
HAL Id: hal-04882989
https://hal.science/hal-04882989v1

Submitted on 13 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MPTorch-FPGA: a Custom Mixed-Precision Framework
for FPGA-based DNN Training

Sami Ben Ali, Silviu-Ioan Filip, Olivier Sentieys, Guy Lemieux

To cite this version:
Sami Ben Ali, Silviu-Ioan Filip, Olivier Sentieys, Guy Lemieux. MPTorch-FPGA: a Custom Mixed-
Precision Framework for FPGA-based DNN Training. 28th IEEE/ACM Design, Automation and Test
in Europe (DATE), Mar 2025, Lyon, France. pp.1-6. �hal-04882989�

https://hal.science/hal-04882989v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MPTorch-FPGA: a Custom Mixed-Precision
Framework for FPGA-based DNN Training

Sami Ben Ali
Inria, Univ. Rennes

Silviu Filip
Inria, Univ. Rennes

Olivier Sentieys
Inria, Univ. Rennes

Abstract—Training Deep Neural Networks (DNNs) is compu-
tationally demanding, leading to a growing interest in reduced
precision formats to enhance hardware efficiency. Several frame-
works explore custom number formats with parameterizable pre-
cision through software emulation on CPUs or GPUs. However,
they lack comprehensive support for different rounding modes
and struggle to accurately evaluate the impact of custom precision
for FPGA-based targets. This paper introduces MPTorch-FPGA,
an extension of the MPTorch framework for performing custom,
multi-precision inference and training computations in CPU,
GPU, and FPGA environments in PyTorch. MPTorch-FPGA can
generate multiple systolic arrays, each with independent sizes
and custom arithmetic implementations that directly provide bit-
level accuracy to accelerate GEMM calculations by offloading
from the CPU or GPU. An offline matching algorithm selects
one of several pre-generated (static) FPGA configurations using
a custom performance model to estimate latency. To showcase
the versatility of MPTorch-FPGA, we present a series of training
benchmarks using diverse DNN models, exploring a range of
number format configurations and rounding modes. We report
both accuracy and hardware performance metrics, verifying the
precision of our performance model by comparing estimated and
measured latencies across multiple benchmarks. These results
highlight the flexibility and practical value of our framework.

I. INTRODUCTION

Deep Neural Networks (DNNs) have become a cornerstone
of modern AI, powering major advancements in fields like im-
age recognition, natural language processing, and autonomous
systems. However, the success of DNNs comes with significant
computational costs. Training these models is a resource-
intensive and demanding process. As DNN models continue
to grow in size and complexity, the need for more efficient
training methods becomes critical. The use of custom low-
precision formats is one promising avenue to improve per-
formance while maintaining accuracy. However, many current
frameworks that explore reduced precision formats do so only
in a software environment, often without the ability to directly
evaluate the effects of custom precision on hardware targets
such as FPGAs.

This paper introduces MPTorch-FPGA, illustrated in Fig-
ure 1, an extension of the MPTorch framework [*] (Cita-
tion omitted for blind review), that integrates custom mixed-
precision arithmetic for DNN training in CPU-GPU-FPGA
environments. Our framework is designed for researchers and
developers who seek to explore and optimize hardware designs
with minimal accuracy loss. By combining software emulation
and hardware execution within a unified framework, MPTorch-
FPGA offers flexibility and precision, allowing for detailed

X86 Host

PyTorch

CUDA

MPTorch-FPGA
HLS Kernel

PCIe
OpenCL

PCIe MPTorch-GPU
CUDA Kernel

MPTorch-CPU
C++ Kernel MPTorch

Fig. 1. MPTorch framework overview. It includes CPU, GPU, and the new
FPGA component. The MPTorch-FPGA component is the focus of this paper.

exploration of custom number formats, rounding modes, and
arithmetic configurations. The main contributions are:

• Unified Emulation and Hardware Framework :
MPTorch-FPGA integrates bit-accurate emulation and
hardware exploration, seamlessly combining software and
FPGA components. This enables rapid and precise explo-
ration of custom number formats and arithmetic modes.
We also provide detailed and fine-grained performance
and accuracy benchmarks for various Floating-Point (FP)
and Fixed-Point (FXP) configurations across different
stages of DNN training.

• Model-Specific Accelerator Optimization: Our frame-
work offers a complete flow for selecting an optimized
accelerator configuration tailored to each model, optimiz-
ing FPGA usage based on the training workload.

• Efficient Hardware Design: MPTorch-FPGA uses a sin-
gle bitstream for each training task, eliminating the need
for bitstream switching, and leverages High-Bandwidth
Memory (HBM) to efficiently manage multiple cores,
addressing FPGA memory constraints in the context of
DNN training.

