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Rationale and Objectives: The RANO-BM criteria, which employ a one-dimensional 

measurement of the largest diameter, are imperfect due to the fact that the lesion volume is 

neither isotropic nor homogeneous. Furthermore, this approach is inherently time-

consuming. Consequently, in clinical practice, monitoring patients in clinical trials in 

compliance with the RANO-BM criteria is rarely achieved. The objective of this study was to 

develop and validate an AI solution capable of delineating brain metastases (BM) on MRI to 

easily obtain, using an in-house solution, RANO-BM criteria as well as BM volume in a routine 

clinical setting. 

Materials (patients) and Methods: A total of 27456 post-Gadolinium-T1 MRI from 132 

patients with BM were employed in this study. A deep learning (DL) model was constructed 

using the PyTorch and PyTorch Lightning frameworks, and the UNETR transfer learning 

method was employed to segment BM from MRI. 

Results: A visual analysis of the AI model results demonstrates confident delineation of the 

BM lesions. The model shows 100% accuracy in predicting RANO-BM criteria in comparison to 

that of an expert medical doctor. There was a high degree of overlap between the AI and the 

doctor's segmentation, with a mean DICE score of 0.77. The diameter and volume of the BM 

lesions were found to be concordant between the AI and the reference segmentation. The 

user interface developed in this study can readily provide RANO-BM criteria following AI BM 

segmentation. 

Conclusion: The in-house deep learning solution is accessible to everyone without expertise 

in AI and offers effective BM segmentation and substantial time savings. 

 

Keywords: Deep Learning, Radiology, Brain metastases, RANO-BM, Clinical routine 
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Introduction 

Brain metastases are a common occurrence in patients with cancer, affecting between 20 and 

40% of individuals. They represent the most prevalent form of brain malignancy. [1]. In some 

cases, these metastases demonstrate responsiveness to local treatments, including 

stereotactic radiotherapy, which has been shown to have an excellent local control rate 

(exceeding 80% local control after two years). [2]. 

The advent of novel systemic therapies has led to a notable improvement in the prognosis of 

patients with brain metastases. Following the administration of an initial localised treatment, 

patients may be monitored for several years, with the potential for further localised treatment 

to be beneficial. The preparation of stereotactic brain radiotherapy treatments and the 

subsequent monitoring of patients following treatment represent a significant and growing 

aspect of the work of radiotherapists. The establishment of consensus criteria for patient 

follow-up represents a significant challenge, particularly in terms of standardising practice 

across different centres and facilitating comparisons between clinical trials. The RANO BM 

(Response Assessment in Neuro-Oncology Brain Metastases) criteria, introduced in 2015 by 

the international and multidisciplinary RANO BM working group, represent the current gold 

standard for the assessment of brain metastases post-treatment response. [3]. 

In addition to the clinical criteria and a global vision of the disease at the cerebral level, the 

RANO BM criteria provide the clinician with the capacity to undertake one-dimensional 

measurement of the largest diameter of so-called target brain metastases. The 

aforementioned target brain metastases are measured on a post-Gadolinium T1 sequence. 

The efficacy of treatment is determined based on the observed change in lesion size. This 

ranges from a 20% increase, indicative of disease progression, to complete response, 
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characterised by lesion disappearance. The measurement of the largest diameter of all target 

lesions is a time-consuming process, particularly in the context of multiple MRI follow-ups for 

different stereotaxic radiotherapy treatments. Consequently, monitoring patients in clinical 

trials can be a significant burden for radiologists. In clinical practice, compliance with the 

RANO BM criteria is often challenging to achieve.  

Furthermore, brain metastases are a complex entity with significant heterogeneity, including 

areas of necrosis, areas of progression, pseudo-progression, and other characteristics. The 

evolving environment of brain metastases is heterogeneous, with various interfaces 

(meninges, bones, ventricles, etc.) present. Consequently, the growth of a metastasis is not 

necessarily isotropic [4], [5]. 

A recent retrospective study indicates that one-dimensional measurement is imperfect and 

may not be as effective in detecting progressions as three-dimensional measurement, 

particularly volumetric measurement [6]. 

