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Abstract
We take up the idea of Nelson’s stochastic processes, the aim of which was to deduce Schrödinger’s

equation. We make two major changes here. The first one is to consider deterministic processes
which are pseudo-random but which have the same characteristics as Nelson’s stochastic processes.
The second is to consider an extended particle and to represent it by a set of interacting vibrating
points.

In a first step, we represent the particle and its evolution by four points that define the structure
of a small elastic string that vibrates, alternating at each period a creative process followed by a
process of annihilation. We then show how Heisenberg’s spin and relations of uncertainty emerge
from this extended particle.

In a second step, we show how a complex action associated with this extended particle verifies,
from a generalized least action principle, a complex second-order Hamilton-Jacobi equation. We
then deduce that the wave function, accepting this complex action as a phase, is the solution to a
Schrödinger equation and that the center of gravity of this extended particle follows the trajectories
of de Broglie-Bohm’s interpretation.

This extended particle model is built on two new mathematical concepts that we have introduced:
complex analytical mechanics on functions with complex values [8, 7, 12] and periodic deterministic
processes [8, 9].

In conclusion, we show that this particle model and its associated wave function are compatible
with the quantum mechanical interpretation of the double-scale theory we recently proposed [11].

Résumé - Nous reprenons l’idée des processus stochastiques de Nelson, dont le but était de déduire
l’équation de Schrödinger. Nous apportons ici deux changements majeurs. Le premier est de con-
sidérer des processus déterministes pseudo-aléatoires mais qui ont les mêmes caractéristiques que
les processus stochastiques de Nelson. Le second est de considérer une particule étendue et de la
représenter par un ensemble de points vibrants en interaction.

Dans un premier temps, nous représentons la particule et son évolution par quatre points qui
ont la structure d’une petite corde élastique qui vibre en alternant à chaque période un processus de
création suivi d’un processus d’annihilation. Nous montrons ensuite comment le spin et les relations
d’incertitude d’Heisenberg émergent de cette particule étendue.

Dans un deuxième temps, nous montrons comment une action complexe associée à cette particule
étendue vérifie, à partir d’un principe de moindre action généralisé, une équation de Hamilton-Jacobi
complexe du second ordre.

Nous déduisons ensuite que la fonction d’onde, acceptant cette action complexe comme phase,
est la solution d’une équation de Schrödinger et que le centre de gravité de cette particule étendue
suit les trajectoires de l’onde pilote de de Broglie-Bohm.
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Ce modèle de particule étendue est construit sur deux nouveaux concepts que nous avons in-
troduit : une mécanique analytique complexe à valeurs complexes et des processus déterministe
périodique.

En conclusion, nous montrons que ce modèle de particule et sa fonction d’onde associée sont
compatibles avec la théorie de la double solution de de Broglie et la théorie de la double échelle que
nous avons proposée récemment.

1 Introduction

Stochastic mechanics, developed and popularized by Nelson [13, 14, 15], is an interpretation of quantum
mechanics using diffusion theory. It presents, as well as its various variants [16], an alternative to
the foundations of quantum mechanics. Nelson’s program was to derive the wave function and the
Schrödinger equation from a double scattering process. In one of his final papers [16] in 2012, Nelson,
after taking stock of the successes and failures of stochastic mechanics, concludes his article as follows:

"How can a theory to be so right and yet so wrong? The most natural explanation is that stochastic
mechanics is an approximation to a correct theory of quantum mechanics as emergent. But what is the
correct theory?"

The aim of this paper is to present an alternative to stochastic mechanics which can allow us to
approach the correct theory by realising part of Nelson’s program: demonstrating Schrödinger’s equation
and proposing realistic trajectories. To do this, we take up Nelson’s approach with two major changes.
The first is to consider pseudo-random deterministic processes with the same statistical characteristics
as Nelson’s stochastic processes. The second change is to consider processes corresponding to different
points of an extended particle. For pedagogical reasons, we first consider the case in dimension one
before extending it to dimension two.

To build this model, we generalize to quantum mechanics the approach used in classical mechanics
to define Hamilton-Jacobi’s action from the principle of least action.