The manuscript is organized as follows. In Sec. II, we
discuss previous work, while in Sec. III we discuss the concept
and ideas behind MPTorch and MPTorch-FPGA. Sec. IV
delves into the implementation aspects of MPTorch-FPGA.
Results are presented in Sec. V, followed by a conclusion. The
MPTorch-FPGA framework will be released as opensource
with all artefacts after acceptance of the paper.

II. BACKGROUND AND RELATED WORK

A. Custom precision for DNN training

Custom arithmetic precision in DNN training seeks to
reduce memory consumption while improving computational

efficiency. In this section, we review prominent techniques for
custom low-precision training.

General matrix multiplications, the most computationally
expensive operations in DNN training, have been a primary
focus of precision reduction research [1]–[9]. Many studies
explore the use of 8-bit Floating-Point (FP8) formats for
GEMM [1]–[5], [9], though accumulations are often still
performed with higher 16- or 32-bit precision. To reduce accu-
mulator overhead, other works [5], [9] perform accumulations
using lower-precision adders (e.g., FP12). Additionally, [2],
[4], [5] use loss scaling and different FP8 formats for the
FWD and BWD passes to minimize accuracy loss and memory
access overhead.

Beyond FP8, BFloat16 [7], [10] and block floating-point for-
mats [8] have been explored. Some approaches also investigate
integer arithmetic [8], [11]–[15]. Stochastic rounding has also
been proposed to mitigate rounding errors in low-precision
training, in particular due to stagnation [9], [16].

B. Emulation frameworks

Several tools (see Table I) have been proposed in recent
years to assess the impact of various hardware and arithmetic
choices on DNN training accuracy.

In terms of FPGA-oriented work, Langroudi et al. [17]
introduced Cheetah, a co-design framework for DNN inference
and training that emulates FP and posit formats using CPU
cores and compiles a softcore of Multiply And Accumulate
(MAC) operators on FPGA to evaluate hardware characteris-
tics. Tatsumi et al. [5] introduce Archimedes-MPO, a C++-
based mixed-precision inference and training framework for
FPGAs. Models compiled with Archimedes-MPO use custom
templated data types for each low-level operation. These
types support up to 32-bit FP or FXP with custom policies
including exponent/mantissa/integer/fractional word lengths,
optional subnormals, and whether the multiplier output in a
MAC is fused or rounded. The FPGA component accelerates
GEMM using one single SA synthesized using a single MAC
design that supports a fixed mixture of data types and policies.

Table I compares existing frameworks and their features.
While frameworks like [5], [17] allow synthesizing custom
FPGA operators, their lack of integrated support compli-
cates performance benchmarking across arithmetic configura-
tions. In contrast, MPTorch-FPGA provides a built-in, model-
specific FPGA implementation with customizable operators,
facilitating easier performance evaluation and supporting vari-
ous rounding options, including Stochastic Rounding (SR) [18]
and Round to Odd (RO) [19].

C. FPGA DNN training accelerators

While simulation frameworks explore precision impacts on
accuracy, other research focuses on hardware architectures for
custom precision DNN training on FPGAs. Vink et al. [25]
introduced the Barista toolchain to simplify DNN accelerator
deployment on FPGAs. Integrated with the Caffe framework
[26], it allows users to define networks and includes an FPGA-
based accelerator with an OpenCL runtime for CNN training.

Convolutions use a compile-time sized 2D systolic array,
and the authors optimize performance by evaluating various
tile sizes to identify the best configuration for specific CNN
models. Luo et al. [27] introduced DARK FPGA, a training
framework for FPGA accelerators that employs batch-level
parallelism and a hardware/software co-design approach for
mixed precision training. DARK FPGA enhances computation
by determining optimal tile sizes and accelerator parameters.

Using a specific accelerator architecture allows us to tune
design parameters for a training workload, while other re-
search focuses on design exploration tools to identify optimal
architectures for various workloads. Qi et al. [28] propose a
tool for DNN inference and training accelerators that models
performance and resource utilization. It employs an exhaus-
tive search method to optimize mappings for each intralayer
workload across the architecture space. Similarly, Zhang et
al. [29] introduce a design exploration tool for DNN inference
accelerators that employs a scalable design paradigm and an
automated search process. Their tool divides the exploration
into global and local stages to efficiently identify the best ac-
celerator configurations. Additionally, Chen et al. [30] propose
an FPGA-based design scheme for CNN accelerators using
the roofline model, optimizing computation throughput and
memory bandwidth.

