col2im transformations, performed on the CPU host.



TABLE I
COMPARISON OF DIFFERENT DNN TRAINING SIMULATION FRAMEWORKS. MPTORCH-FPGA IS THE ONLY ONE OFFERING MODEL-SPECIFIC
ACCELERATOR SUPPORT

Work AdaPT  ApproxTrain Cheetah GoldenEye QPytorch FASE Archimedes-MPO  MPTorch-FPGA
[21] [22] [18] [23] [24] [25] [6] Ours

Framework PyTorch  TensorFlow TensorFlow PyTorch PyTorch PyTorch,Caffe TinyDNN PyTorch
GPU acceleration X v X v v X 4 v
Built-in FPGA support X X X X X X v v
Transformer support v v X v X 4 X v

FMA support X X X X X 4 4 v
Operator emulation v v 4 v X 4 4 v
Formats EXP FP Posit,FP FXPFPBFP  FXPFPBFP FP FXPFP FXPFP
Rounding - RZ RN RN,RZ RN,RZ,SR RN RN RN,RZ,SR,RO

formats for multiplication and accumulation, precision set-
tings, and rounding modes. It supports both fixed-point,
floating-point, and blocked FP arithmetic, offering a variety of
rounding modes, including Stochastic Rounding (SR), Round
to Nearest Even (RN), Round to Odd (RO), Round to Zero
(RZ) and No Rounding (NR), in which the result is calculated
exactly.

During emulation (on CPU or GPU), computations are
performed using FP32 operators. For both multiplication and
addition, pre-quantized inputs are operated on using standard
FP32 hardware. The result can be rounded by truncating the
least significant bits (RZ mode) or by adding and truncating
those bits for RN, RO, and SR. Alternatively, the FP32
result can emulate fused multiply-add (FMA) behavior for low
precisions.

Emulating custom precision operators introduces significant
latency overhead. While this overhead is smaller with GPU
implementations, training tasks on CPU can be notably slow.
Full precision operators ensure bit-accurate emulation for low-
precision formats, though issues like double rounding may
arise for higher-precision formats. On the other hand, FPGA
implementation provides exact computation using the specified
formats and allows for a thorough evaluation of the perfor-
mance characteristics of custom arithmetic configurations.

IV. FPGA IMPLEMENTATION

Our FPGA design, which allows for fast and easy bench-
marking, is a GEMM accelerator composed of several Systolic
Arrays (SAs), also referred to as cores in this paper. Specif-
ically, we use the one-dimensional systolic array introduced
by de Fine Licht et al. [30], as shown in Figure 4. This
systolic array is composed of N Processing Elements (PEs),
each containing M MAC units. The GEMM computation is
performed as inputs are streamed across the PEs. We have
significantly modified the original design to accommodate
custom arithmetic units and rounding modes. Additionally,
our implementation synthesizes multiple SAs within the same
chip, as illustrated in Figure 5. This approach addresses the
inefficiencies of large tile sizes in conventional SAs, where the
tile size is equal to the total number of MAC units N x M.
Large tile sizes often result in low utilization for most DNNss,
as the input shapes are usually a fraction of the tile size.
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Fig. 2. Low precision computation flow through a linear layer during one
iteration of training. The W variables are the weights, activations are denoted
with a, and the loss function with L.

mptorch.quant qpt

formats = gpt.QAffineFormats (fwd mac, fwd rnd, bwd mac,
bwd_rnd, weight_quant,
input_quant, grad_quant,
bias_quant)

Qlinear layer = gpt.QLinear (in_features, out_features,
formats, device)

Fig. 3. MPTorch layer declaration. To enable the FPGA extension, the user
should designate an ’ fpga’ value to the device parameter.

Moreover, large SAs complicate routing and reduce the design
frequency. To mitigate these issues, we deploy multiple smaller
SAs, each utilizing separate HBM ports for parallel memory
transfer and computation.

A. Performance Model

A training iteration at the layer level consists of a series
of GEMM operations. Each GEMM operation input needs to
be padded to match the tile size of the selected configuration.
By knowing the input shapes and the tiling parameters of the
accelerator, we can estimate the latency of each operation. The
total training iteration latency is the sum of the latencies of
all consecutive GEMM operations.



The input matrices A € R"** and B € R¥*™ undergo
three padding stages. The first stage ensures that computation
can be evenly partitioned among cores by padding either A or
B. The second and third stages pad the partitioned inputs for
each core. The first two stages are executed on the host CPU
before transferring the matrices to the FPGA’s HBM memory,
while the third stage occurs on the FPGA fabric during data
loading.