In light of these considerations, the potential benefits of integrating an automatic contouring 

tool into the clinical workflow, both before and after treatment, are twofold. 

Firstly, it could facilitate the preparation of stereotactic radiotherapy treatments by the 

radiotherapist, assisting in the identification of metastases and reducing delineation time. 

Secondly, it could enable the radiologist to monitor treated patients rapidly, accessing 

numerous metrics, some of which have already been validated by RANO BM, and others which 

show promise and may offer more efficient solutions.   

Artificial intelligence (AI) algorithms for the automatic contouring of brain metastases are 

currently being developed [7], [8], [9], [10], [11]. Notably, UNETR type models have achieved 

the best results for brain metastases detection and segmentation [12], [13]. However, there 
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are still very few trials evaluating the use of these models for patient monitoring [14], [16], 

[17] and concrete solutions which can be used for clinical routine are still awaited. 

The objective of this study was to develop an algorithm that can accurately detect and 

segment brain metastases and be readily integrated into the clinical workflows of radiologists 

and radiotherapists.  

 

Materials and Methods 

 

Patients  

The present retrospective study has been approved by the local institutional review board. A 

total of 27,456 2D post-Gadolinium (Gd) T1 MRI scans from 132 patients with a total of 386 

brain metastases who were referred to our oncology centre between January 2019 and March 

2023 were included in the study. This study was conducted in accordance with the guidelines 

set forth by MR-004, a national French institution that defines health research conduct and 

the Declaration of Helsinki. All patients provided informed consent for the use of their data. 

The characteristics of the study population are outlined in Table 1. 

 

 

Table 1: Description of the patient cohort 

Included patients (N) 132 Number 

Sex                   50% Female % 

Age (Y) 63.4 Mean 
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Total number of BM  386 

Number 

Number of BM per patient 2.93 ± 2.32 (min=1 ; max=13) 

Lesion origin  

- From Lung cancer 

- From Melanoma cancer 

- From Breast cancer 

- From Kidney cancer 

- From Colorectal cancer 

- From Head and Neck cancer 

- From Digestive cancer 

- 83 (61%) 

- 28 (20%) 

- 8 (6%) 

- 7 (5%) 

- 3 (4%) 

- 2 (3%) 

- 1 (1%) 

Number (%) 

 

Magnetic Resonance Imaging (MRI) acquisition 

MRI was performed on an AREA SIEMENS 1.5 Tesla magnet using a brain dedicated 16 

channels coil with the patient in a supine position. Prior to the examination, patients were 

injected with 0.2 mL/kg of DOTAREM (500µmol/ml). After a shimming process and scout 

imaging scan, tumor gadolinium enhancement was detected with a post-Gd T1 brain sequence 

with the following parameters: TR/TEeff=2070/3.15 msec; Angle=15°; NEX=1; 208 contiguous 

slices; 3D resolution=0.5x0.5x1 mm; acquisition matrix = 512x512 pixels and acquisition 

time=4min48). A total number of 27456 2D MR images were acquired from the 132 patients. 

 

Deep learning algorithms  

Deep learning (DL)  
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The deep learning model consisted of a fine-tuned UNETR architecture [18]. This model 

incorporates the strengths of both the UNet and Vision Transformer models, addressing the 

challenge of segmenting multiple regions of interest within an image. The UNETR architecture 

output was modified removing the last 14 output in the last layer by two outputs for the 

purpose of distinguishing between lesion and healthy tissue.  

UNETR was pre-trained in the segmentation task for brain tumor on a set of 484 multi-modal 

multi-site MRI data with three class (1: tumor, 2: hemorrhagic part of the tumor, 3: eudeme). 

Architecture was described in "UNETR: Transformers for 3D Medical Image Segmentation by 

Ali Hatamizadeh et al" in the section 4.1 about MSD (MRI/CT). Last layer was 1 x 1 x 1 

convolutional layer that has been modified for binary segmentation called UnetOutBlock. It is 

the only layer not freeze, other weights are saves from the pretrain model of structure 

classification of UNETR. The MLP was the one of MONAI in the Vision Transformer. We applied 

the following layers: Linear layer 1, Dropout Layer 1, Linear layer 2 and Dropout layer 2. The 

convolution head was composed of a Convolution 3D, a Prelu, a Dropout and a Layer norm. 