Previous works [25], [27], [31] provide user-friendly FPGA
acceleration frameworks connected to x86 hosts, facilitating
quick testing and integration of their designs. However, they
are often difficult to adapt for custom arithmetic configurations
and do not investigate the impact of these configurations
on overall performance and accuracy. In contrast, our work
supports easy evaluation of various arithmetic configurations
through a versatile GEMM accelerator.

III. THE MPTORCH FRAMEWORK AND ITS FPGA
EXTENSION

The goal of MPTorch is to offer a comprehensive resource
for researchers investigating DNN acceleration at the arith-
metic level, with a strong focus on mixed-precision DNN
training. MPTorch includes GPU and CPU components, but
this paper focuses on its new FPGA component.

As illustrated in Figure 1, MPTorch is built on top of
PyTorch. The CPU and GPU components are designed to offer
bit-accurate emulation of arithmetic operations. For the CPU,
custom precision operators and quantization functions are
implemented in C++, while CUDA is leveraged for GPU im-
plementations. These implementations are exposed to Python
via PyBind and seamlessly integrated as PyTorch extensions,
ensuring compatibility within the PyTorch ecosystem.

MPTorch-FPGA extends MPTorch with support for FPGA
accelerator implementations. FPGA logic is designed using
C++ High-Level Synthesis (HLS), controlled through an
OpenCL-based Python interface. A detailed discussion of the
FPGA accelerator architecture is presented in Section IV.

Figure 2 illustrates the mixed-precision training process in
MPTorch-FPGA for a single training iteration. During both
forward and backward passes, inputs are quantized to the

TABLE I
COMPARISON OF DIFFERENT DNN TRAINING SIMULATION FRAMEWORKS. MPTORCH-FPGA IS THE ONLY ONE OFFERING MODEL-SPECIFIC

ACCELERATOR SUPPORT

Work AdaPT ApproxTrain Cheetah GoldenEye QPytorch FASE Archimedes-MPO MPTorch-FPGA
[20] [21] [17] [22] [23] [24] [5] Ours

Framework PyTorch TensorFlow TensorFlow PyTorch PyTorch PyTorch,Caffe TinyDNN PyTorch
GPU acceleration ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓
Built-in FPGA support ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
Transformer support ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓
FMA support ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Operator emulation ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
Formats FXP FP Posit,FP FXP,FP,BFP FXP,FP,BFP FP FXP,FP FXP,FP
Rounding - RZ RN RN,RZ RN,RZ,SR RN RN RN,RZ,SR,RO

desired precision before undergoing matrix multiplication. Our
framework emphasizes the impact of custom precisions on
GEMM operations1.

MPTorch-FPGA enables FPGA-based GEMM computation
or emulation on GPU/CPU. Results are cast back to full pre-
cision. Additionally, the framework supports custom precision
simulation for weight updates, where weights are quantized,
updated in custom precision, and stored in full precision.

Our framework integrates seamlessly with the PyTorch
workflow. Custom-precision operations are easily defined
within layer declarations, as illustrated in Figure 3. The
parameters for these layers mirror those of standard PyTorch
layers, and an extra parameter group to specify the arithmetic
configuration for forward and backward passes and quantiza-
tion formats for executing the layers’ GEMM operations.

MPTorch-FPGA provides fine-grained control over arith-
metic configurations, allowing independent customization of
formats for multiplication and accumulation, precision set-
tings, and rounding modes. It supports both fixed-point,
floating-point, and blocked FP arithmetic, offering a variety of
rounding modes, including Stochastic Rounding (SR), Round
to Nearest Even (RN), Round to Odd (RO), Round to Zero
(RZ) and No Rounding (NR), in which the result is calculated
exactly.

During emulation (on CPU or GPU), computations are
performed using FP32 operators. For both multiplication and
addition, pre-quantized inputs are operated on using standard
FP32 hardware. The result can be rounded by truncating the
least significant bits (RZ mode) or by adding and truncating
those bits for RN, RO, and SR. Alternatively, the FP32
result can emulate fused multiply-add (FMA) behavior for low
precisions (e.g., 8-bit formats and below).

Emulating custom precision operators introduces significant
latency overhead. While this overhead is smaller with GPU
implementations, training tasks on CPU can be notably slow.
Full precision operators ensure bit-accurate emulation for low-
precision formats, though issues like double rounding may
arise for higher-precision formats. On the other hand, FPGA
implementation provides exact computation using the specified

1Convolution operations are transformed into GEMM computations using
the im2col and col2im transformations, performed on the CPU host.