The outline of the paper is as follows. In section 2, we briefly recall how the principle of least action
makes it possible to obtain the Hamilton-Jacobi equation. In section 3, we describe in dimension 1
the evolution of an extended particle represented by two points that simulate the structure of a small
elastic cord that vibrates, alternating at each period a sort of creative process followed by a process
of annihilation. In section 4, we generalize this model in dimension two with an extended particle
represented by four points. In section 5, we show how Heisenberg’s spin and uncertainty relations
emerge from this extended particle in dimension 2. In section 6, we show how a complex action
associated with this extended particle verifies, from a generalized principle of least action, a complex
second order Hamilton-Jacobi equation. Then in section 7, we show that the wave function, admitting
this complex action as a phase, is the solution to a Schrödinger equation and that the center of gravity
of this extended particle follows the trajectories of de Broglie-Bohm’s interpretation.

This model is built on two new mathematical concepts: the complex analytical mechanics on complex
value functions that we introduced [8, 7, 12] and the periodic deterministic processes that we have
developed [8, 9].

2 The Principle of Least Action and the Hamilton-Jacobi Equa-
tion

Let us begin by recalling how the principle of least action applies in classical mechanics in order to
deduce Hamilton-Jacobi’s action and demonstrate how we can deduce that everything happens as if
this action piloted the classical particle.
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2.1 The Hamilton-Jacobi action "pilots" the classical particle
Let us consider in classical mechanics the center-of-mass of a rigid particle. For any time step ε > 0,
the evolution of this center-of-mass, at time s = kε (s ∈ [ε,Nε]), is defined by the equations

xε(kε) = xε((k − 1)ε) + u (kε)ε with xε(0) = x(0) (1)

where u : R+ → Rn (with n = 1, 2 or 3) is a continuously differentiable function and x(0) ∈ Rn a given
initial position. We also set at the initial instant, an initial action S0(x), a function of Rn in R. We
show that this initial action corresponds to the initial velocity field v0(x) = ∇S0(x)/m.

The Hamilton-Jacobi action S(x, t) is then the function :

S(x, t) = min
x0;u(.)

{
S0 (x0) +

∫ t

0

L(x(s),u(s), s)ds

}
(2)

where the minimum (or more generally the extremum) of (2) is taken over all the trajectories with
starting points x0 and the end point x at t = Nε as well over velocities along the entire trajectory u(s),
with s ∈ [0, t] and L(x,u, t) is the Lagrangian. Hamilto n-Jacobi’s discreet action is written:

Sε(x, t = Nε) = min
x0;u(.)

{
S0 (x0) +

k=N∑
k=1

L(x(kε),u(kε), kε)ε

}
(3)

where the minimum (or more generally the extremum) of (3) is taken over all the discrete trajectories
(1) with starting points x0 and the end point x at t and over the velocities u(s), with s = kε, k ∈ [1, N ].

Hamilton-Jacobi’s discrete action Sε(x, t) then verifies, between the instants t-ε and t, the optimality
equation:

Sε(x, t) = min
u(t)
{Sε(x− u(t)ε, t− ε) + L(x,u(t), t)ε} . (4)

Remark 1 - It is the optimality equation (4), and not equations (2) and (3) that corresponds to the
application of the principle of least action for the Hamilton-Jacobi action. It is therefore this optimality
equation that we generalize in section 5. The locality of this optimality equation explains why the
equations (2) and (3) are not always minima, but only extrema.