More information can be found here: 

https://docs.monai.io/en/1.0.1/_modules/monai/networks/blocks/mlp.html. 

UNETR initial model before fine tuning was obtained using MONAI [19]. Fine-tuning technic 

used the methodology of Yosinski and collaborators [20]. During the training process, only the 

weights of the final layer were removed and trained, while the weights of the preceding layers 

were maintained at their original values. A deep learning model was developed from 27,456 

unique post-Gd T1 brain images obtained from 132 patient acquisitions with a total of 386 

BM. These images were split into three datasets: a training set comprising 19,219 images (70% 

of the total), a test set comprising 2,746 images (10% of the total), and a validation set 
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comprising 5,491 images (20% of the total). To avoid bias, we carefully check that each patient 

cannot be part of the training and validation and test dataset, all slices of each patient was in 

the same dataset. The input data comprised brain MRI images and the delineation of the 

tumour lesion, designated as GTV (Gross Tumour Volume). The GTV region of interest was 

initially transformed into a mask image. Prior to training, specific MRI images underwent 

normalisation, with bias field correction employed [21]. Data augmentation was conducted 

through the application of flips along the sagittal axis and 180° rotations. To reduce the 

computational time required, intensity normalisation was performed between 0 and 255, and 

the image background was removed. The deep learning model was developed using PyTorch 

Lightning. The loss function used in this study was the binary cross entropy, using the PyTorch 

function "binary_cross_entropy_with_logits". The Pydicom and dicompylercore libraries were 

used to manage the MRI and RTSTRUCT DICOM files [22]. Dice index was used to evaluate the 

performance of the model during the training process. The AI model was trained on two 

NVIDA A6000 GPU 48Go. All the code used to develop and train the model is available at: 

https://github.com/XXXX (accessed on 01 November 2024). 

 

Image Analysis and processing 

Quantitative analysis: In accordance with the established workflow within the radiotherapy 

department, another radiation oncologist delineated a three-dimensional volume of interest 

(VOI) encompassing 31 lesions utilising the Raystation™ solution (V11.B) for ten patients (not 

for the purpose of AI model training). Subsequently, an expert radiation oncologist evaluated 

the RANO-BM criteria on the reference and AI brain metastases segmentation. The 
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concordance of the RANO-BM criteria between AI and reference was then evaluated. To 

evaluate the ability of the AI model to detect BM, F1 score were evaluated. Several 

quantitative metrics, which are commonly used in the literature to evaluate the spatial 

overlap, were employed [23], were used to compare the VOI delimited by the radiation 

oncologist and the one created by the AI models:  

▪ Dice Similarity Coefficient (DSC): Measures the overlap between two volumes, 

providing a statistical validation of segmentation precision; 

▪ Mean Surface Distance (MSD): Calculates the average Euclidean distance between 

the surfaces of two volumes, offering insights into the contour accuracy; 

▪ Volume Overlap Error (VOE): Represents the proportion of the total volume that is 

over-segmented or under-segmented relative to the reference, complementing the 

Dice coefficient by providing error rates; 

▪ Hausdorff Distance: Evaluates the maximum distance of the dataset boundary points 

between the predicted and reference segmentations, highlighting the worst-case 

scenario of boundary prediction; 

▪ Jaccard Index: Quantifies the similarity and diversity between sample sets, indicating 

the proportionate size of the intersection divided by the union of the sample sets; 

▪ Variation of Information (VI): Measures the amount of information lost and gained 

in the segmentation process, reflecting the complexity and precision of the 

information captured by the segmentation; 

▪ Cosine Similarity: Assesses the cosine angle between the multidimensional 

representations of the segmented volumes, useful for understanding the orientation 

and agreement in the segmented shapes. 
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To compare reference and AI brain metastases ROI, first order intensity evaluation was 

performed using mean, standard deviation, min, max. Subsequently, the specificity and 

sensitivity were evaluated in order to ensure the accuracy of the RANO-BM AI prediction in 

comparison to the radiation oncologist segmentation. 