Fig. 2. Low precision computation flow through a linear layer during one
iteration of training. The W variables are the weights, activations are denoted
with a, and the loss function with L.

import mptorch.quant as qpt

formats = qpt.QAffineFormats(fwd_mac, fwd_rnd, bwd_mac,
 bwd_rnd, weight_quant,
 input_quant, grad_quant,
 bias_quant)

Qlinear_layer = qpt.QLinear(in_features, out_features,
 formats, device)

Fig. 3. MPTorch layer declaration. To enable the FPGA extension, the user
should designate an ’fpga’ value to the device parameter.

formats and allows for a thorough evaluation of the perfor-
mance characteristics of custom arithmetic configurations.

IV. FPGA IMPLEMENTATION

Our FPGA design, which allows for fast and easy bench-
marking, has at its core a GEMM accelerator composed of
several Systolic Arrays (SAs). Specifically, we use the one-
dimensional systolic array introduced by de Fine Licht et
al. [32], as shown in Figure 4. This systolic array is composed

of N Processing Elements (PEs), each containing M MAC
units. The GEMM computation is performed as inputs are
streamed across the PEs. We have significantly modified the
original design to accommodate custom arithmetic units and
rounding modes. Additionally, our implementation synthesizes
multiple SAs within the same chip, as illustrated in Figure 5.
This approach addresses the inefficiencies of large tile sizes
in conventional SAs, where the tile size is equal to the total
number of MAC units N ×M . Large tile sizes often result in
low utilization for most DNNs, as the input shapes are usually
a fraction of the tile size. Moreover, large SAs complicate
routing and reduce the design frequency. To mitigate these
issues, we deploy multiple smaller SAs, each utilizing separate
HBM ports for parallel memory transfer and computation.

A. Performance Model

A training iteration at the layer level consists of a series
of GEMM operations. Each GEMM operation input needs to
be padded to match the tile size of the selected configuration.
By knowing the input shapes and the tiling parameters of the
accelerator, we can estimate the latency of each operation. The
total training iteration latency is the sum of the latencies of
all consecutive GEMM operations.

The input matrices A ∈ Rn×k, B ∈ Rk×m undergo three
stages of padding. The first two are performed on the host
CPU before loading the inputs into the FPGA’s HBM memory,
while the third stage occurs on the FPGA fabric while the data
is being loaded from the external memory.

1) First Stage: All input dimensions are padded according
to the size of memory packs, defined by the number of
values that can be stored within one HBM port width
(512 bits). For instance, for an 8-bit value, the memory
pack size is 512/8 = 64. The padded dimensions are
defined as nmem,mmem and kmem.

2) Second Stage: the number of cores n cores should be
taken as a divisor of nmem.

3) Third Stage: the matrix B (now of dimension mmem)
is padded to mMAC, so that mMAC is divisible by the
N ×M MAC units within each SA.

The performance of the GEMM operation is calculated
using LGEMM = Ops/Perf, where Ops is the number of
multiply and accumulate operations on the padded inputs, i.e.,

Ops = n cores ×mMAC × (kmem × 2− 1)

and Perf is the peak achievable performance for a given
configuration of a systolic array, i.e.,

Perf = N ×M × F × 2.

F is the frequency of the design, while N , M and C are the
size parameters of the accelerator.

The memory transfer between the host CPU and the FPGA
off-chip memory is constrained by the PCIe bandwidth and is
calculated as

Ldata =
Sizedata

BPCIe

Read A Tiles

Read B TilesHBM [0]

HBM [1]

Write C TilesHBM [2]

Systolic Array

. . . .

. . . .

Fig. 4. Systolic array architecture of a GEMM core.

where Sizedata is defined as

Sizedata = n cores × (kmem +mmem) + kmem ×mmem

with Ldata the data transfer latency, Sizedata the size of the data
to be transferred and BPCIe the PCIe bandwidth. In total,

Ltotal = LGEMM + Ldata

The latency of memory transfer between FPGA off-chip
memory and the FPGA fabric is not considered, as the memory
access is done in a pipelined manner with the computation.

B. Accelerator Configuration

To maximize the accelerator’s performance, we select the
configuration that delivers the best results for a given DNN
training workload. We rely on the performance model from
Sec. IV-A to accurately estimate the latency of a training
iteration for a specific model. We then apply an optimized
mapping strategy that ensures the best performance for the
DNN model and the accelerator configuration.

Through a unified two-level approach, we minimize latency
caused by padding overhead. First, we determine whether to
feed the inputs in their original or transposed form. Trans-
posing allows us to switch input dimensions, which can
reduce padding overhead. However, this decision is made
simultaneously with the second step: optimizing core usage.

For both transposed and non-transposed inputs, we evaluate
the latency of GEMM operations across different numbers of
cores. Using a brute-force method, we calculate the latency for
each combination of input format and core count. The goal is
to identify the configuration—whether transposed or not, and
with the optimal number of cores—that results in the lowest
overall latency.