1) First Stage: The input dimensions n or m (depending
on the partitioned input) are padded to match the number
of cores C, producing C' sub-matrices with dimensions
(Ncore, k) and (k, meore ). Assuming A is partitioned, each
core receives sub-matrix A., where ¢ € {1,...,C} :
with dimensions (n¢ee, k) and the full matrix B with
dimensions (k,m).

2) Second Stage: Fo each core inputs A. and B, the m
and k£ dimensions are padded to align with the memory
tile size, Tmem, defined by the capacity of one HBM
port width (512 bits). For instance, for an 8-bit value,
the memory pack size is 512/8 = 64. After this stage,
the padded inputs for each core become: submatrices
A, € RrereXkmem and matrix B € RFmem X Mmem

3) Third Stage: Padding is further applied to core inputs
A, and B padded in the second stage. Each matrix B
(with dimensions (Kpem, Mmem)) is padded further in the
Mmem dimension to size Mcomp, Which is divisible by the
compute tile size Tyjac = N x M, corresponding to the
total number of MAC units per core. Each sub-matrix
A, (with dimensions (ncore, kmem)) i padded further in
the neore dimension to size 7comp, Which is divisible by
the compute tile size Tpg = N, corresponding to the
total number of MAC units per PE. After this stage, the
final padded inputs for each core are: A, € Rom X Fnen
and B € RFmenXMcomp

The performance of the GEMM operation within each core
is calculated as Lcore = Lmac + Lwrite, Where the latency of
MAC computations is defined as

Ncomp * Meomp * Kmem

N-M-F ’
with F' being the operating frequency. Since data reads from
off-chip memory to each GEMM core occur in parallel with
MAC computations, only the sequential operations for writing
to off-chip memory are considered. Ly i given by:

Lyac =

I Ncomp * TMcomp
write —

Tout -F ’

where Ty, = M 1is the tile size for off-chip data writes.
The memory transfer latency between the host CPU and
FPGA off-chip memory is constrained by the PCle bandwidth:

S data
b
Bepcre

Ldala =
where Sy, is the total data size computed as

Sdata = C * Ncore * kmem + Kmem * Mmem 4+ €'+ Neore * Mme -

First input matrix Second input matrix Output matrix
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Fig. 4. Systolic array architecture of a GEMM core.
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Fig. 5. Accelerator multicore architecture.

Since all cores are of the same size and operate in parallel,
the total latency of the accelerator is:

Ltotal = LCore + Ldala'

B. Accelerator Configuration

To maximize the accelerator’s performance, we select the
configuration that delivers the best results for a given DNN
training workload. We rely on the performance model from
Sec. IV-A to accurately estimate the latency of a training
iteration for a specific model. We then apply an optimized
mapping strategy that ensures the best performance for the
DNN model and the accelerator configuration.

Through a unified two-level approach, we minimize latency
incurred by padding overhead. The first step involves deter-
mining whether to feed the inputs in their original or trans-
posed forms. Transposing allows switching input dimensions,
potentially reducing padding overhead. However, this decision
is coupled with the second step: optimizing input partitioning.

For both transposed and non-transposed inputs, we evaluate
which input to partition across cores to minimize execution
latency. Using a brute-force approach, we calculate the latency
for every combination of input format and partitioning strat-
egy. The objective is to identify the configuration—original
or transposed format, combined with the optimal partition-
ing—that achieves the lowest overall latency.



TABLE II
TEST ACCURACY COMPARISON ACROSS DIFFERENT MULTIPLIER AND
ACCUMULATOR CONFIGURATIONS FOR VARIOUS CNNS.

= —— Mult: ESM2-NR, Acc: E6M5-RO
1.0 Mult: E5SM2-NR, Acc: E6M5-RZ
—— Mult: ESM2-NR. Acc: ESM10-RN
— Mult: ESM2-NR, Acc: E6M5-RN

Multiplier Accumulator LeNet5 ResNet20 VGG16  ResNet50 - Mult: ESM2-NR, Acc: EGM5-SR
t 1 t A é —— Mult: ESM23-RN, Acc: ESM23-RN
E6Mb5-RZ 97.10 10.00 10.00 10.00 §30
E6M5-RO 98.00 10.00 10.00 10.00 k-
E5M2-NR E6M5-RN 98.61 10.00 10.00 10.00 GEN]
E6M5-SR 99.00 90.55 88.99 80.88 -
E5M10-RN 99.05 91.24 89.81 82.97 20
E8M23-RN E8M23-RN 99.18 91.91 90.67 82.92
FXP4, 4-RN 99.06 10.00 10.00 10.00 .
E))gi’ i:SRI; EXPS. 8 gzég }888 }888 %888 . 0 1000 2000 3000 4000 5000
FXP4, 4-RO 10.00 10.00 10.00 10.00 Fraining lteration