Statistical analyses 

All data are expressed as mean ± SD. The correlation between the first-order intensity values 

derived from the reference and those obtained from the AI-based brain metastases 

segmentation was analysed with the concordance correlation coefficient (CCC) [24]. A CCC 

value of 1 indicates a perfect positive or negative correlation, whereas a value of 0 indicates 

no correlation. Features with a minimum CCC of 0.85 were deemed to be statistically 

reproducible and concordant, and the values were considered to be stable [25]. All statistical 

analyses were performed using Python [26] and SciPy library. Data visualization used Seaborn 

library [27], [28]. All Python code used in the analysis is available at https://github.com/XXX 

and “Quantitative analysis.ipynb” (accessed on 01 November 2024). 

 

Results 

Deep learning brain metastases segmentation model 

The optimisation process resulted in an AI model constructed with binary accuracy validation 

metrics over 1079 epochs. The training process, which spanned three days, yielded 93 million 

parameters. As illustrated in Figure 1, the training and validation loss functions, which 

represent the model's error rate throughout the training phase, indicate that epoch 1079 was 

the most optimal. 
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Figure 1: Deep learning model performance during the training process through the epochs.  

(A) Training loss and (B) Validation loss functions during the training process 

 

Visual analysis 

A

B

C
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Figure 2: Three representative MRI with brain metastases segmented by the deep learning model. 

Large (black arrows) as well as small lesions (white arrows) are detected by the algorithm. 

 

As presented in Figure 2, the AI model is able to delineate both large BM lesions (black arrows) 

and small lesions of 4mm diameter (white arrows). The delineation closely follows the 

hyperintensity seen on T1 gadolinium enhancement. 

  

RANO-BM concordance 

As evaluated by the expert physician in the reference segmentation, the RANO-BM criteria 

evaluation were as follow: two complete responses, two partial responses, three stable 

diseases and two partial diseases. The RANO-BM obtained from AI segmented lesion were 

100% agreement with the above RANO-BM criteria evaluation. 

Quantitative analysis 

The spatial overlap of the reference and AI brain metastases segmentation was first analyzed 

using several metrics. As presented in Table 2, the overlap between the AI and the physician’s 
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segmentation volumes with DICE coefficient was 0.77 and the Euclidean distance between the 

two volumes was 4.13, representing a reliable overlap. 

Table 2: Quantitative analysis of reference and AI predicted region of interest similarity 

DICE 

coefficient 

(SD) 

Mean 

surface 

distance 

(SD) 

Volume 

overlap 

error (SD) 

Haussdorf 

distance 

(SD) 

Jaccard 

index (SD) 

Variation of 

information 

(SD) 

Cosine 

Similarity 

(SD) 

0.77 (0.15) 4.13 (7.32) 0.43 (0.24) 
32.67 

(60.05) 
0.63 (0.19) 

0.001 

(0.0004) 
0.77 (0.13) 

 

The diameters and volumes obtained from the AI segmentation were then compared with the 

reference. As shown in Figure 3 for each brain metastasis, very few differences were observed 

between the diameters (Figure 3A) and volumes (Figure 3B) obtained from the AI 

segmentation compared to the reference segmentation. Volume and diameter differences 

from AI and radiotherapist segmentation were 0.15 ± 0.18 mm3 and 1.38 ± 1.19 mm 

respectively. The AI model have shown good BM detectability with F1 score of 95.5%. 
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Figure 3: Impact of deep learning segmentation on brain metastases diameters (A) and 

volumes (B) evaluation 

 

To go deeper, the stability of volume, diameter and first order signal intensity values between 

AI and reference segmentations were evaluated using the Concordance Correlation 

Coefficient (CCC). As presented in Figure 4, the CCC values were: 0.93, 0.97, 0.76, 0.98, 0.99 

and 0.93 for diameter, volume, minimal intensity, mean intensity, maximum intensity and 

standard deviation intensity, respectively. Only, the minimum intensity variable was below 

A

B
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the 0.8 threshold, showing a discordance between AI and reference segmentation minimum 

intensity. 