V. EVALUATION

In this section, we illustrate the effectiveness of our frame-
work by exploring how different arithmetic configurations
influence model training through bit-accurate emulation. Ad-
ditionally, we extend this analysis by designing and imple-
menting an FPGA accelerator based on one of the evaluated
arithmetic formats. To accomplish this, we apply the method-
ology from Sec. IV to determine an optimized configuration
for the accelerator. Finally, we compare the actual performance
of the FPGA accelerator with the predictions made by our

Read A Tiles

Read B TilesHBM [1]

HBM [2]

Write C TilesHBM [3]

Systolic Array #1

Read A Tiles

Read B TilesHBM [28]

HBM [29]

Write C TilesHBM [30]

Systolic Array #10

Alveo U280 FPGA

Fig. 5. Accelerator multicore architecture.

TABLE II
TEST ACCURACY COMPARISON ACROSS DIFFERENT MULTIPLIER AND

ACCUMULATOR CONFIGURATIONS FOR VARIOUS CNNS.

Multiplier Accumulator LeNet5 ResNet20 VGG16 ResNet50
† ‡ ‡ ∆

E5M2-NR

E6M5-RZ 97.10 10.00 10.00 10.00
E6M5-RO 98.00 10.00 10.00 10.00
E6M5-RN 98.61 10.00 10.00 10.00
E6M5-SR 99.00 90.55 88.99 80.88

E5M10-RN 99.05 91.24 89.81 82.97
E8M23-RN E8M23-RN 99.18 91.91 90.67 82.92
FXP4, 4-RN

FXP8, 8

99.06 10.00 10.00 10.00
FXP4, 4-SR 99.14 10.00 10.00 10.00
FXP4, 4-RZ 98.85 10.00 10.00 10.00
FXP4, 4-RO 10.00 10.00 10.00 10.00

Datasets: †MNIST, ‡CIFAR10, ∆Imagewoof

model across various DNN training benchmarks, validating
the robustness of our approach.

A. Training Setup

We conducted our experiments using various convolutional
models, including LeNet5, ResNet20, VGG16, ResNet50, and
a Transformer model. The details of the datasets and training
configurations for each model are outlined below. In all
experiments, we employed adaptive loss scaling [6] with an
initial scaling factor of 256 to mitigate accuracy loss during
mixed precision training.

1) CNN Experiments: For LeNet5, we performed training
on the MNIST dataset for 10 epochs, using a batch size of 64
and a learning rate of 0.1.

In the case of ResNet20 and VGG16, we followed the
original training configurations [33], [34]. Both models were
trained on the CIFAR10 dataset. For ResNet20, the initial
learning rate was set to 0.1, and weight decay was 0.0001,
while VGG16 used an initial learning rate of 0.01 and a weight
decay of 0.0005. Both models were trained for 200 epochs
with a batch size of 128. We used stochastic gradient descent
(SGD) with a momentum coefficient of 0.9 throughout.

For ResNet50, we selected the more challenging Imagewoof
dataset, a subset of ImageNet that focuses on 10 dog classes
out of the 1,000 total classes in the full ImageNet dataset.

0 1000 2000 3000 4000 5000

Training Iteration

1.5

2.0

2.5

3.0

3.5

4.0

V
al

id
at

io
n

L
os

s

Mult: E5M2-NR, Acc: E6M5-RO

Mult: E5M2-NR, Acc: E6M5-RZ

Mult: E5M2-NR, Acc: E5M10-RN

Mult: E5M2-NR, Acc: E6M5-RN

Mult: E5M2-NR, Acc: E6M5-SR

Mult: E8M23-RN, Acc: E8M23-RN

Fig. 6. Nano-GPT validation loss for different arithmetic configurations.

The model was trained with a batch size of 16 and an initial
learning rate of 0.01, highlighting the increased computational
demand posed by the larger dataset and more complex task.

2) Transformer Experiments: We also conducted training
on the Shakespeare dataset, which contains text sequences
drawn from Shakespeare’s works. We used the Nano-GPT
generative model [35] comprising 6 layers, 6 attention heads,
a 384 embedding size, and 256 for the block size. Training
was carried out for 5,000 iterations using a learning rate of
10−4 and the Adam optimizer.

B. Training Results

This section demonstrates the effectiveness of our frame-
work in evaluating the impact of custom precision configura-
tions on DNN model training. Table II presents the emulated
test accuracy for various CNN models and arithmetic con-
figurations, while Figure 6 shows the validation loss for the
Transformer benchmark. Floating-point formats are denoted as
EeMm, where e represents the exponent size and m denotes
the mantissa size. For fixed-point formats, the FXPi.f notation
is used, with i indicating the size of the signed integer part
and f representing the fractional part.