Datasets: TMNIST, ICIFAR 10, A Imagewoof

V. EVALUATION

In this section, we illustrate the effectiveness of our frame-
work by exploring how different arithmetic configurations
influence model training through bit-accurate emulation. Ad-
ditionally, we extend this analysis by designing and imple-
menting an FPGA accelerator based on one of the evaluated
arithmetic formats. To accomplish this, we apply the method-
ology from Sec. IV to determine an optimized configuration
for the accelerator. Finally, we compare the actual performance
of the FPGA accelerator with the predictions made by our
model across various DNN training benchmarks, validating
the robustness of our approach.

A. Training Setup

We conducted our experiments using various convolutional
models, including LeNet5, ResNet20, VGG16, ResNet50, and
a Transformer model. The details of the datasets and training
configurations for each model are outlined below. In all
experiments, we employed adaptive loss scaling [7] with an
initial scaling factor of 256 to mitigate accuracy loss during
mixed precision training.

1) CNN Experiments: For LeNet5, we performed training
on the MNIST dataset for 10 epochs, using a batch size of 64
and a learning rate of 0.1.

In the case of ResNet20 and VGG16, we followed the
original training configurations [31], [32]. Both models were
trained on the CIFAR10 dataset. For ResNet20, the initial
learning rate was set to 0.1, and weight decay was 0.0001,
while VGG16 used an initial learning rate of 0.01 and a weight
decay of 0.0005. Both models were trained for 200 epochs
with a batch size of 128. We used stochastic gradient descent
(SGD) with a momentum coefficient of 0.9 throughout.

For ResNet50, we selected the more challenging Imagewoof
dataset, a subset of ImageNet that focuses on 10 dog classes
out of the 1,000 total classes in the full ImageNet dataset.
The model was trained with a batch size of 16 and an initial
learning rate of 0.01, highlighting the increased computational
demand posed by the larger dataset and more complex task.

2) Transformer Experiments: We also conducted training
on the Shakespeare dataset, which contains text sequences
drawn from Shakespeare’s works. We used the Nano-GPT
generative model [33] comprising 6 layers, 6 attention heads,

Fig. 6. Nano-GPT validation loss for different arithmetic configurations.

a 384 embedding size, and 256 for the block size. Training
was carried out for 5,000 iterations using a learning rate of
10~* and the Adam optimizer.

B. Training Results

This section demonstrates the effectiveness of our frame-
work in evaluating the impact of custom precision configura-
tions on DNN model training. Table II presents the emulated
test accuracy for various CNN models and arithmetic con-
figurations, while Figure 6 shows the validation loss for the
Transformer benchmark. Floating-point formats are denoted as
EeMm, where e represents the exponent size and m denotes
the mantissa size. For fixed-point formats, the FXPi. f notation
is used, with ¢ indicating the size of the signed integer part
and f representing the fractional part.

1) Floating Point Formats: We trained models using FMA
operators with FP8 multipliers and FP12 or FP16 adders.
The FP12 format, previously studied in [6], [10], was further
evaluated with different rounding modes. Our results confirm
that SR consistently outperforms other rounding modes at the
same precision. Although RO and RZ performed well on the
LeNet5 benchmark, they failed to converge on other tasks. In
[10], the authors demonstrated that increasing the number of
random bits can match FP16RN accuracy using FP12SR with
13 random bits. In our experiments, using 10 bits caused slight
degradation compared to FP16RN but still provided a notable
accuracy advantage over other FP12 configurations.

2) Fixed-Point Formats: We also experimented with
FXP8.4 multipliers and FXP16.8 adders. All FXP configu-
rations failed to converge, except for the Lenet5 experiments,
where all rounding modes except RO resulted in near FP32
baseline accuracy.

C. Accelerator Performance

Our framework facilitates exploration of performance char-
acteristics for different arithmetic formats at the accelerator
level. The template-based code allows for easy modification of
the accelerator to accommodate custom arithmetic formats or
operators. In our experiments, we focus on the FP8 multiplier,
FP12SR accumulator FMA configuration, which shows min-
imal accuracy degradation across all benchmarks. Using the
performance model and mapping strategy from Sec. IV, we
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identify the optimal accelerator configuration for this format.
We validate the model’s accuracy by comparing its predictions
with actual hardware performance.

We use AMD Vitis HLS 2023.1 to synthesize various
accelerator configurations, targeting the US55 Alveo FPGA.
However, our framework is adaptable to other Alveo and
datacenter boards.