Assuming Sε differentiable in x and t, L differentiable in x, u and t, and that u(t) continues, the
equation (4) becomes:

0 = min
u(t)

{
−∂Sε

∂x
(x,t)u(t)ε− ∂Sε

∂t
(x,t) ε+ L(x,u(t), t)ε+ ◦ (ε)

}
(5)

i.e. by dividing by ε and making ε tends towards 0+,

∂S

∂t
(x,t) = min

u

{
L(x,u, t)− u·∂S

∂x
(x,t)

}
hence the classic Hamilton-Jacobi equation:

∂S

∂t
(x,t) +H

(
x,
∂S

∂x
,t

)
= 0

where H(x,p, t) is the Fenchel-Legendre transform L(x,u, t) in relation to u. In the case of a non-
relativistic particle in a field of potential V (x, t), this yields the following theorem:

THEOREM 1 [11]- The Hamilton-Jacobi action S (x,t) is the solution to the Hamilton-Jacobi equa-
tions:

∂S

∂t
+

1

2m
(OS)2 + V (x, t) = 0 ∀ (x, t) ∈ Rn × R+ (6)
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S(x, 0) = S0(x) ∀x ∈ Rn (7)

and the speed of the classical non-relativistic particle is given in each point (x,t) by the velocity field:

u (x,t) =
∇S (x,t)

m
∀ (x, t) ∈ Rn × R+ (8)

Thus the whole evolution of a classical particle depends on the data in the S0(x) field (initial action)
and on x(0) (initial position). The Hamilton-Jacobi action is a field and everything happens as if it
pilots the classical particle x(t).

2.2 Generalizations for the transition from classical to quantum

In order to implement a similar approach to quantum physics, several generalizations are necessary.
The first generalization is to leave, for positions and for action, the space of real numbers to move to
complex numbers. This is related to Schrödinger’s equation of a non-relativistic quantum particle in a
field of potential V (x, t):

i~
∂Ψ

∂t
= − ~2

2m
∆Ψ + VΨ with Ψ(x, 0) = Ψ0(x) (9)

Indeed, by replacing in Schrödinger’s equation the wave function Ψ(x, t) by its complex phase S(x, t)
thanks to the change of variable Ψ(x, t) = ei

S(x,t)
~ , we obtain the complex Hamilton-Jacobi equation of

the second order:

∂S

∂t
+

1

2m
(OS)2 + V (x, t)− i ~

2m
M S = 0 ∀ (x, t) ∈ Rn × R+ (10)

S(x, 0) = S0(x) ∀x ∈ Rn (11)

where the S(x, t) phase is the complex (Hamilton-Jacobi) action of the quantum particle. To generalize,
we extend the x positions to complex numbers z ∈ C in dimension 1 (n = 1) and z ∈ C2 in dimension
2 (n = 2). The second generalization is to replace the point particle by an extended particle. For
simplicity, this particle is represented by several interacting points. This discrete representation allows
us to obtain Heisenberg’s equations, to make the spin emerge in dimension 2, but also to define a simple
generalization of the principle of least action for such an extended particle.

3 An extended particle model in dimension one

In dimension 1 (n = 1), the idea is to represent a particle extended by two interacting points (indexed
by j = 1 or 2). We study their evolution from the two vectors u1 = +1 and u2 = −1, and from the
permutation s which passes from one vector to the other: su1 = u2 and su2 = u1; and s2u1 = u1 and
s2u2 = u2.

Then, for any given (very small) time step ε > 0, the evolution of these two points, at time t = Nε
with N = 2q + r (N, q, r integers with r = 0 or 1), is defined by the real part of the two discrete
processes zjε(t) ∈ C:

zjε(nε) = zjε (nε− ε) + v(2qε)ε+ wn,j with zjε(0) = z0 for j = 1, 2, (12)

where wn,j = γ(snuj − sn−1uj) is a discrete process of period 2ε, γ = (1 + i)
√

}ε
2m , v(t) corresponding

to a continuous complex function, } is Planck’s constant, m the mass of the particle, and z0 is a given
vector of C.
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Remark 2 - The two processes zjε(t) resemble Nelson’s two stochastic processes (forward and backward)
[13, 15] based on Wiener’s processes. Indeed, if one poses

Et[dw
j(t)] =

1

2

2q+2∑
n=2q+1

wn,j et Et[dw
i(t)dwj(t)] =

1

2

2q+2∑
n=2q+1

wn,iwn,j (13)

at the second order, we find the same white noise properties

Et[dw
j(t)] = 0 et Et[dw

i(t)dwj(t)] = 4γ2δji , (14)

but unlike Nelson’s processes they are deterministic. However, these processes seem to be random be-
cause, at instant t, the rest modulo 2 of the number n = t

ε is a pseudo-random number.