1) Floating Point Formats: We trained models using FMA
operators with FP8 multipliers and FP12 or FP16 adders.
The FP12 format, previously studied in [5], [9], was further
evaluated with different rounding modes. Our results confirm
that SR consistently outperforms other rounding modes at the
same precision. Although RO and RZ performed well on the
LeNet5 benchmark, they failed to converge on other tasks. In
[9], the authors demonstrated that increasing the number of
random bits can match FP16RN accuracy using FP12SR with
13 random bits. In our experiments, using 10 bits caused slight
degradation compared to FP16RN but still provided a notable
accuracy advantage over other FP12 configurations.

2) Fixed-Point Formats: We also experimented with
FXP8.4 multipliers and FXP16.8 adders. All FXP configu-
rations failed to converge, except for the Lenet5 experiments,
where all rounding modes except RO resulted in near FP32
baseline accuracy.

LeNet ResNet-20 ResNet-50 VGG-16 Nano-GPT

Benchmarks

10−1

100

L
at

en
cy

(m
s)

〈16, 16, 1〉 〈16, 16, 1〉

〈32, 32, 1〉 〈32, 32, 1〉

〈32, 32, 2〉 〈32, 32, 2〉

〈32, 32, 1〉 〈32, 32, 1〉

〈32, 16, 4〉 〈32, 16, 4〉
Lowest Estimated Latency

Lowest Measured Latency

Fig. 7. Lowest Estimated vs Measured Latency and ⟨N,M,C⟩ configura-
tions, for Different Training Benchmarks.

C. Accelerator Performance

Our framework facilitates exploration of performance char-
acteristics for different arithmetic formats at the accelerator
level. The template-based code allows for easy modification of
the accelerator to accommodate custom arithmetic formats or
operators. In our experiments, we focus on the FP8 multiplier,
FP12SR accumulator FMA configuration, which shows min-
imal accuracy degradation across all benchmarks. Using the
performance model and mapping strategy from Sec. IV, we
identify the optimal accelerator configuration for this format.
We validate the model’s accuracy by comparing its predictions
with actual hardware performance.

We use AMD Vitis HLS 2023.1 to synthesize various
accelerator configurations, targeting the U55 Alveo FPGA.
However, our framework is adaptable to other Alveo and
datacenter boards.

In our experiments, we explore the design space by varying
the accelerator parameters N , M , and C, subject to specific
constraints: N and M must be powers of two, M must be
divisible by N , and C is capped at 10 due to the U55’s
32 memory ports (with 3 ports per core). We synthesize
each configuration at the maximum core count and highest
achievable frequency. As detailed in Table III, we present the
synthesis results in terms of overall resource utilization on
the FPGA, specifically reporting the consumption of Look-
Up Tables (LUTs), BRAMs (block RAMS), and Digital Sig-
nal Processing blocks (DSPs). The arithmetic operators are
implemented using LUTs, while the DSP usage is due to
address generation logic within the SAs. As the size of the
systolic arrays increases, the number of cores that fit on-chip
decreases. The largest systolic array we can accommodate has
N = 64,M = 32 with C = 1.

Using fewer cores can sometimes improve performance
due to higher operating frequencies. Table IV presents the
estimated training latencies for different models using systolic
arrays of size N = M = 8, synthesized with varying
core counts. The optimal core count is the one resulting in
minimum latency.

To identify the optimal accelerator configuration for a
training task, we first determine the optimal core count for
each SA size. This process is repeated for varying SA sizes
to ultimately find the ⟨N,M,C⟩ combination that minimizes

TABLE III
POSSIBLE ACCELERATOR CONFIGURATIONS (N = #PES, M = #MACS
PER PE, C = #CORES OF SIZE N ×M , SHOWING MAXIMAL C AND F ,

WITH CHIP RESOURCE UTILIZATION).

N M C F (MHz) LUT (%) BRAM(%) DSP(%)
1 1 10 320.9 14.12 13.78 8.56
2 1 10 320.1 14.80 13.80 7.98
2 2 10 320.1 15.10 14.44 8.05
4 2 10 311.0 18.06 15.99 9.76
4 4 10 328.4 21.30 18.20 9.80
8 4 10 197.7 28.20 17.09 11.53
8 8 10 196.2 37.51 21.50 11.53

16 8 10 180.0 61.60 30.3 11.6
16 16 7 160.0 62.73 33.57 7.45
32 16 4 198.4 73.26 33.26 5.72
32 32 2 197.3 62.19 71.48 2.77
64 32 1 150.0 52.57 71.64 1.93

TABLE IV
ESTIMATED TRAINING LATENCY PER ITERATION.