 

Figure 4: Stability of the first order statistics between AI and reference segmented ROI 

 

Application of the solution in clinical practice 

The aim of this study was to develop an approach that works well but can also be easily 

implemented in clinical practice. To achieve this, a user interface was developed using 

ORTHANC and Open Health Imaging Foundation (OHIF) [29] solutions that can be used in a 

clinical setting. This user interface interacts with a back-end API to retrieve medical data in 

DICOM format, start the deep learning model, and visualize the results. Further details on the 

back-end and front-end parts of the user interface as well as a tutorial can be found at 

https://github.com/XXX (accessed on 1 November 2024) and https://github.com/XXX 

(accessed on 1 November 2024). The interface requires as input, a brain MRI and after an 

average of 30 seconds in average of processing (with standard RTX 4080 GPU), provide AI brain 

metastases segmentation in RTSTRUCT format which can be easily uploaded and used in 
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conventional Treatment Planning Software (Raystation™ solution (V11.B) for this study). The 

solution can also be used to view the AI segmentation result and track the diameter and 

volume of brain lesions for RANO-BM purposes (Figure 5A and B). The deep learning model 

and user interface codes are freely available upon reasonable request. However, please note 

that the performance of the model has only been optimized for our data and needs to be fully 

validated before external use.  

 

Figure 5: Example of RANO-BM with diameter and volume follow-up using deep learning 

segmentation results with the integration of the model within OHIF solution. (A) Example of 

diameter measurement and (B) patient statistics follow-up. 

A

B
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Discussion 

Brain metastases occur in 20-40% of patients with cancer and represent the most common 

manifestation of brain malignancies [1]. Due to this high number of lesions and to the human 

resource difficulties in the medical field, patient follow-up during clinical routine or for clinical 

trials is often difficult to underwent. For these reasons, compliance with the RANO BM criteria 

is rarely achieved in clinical practice. A highly robust and easy-to-implemented solution that 

could automatically and quickly extract BM lesion’s diameter and volume as well as RANO BM 

criteria could be an interesting insight for patient therapeutic management. 

In this study we have developed and evaluated a deep learning model using the transfer 

learning method of UNETR to automatically extract BM lesion segmentation. The model was 

trained using more than 27000 unique post-Gd T1 brain images acquired from 132 patient’s 

acquisitions. The number of patients in our study was similar to several previous studies [10], 

[15], [30], but lower compared to few others [15]. Furthermore, the quality of the data of our 

training and validation set were all reviewed by a radiotherapist to deleted incomplete data 

or complex cases that could lead to confusion due to patient movements, presence of 

artifacts… 

Our model showed close BM segmentation compared to experienced physician segmentation 

with a mean DICE score of 0.77. In the literature, DICE scores remain below 0.82. [7], [8], [14], 

[17] and our results are consistent with the DeepMedic approaches [30]. However, in a recent 

study conducted by Luo and co-workers, the DICE score was of 0.91 possibly due to the size of 

the cohorts which were 312 and 156 patients for training and validation respectively [15]. 

Lesion diameter and volume are concordant between AI and reference segmentation. More 

specifically, Supplementary figure 1 shows the correlation between AI and reference lesion 
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diameter and volume. The pearson correlation shows a significant correlation with R² values 

of 0.92 (p<0.001) and 0.98 (p<0.001) for lesion diameter and volume respectively. 

 

Supplementary figure 1: AI and reference lesion diameter (A) and volume (B) correlation 

Here we can confirm that, for lesions larger than 1 cm in diameter, AI and reference values 

were highly correlated. However, below this threshold of 1 cm, which is exactly threshold 

imposed by the RECIST criteria, more important heterogeneity was observed. This last point 

highlights the interest of an AI solution for the assessment of very small lesions below 1 cm, 

which are currently not assessed by radiologists. 

It is interesting to note that the mean volume and diameter as well as the minimum intensity 

are slightly smaller in the AI segmentation (not significantly discordant for BM diameter and 

volume but significantly discordant for minimum intensity). This probably highlights the fact 

that the model is trained to detect the hyperintensity signal revealed by the gadolinium 

injection in order to delimitate the BM lesion. The model is potentially stricter on the tumor 

boundary and does not include the area without T1 enhancement in the lesion area which 

may be done by an experienced physician as they know that tumor cells invade the 

surrounding healthy tissue close to the area of T1 enhancement. As shown in Supplementary 

A B
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figure 2, AI and radiotherapist segmentation can be completely concordant (A), but in some 

cases the AI segmentation seems to follow the tumor boundary more precisely than the 

radiotherapist one (B), and in some other cases the AI segmentation was smaller than the 

reference segmentation. It appeared that applying smoothing could be more realistic if the 

invasion process of brain metastases is known. 