In our experiments, we explore the design space by varying
the accelerator parameters N, M, and C, subject to specific
constraints: N and M must be powers of two, M must be
divisible by N, and C is capped at 10 due to the U55’s
32 memory ports (with 3 ports per core). We synthesize
each configuration at the maximum core count and highest
achievable frequency. As detailed in Table III, we present the
synthesis results in terms of overall resource utilization on
the FPGA, specifically reporting the consumption of Look-
Up Tables (LUTs), BRAMs (block RAMS), and Digital Sig-
nal Processing blocks (DSPs). The arithmetic operators are
implemented using LUTs, while the DSP usage is due to
address generation logic within the SAs. As the size of the
systolic arrays increases, the number of cores that fit on-chip
decreases. The largest systolic array we can accommodate has
N =64,M = 32 with C = 1.

Using fewer cores can sometimes improve performance
due to higher operating frequencies. Table IV presents the
estimated training latencies for different models using systolic
arrays of size N = M = 8, synthesized with varying
core counts. The optimal core count is the one resulting in
minimum latency.

To identify the optimal accelerator configuration for a
training task, we first determine the optimal core count for
each SA size. This process is repeated for varying SA sizes
to ultimately find the (N, M, C) combination that minimizes
the estimated training latency.

To confirm the accuracy of our performance model, we
compare the optimal configurations calculated through the
model with those measured on the hardware. Figure 7 shows
the latencies of optimal configurations for various training
benchmarks. The model successfully identifies all optimal
configurations, though measured latencies are slightly higher,

TABLE III
POSSIBLE ACCELERATOR CONFIGURATIONS (N = #PEs, M = #MACs
PER PE, C = #CORES OF SIZE N X M, SHOWING MAXIMAL C AND F',
WITH CHIP RESOURCE UTILIZATION).

N M C FMHz) LUT (%) BRAM(%) DSP(%)
1 1 10 320.9 14.12 13.78 8.56
2 1 10 320.1 14.80 13.80 7.98
2 2 10 320.1 15.10 14.44 8.05
4 2 10 311.0 18.06 15.99 9.76
4 4 10 3284 21.30 18.20 9.80
8 4 10 197.7 28.20 17.09 11.53
8 8 10 196.2 37.51 21.50 11.53
16 8 10 180.0 61.60 30.3 11.6
16 16 7 160.0 62.73 33.57 7.45
32 16 4 198.4 73.26 33.26 5.72
32 32 2 197.3 62.19 71.48 2.77
64 32 1 150.0 52.57 71.64 1.93
TABLE IV

ESTIMATED TRAINING LATENCY PER ITERATION.

Estimated Training Latency (s), N X M =8 X 8
C F CNN Transformer
(MHz) | LeNet5 VGGI16 ResNet20  ResNet50 Nano-GPT
T ¥ 1 A ©
1 378.3 0.0081 5.42 1.12 8.35 25.17
2 330.9 0.0055 3.12 0.66 4.82 14.54
3 298.0 0.0047 2.33 0.51 3.61 11.00
4 298.0 0.0041 1.75 0.40 2.72 8.23
5 299.8 0.0038 1.41 0.34 2.21 6.67
6 270.6 0.0039 1.30 0.33 2.05 6.22
7 274.7 0.0037 1.12 0.29 1.75 5.45
8 203.1 0.0045 1.30 0.35 2.02 6.14
9 203.1 0.0044 1.17 0.33 1.84 5.76
10 196.2 0.0043 1.10 0.32 1.73 5.35

Datasets: 1 MNIST, FCIFAR10, & Imagewoof, ©Shakespeare

due to the PCle bandwidth being capped at 80% of its
maximum capacity.

VI. CONCLUSION

In this paper, we introduce MPTorch-FPGA, a versatile
framework that bridges the gap between software emulation
and hardware execution for DNN training. By enabling seam-
less exploration of arithmetic configurations in FPGA-based
systems, it offers researchers a powerful tool to optimize
model-specific accelerators and explore precision trade-offs
with minimal overhead. We report both accuracy and hardware
performance metrics, confirming the precision of our perfor-
mance model by comparing estimated latency with measured
results across various benchmarks. These findings emphasize
the flexibility and practical utility of MPTorch-FPGA, demon-
strating its effectiveness as a framework for optimizing DNN
training across diverse hardware setups. Future extensions of
this work could involve finer-grained model matching, such
as applying different arithmetic configurations to the forward
and backward passes. Additionally, support for more advanced
DNN architectures and larger datasets could further expand the
applicability of the framework.
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