C F
Estimated Training Latency (ms), N ×M = 8× 8

CNN Transformer
(MHz) LeNet5 VGG16 ResNet20 ResNet50 Nano-GPT

† ‡ ‡ ∆ ⋄

1 378.3 0.0273 5.28 1.91 8.15 23.99
2 330.9 0.0211 3.05 1.20 4.70 13.72
3 298.0 0.0189 2.28 0.84 3.62 10.29
4 298.0 0.0173 1.74 0.71 2.64 7.62
5 299.8 0.0162 1.43 0.58 2.24 6.15
6 270.6 0.0173 1.32 0.58 2.13 5.67
7 274.7 0.0165 1.19 0.53 1.84 4.93
8 203.1 0.0218 1.36 0.67 2.14 5.59
9 203.1 0.0215 1.16 0.63 1.90 5.27

10 196.2 0.0218 1.15 0.63 1.85 4.84
Datasets: †MNIST, ‡CIFAR10, ∆Imagewoof, ⋄Shakespeare

the estimated training latency.
To confirm the accuracy of our performance model, we

compare the optimal configurations calculated through the
model with those measured on the hardware. Figure 7 shows
the latencies of optimal configurations for various training
benchmarks. The model successfully identifies all optimal
configurations, though measured latencies are slightly higher
due to runtime overhead from low-level Xilinx function calls.

VI. CONCLUSION

In this paper, we introduce MPTorch-FPGA, a versatile
framework that bridges the gap between software emula-
tion and hardware execution for DNN training. By enabling
seamless exploration of arithmetic configurations in FPGA-
based systems, it offers researchers a powerful tool to opti-
mize model-specific accelerators and explore precision trade-
offs with minimal overhead. We report both accuracy and
hardware performance metrics, confirming the precision of
our performance model by comparing estimated latency with
measured results across various benchmarks. These findings
emphasize the flexibility and practical utility of MPTorch-
FPGA, demonstrating its effectiveness as a framework for
optimizing DNN training across diverse hardware setups. Fu-
ture extensions of this work could involve finer-grained model
matching, such as applying different arithmetic configurations
to the forward and backward passes. Additionally, support

for more advanced DNN architectures and larger datasets
could further expand the applicability of the framework. The
MPTorch-FPGA framework will be released as opensource
with all artefacts after acceptance of the paper.

REFERENCES

[1] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey, R. Grisen-
thwaite, S. Ha, A. Heinecke, P. Judd, J. Kamalu et al., “FP8 formats for
deep learning,” arXiv preprint arXiv:2209.05433, 2022.

[2] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, V. V.
Srinivasan, X. Cui, W. Zhang, and K. Gopalakrishnan, “Hybrid 8-bit
floating point (HFP8) training and inference for deep neural networks,”
Advances in neural information processing systems, vol. 32, 2019.

[3] L. Cambier, A. Bhiwandiwalla, T. Gong, M. Nekuii, O. H. Eli-
bol, and H. Tang, “Shifted and squeezed 8-bit floating point format
for low-precision training of deep neural networks,” arXiv preprint
arXiv:2001.05674, 2020.

[4] N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul, “Mixed precision
training with 8-bit floating point,” arXiv preprint arXiv:1905.12334,
2019.

[5] M. Tatsumi, S.-I. Filip, C. White, O. Sentieys, and G. Lemieux,
“Mixing Low-Precision Formats in Multiply-Accumulate Units for DNN
Training,” in 2022 International Conference on Field-Programmable
Technology (ICFPT). IEEE, 2022, pp. 1–9.

[6] P. Micikevicius et al., “Mixed precision training,” arXiv preprint
arXiv:1710.03740, 2017.

[7] D. Kalamkar et al., “A study of BFLOAT16 for deep learning training,”
arXiv preprint arXiv:1905.12322, 2019.

[8] S. Q. Zhang, B. McDanel, and H. Kung, “FAST: DNN Training Under
Variable Precision Block Floating Point with Stochastic Rounding,” in
IEEE Int. Symp. on High-Perf. Comp. Arch. (HPCA), 2022, pp. 846–860.

[9] S. Ben Ali, S.-I. Filip, and O. Sentieys, “A Stochastic Rounding-Enabled
Low-Precision Floating-Point MAC for DNN Training,” in 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2024, pp. 1–6.

[10] J. Osorio, A. Armejach, E. Petit, G. Henry, and M. Casas, “A BF16 FMA
is all you need for DNN training,” IEEE Trans. on Emerging Topics in
Computing, vol. 10, no. 3, pp. 1302–1314, 2022.

[11] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Int. Conf. on Machine
Learning, 2015, pp. 1737–1746.