 

Supplementary Figure 2: Example of according segmentation between AI (yellow) and 

radiotherapist (red) (A), AI segmentation (yellow) following more precisely the BM than the 

reference (red) (B) and smaller AI segmentation (blue) than reference (red). 

 

BM are not always well delineated with homogeneous high signal intensity. Supplementary 

figure 3 shows the example of AI segmentation of BM with central necrosis (Supplementary 

figure 3A), diffuse BM (Supplementary figure 3B) and BM close to an area of high signal 

intensity without being a tumor (Supplementary figure 3C). 
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Supp Figure 3: Example of AI segmentation of BM with central necrosis (A), diffuse BM (B) and  

BM close to area with high signal intensity without being tumor (C). 

 

Our patient dataset is representative of the patient population with BM, as lung cancer is the 

most common primary source of BM in the training dataset. This could introduce a bias and 

not allow good delineation in other primary histologies (from breast, renal or melanoma 

primary cancers). In our study, no difference in performance was observed with respect to the 

different primary histologies, as shown in the Supplementary figure 4. 
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Supp Figure 4: Example of AI segmentation of BM from primary melanoma (A), renal (B) and 

breast (C) cancers. 

 

Despite these slight non-significant and significant differences, the RANO-BM criteria obtained 

from the AI segmentation are 100% concordant with those obtained from the physician 

segmentation. Patient monitoring with RANO-BM follow-up, which is rarely addressed in the 

literature, was an important aspect of our study. We found only one study that investigated 

the concordance of RANO-BM criteria obtained by an AI model with those defined by 

radiologists [14]. The kappa coefficients calculated in this study were equal to 0.52 based on 

largest diameters and 0.68 based on volumes. Obtaining a radiological response according to 

the RANO BM criteria is a challenge that resonates with the daily concerns of radiologists and 

radiotherapists.  
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In this study, we have developed an easy-to-use interface to exploit AI BM segmentation. To 

date, no industrial solutions have been validated and proposed for the clinical routine. 

Raystation and TheraPanacea are examples of two treatment planning software that are 

developed highly innovative algorithms to optimize therapeutic management in the 

radiotherapy department. Both are able, in a clinical routine setting, to delineate organs at 

risk in order to accelerate radiotherapy planning [31], [32], [33]. However, to date, there is no 

fully validated and routinely proposed AI solution for the delineation of tumors as BM. 

From the perspective of our study, it would be interesting to fine-tune very recent large 

models developed for medical purposes such as UNETR++ and nnFormer to improve 

performance [13], [34], which have not yet been used for BM segmentation. 

The reproducibility and robustness of the AI models in different clinical settings and at 

different centers is a key factor for their implementation into clinical practice. The use of a 

federated learning approach can lead to the development of a global model based on data 

from different centers [35], [36]. The next step for this project would be to use federated 

learning with volunteer centers to improve our model and make it more relevant to other 

centers. Finally, supporting clinicians in monitoring their patients according to the RANO-BM 

criteria will facilitate inter-operator reproducibility and the standardisation of practice. This is 

in line with the objectives proposed by the international RANO-BM group. Indeed, the 

heterogeneity of follow-up is a major challenge in clinical trials on patients with brain 

metastases. This provides an opportunity to explore alternative approaches to assessing 

patient response and, subsequently, differentiating radionecrosis from progression. 

 

Conclusion 
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Together with experienced radiotherapists and radiologists, we have developed and validated 

a fully automated deep learning solution capable of accurately delineating BM using RANO-

BM criteria. Our in-house user interface solution, easily accessible to non-experts in AI, 

provides sufficient BM segmentation and significant time savings. 

 

Data Availability Statement: The data presented in this study can be sent upon reasonable 

request. Python code used for this study are openly available at https://github.com/XXX 
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