[12] S.-E. Chang et al., “ESRU: Extremely Low-Bit and Hardware-Efficient
Stochastic Rounding Unit Design for Low-Bit DNN Training,” in
IEEE/ACM Design, Automation & Test in Europe Conference (DATE),
2023, pp. 1–6.

[13] M. Wang, S. Rasoulinezhad, P. H. Leong, and H. K.-H. So, “Niti:
Training integer neural networks using integer-only arithmetic,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.
3249–3261, 2022.

[14] F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang, and J. Yan,
“Towards unified int8 training for convolutional neural network,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 1969–1979.

[15] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers
in deep neural networks,” arXiv preprint arXiv:1802.04680, 2018.

[16] P. Blanchard, N. J. Higham, and T. Mary, “A class of fast and accurate
summation algorithms,” SIAM journal on scientific computing, vol. 42,
no. 3, pp. A1541–A1557, 2020.

[17] H. F. Langroudi, Z. Carmichael, D. Pastuch, and D. Kudithipudi, “Chee-
tah: Mixed low-precision hardware & software co-design framework for
DNNs on the edge,” arXiv preprint arXiv:1908.02386, 2019.

[18] M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis, “Stochastic
rounding: implementation, error analysis and applications,” Royal Soci-
ety Open Science, vol. 9, no. 3, p. 211631, 2022.

[19] S. Boldo and G. Melquiond, “Emulation of a FMA and correctly rounded
sums: Proved algorithms using rounding to odd,” IEEE Transactions on
Computers, vol. 57, no. 4, pp. 462–471, 2008.

[20] D. Danopoulos, G. Zervakis, K. Siozios, D. Soudris, and J. Henkel,
“Adapt: Fast emulation of approximate dnn accelerators in pytorch,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2022.

[21] J. Gong, H. Saadat, H. Gamaarachchi, H. Javaid, X. S. Hu, and
S. Parameswaran, “ApproxTrain: Fast Simulation of Approximate Mul-
tipliers for DNN Training and Inference,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2023.

[22] A. Mahmoud, T. Tambe, T. Aloui, D. Brooks, and G.-Y. Wei, “Golden-
eye: A platform for evaluating emerging numerical data formats in dnn
accelerators,” in 2022 52nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2022, pp. 206–
214.

[23] T. Zhang, Z. Lin, G. Yang, and C. De Sa, “Qpytorch: A low-precision
arithmetic simulation framework,” in 2019 Fifth Workshop on Energy
Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS). IEEE, 2019, pp. 10–13.

[24] J. Osorio, A. Armejach, E. Petit, G. Henry, and M. Casas, “FASE: A fast,
accurate and seamless emulator for custom numerical formats,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2022, pp. 480–497.

[25] D. A. Vink, A. Rajagopal, S. I. Venieris, and C.-S. Bouganis, “Caffe
barista: Brewing caffe with fpgas in the training loop,” in 2020 30th In-
ternational Conference on Field-Programmable Logic and Applications
(FPL). IEEE, 2020, pp. 317–322.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675–678.

[27] C. Luo, M.-K. Sit, H. Fan, S. Liu, W. Luk, and C. Guo, “Towards
Efficient Deep Neural Network Training by FPGA-Based Batch-Level
Parallelism,” in 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE,
2019, pp. 45–52.

[28] Y. Qi, S. Zhang, and T. M. Taha, “TRIM: A Design Space Exploration
Model for Deep Neural Networks Inference and Training Accelerators,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 42, no. 5, pp. 1648–1661, 2022.

[29] X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“DNNExplorer: a framework for modeling and exploring a novel
paradigm of FPGA-based DNN accelerator,” in Proceedings of the 39th
International Conference on Computer-Aided Design, 2020, pp. 1–9.

[30] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays, 2015, pp. 161–170.

[31] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang,
“F-CNN: An FPGA-based framework for training convolutional neural
networks,” in 2016 IEEE 27Th international conference on application-
specific systems, architectures and processors (ASAP). IEEE, 2016, pp.
107–114.

[32] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible communica-
tion avoiding matrix multiplication on FPGA with high-level synthesis,”
in Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2020, pp. 244–254.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[35] nanoGPT Contributors, “nanoGPT,” 2023, accessed: 2024-09-06.
[Online]. Available: https://github.com/karpathy/nanoGPT

https://github.com/karpathy/nanoGPT

	Introduction
	Background and Related Work
	Custom precision for DNN training
	Emulation frameworks
	FPGA DNN training accelerators

	The MPTorch Framework and its FPGA Extension
	FPGA implementation
	Performance Model
	Accelerator Configuration

	Evaluation
	Training Setup
	CNN Experiments
	Transformer Experiments

	Training Results
	Floating Point Formats
	Fixed-Point Formats

	Accelerator Performance

	Conclusion
	References