The average process z̃ε(t) = 1
2 (z1

ε(t) + z2
ε(t)) verifies the discrete system:

z̃ε(nε) = z̃ε(nε− ε) + v(2qε)ε, z̃ε(0) = z0 (15)

with t = nε = (2q + r)ε and, when ε tends 0, z̃ε(t) converges towards z̃(t), with the solution to the
classical differential equation:

dz̃(t)

dt
= v(t) with z̃(0) = z0 (16)

with v(t) defined in equation (12). We verify by recurrence that we have at all times t = nε:

zjε(nε) = z̃ε(nε) + (1 + i)

√
}ε
2m

(
snuj − uj

)
. (17)

which leads to zjε(t) = z̃ε(t) + O(
√
ε) for all j and all t = nε. As z̃ε(t) = z̃(t) + O(ε) for all t = nε,

we deduce zjε(t) = z̃(t) + O(
√
ε). Thus both processes z̃jε(t) continuously converges towards z̃(t) when

ε→ 0+.
As s2uj = uj , we deduce from (17) that zjε(2qε) = z̃ε(2qε) for all j. The real part x̃ε(t) of the

process z̃ε(t) can be interpreted as the average position of the particle. The position xjε(t) of each point
j, the real part of the process zjε(t), satisfies the equation:

xjε(Nε) = x̃ε(nε) +

√
}ε
2m

(
snuj − uj

)
. (18)

This equation yields the evolution of the two points of the extended particle with respect to its
center-of-mass. The evolution of this extended particle over a period of 2ε is visualized in Figure 1.
We can consider that the two points xjε(t) of the particle define the structure of an elastic cord. The
movement of its two points corresponds to the vibration of the string. At the instant t = 2qε, the two
ends are joined together and the length of the string at that instant is therefore zero. At the instant
t = 2(q + 1)ε, it has an extension.

Figure 1: Evolution of the two points of the extended particle over a period of time 2ε from left to right
(punctual at 2qε, extending to (2q + 1)ε, then punctual again at 2(q + 1)ε).

Let us show that these positions verify Heisenberg’s uncertainty relations. The standard deviation of
the position 〈∆x〉 defined by 〈∆x〉2 = 1

4

∑2q+2
n=2q+1

∑2
j=1(xjε(nε)− x̃ε(nε))2 is equal to ~ε

2m . The standard

deviation of the momentum pjε(nε) = m
xj
ε(nε)−x̃ε(nε)

ε defined by 〈∆p〉2 = 1
4

∑2q+2
n=2q+1

∑2
j=1(pjε(nε) −

p̃ε(nε))
2 is equal to ~m

2ε , which yields

〈∆x〉 · 〈∆p〉 =
}
2
.
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4 An extended particle model in dimension 2

In an orthonormal marker of space R2, we consider the four vertices u1 =
(

1
1

)
, u2 =

(
1
−1

)
, u3 =

(−1
−1

)
et u4 =

(−1
1

)
of the unit square. There are two circular permutations of these four vertices, one s+

clockwise, the other s− counter-clockwise. We have for each of these two permutations s ∈ S = {s−, s+}
and for all uj (j = 1...4), s4uj = uj .

We consider an extended particle represented by four points. For any step of time ε > 0 and at
each of the two permutations s ∈ S, the evolution of these four points, at the time t = Nε with
N = 4q + r (N, q, r integers with 0 ≤ r ≤ 3), is defined by the real part of the 4 following discrete
processes zjε(t) ∈ C2:

zjε(Nε) = zjε (nε− ε) + v(4qε)ε+ γ(snuj − sn−1uj) with zjε(0) = z0, ∀j (19)

where γ = (1 + i)
√

}ε
4m , v(t) corresponds to a continuous complex function, } is the Planck constant,

m the mass of the particle, and z0 is a given vector of C2.
Let z̃ε(t) be the solution in C2 of the discrete system of the instant t = Nε with N = 4q + r (N, q

and r integers and 0 ≤ r ≤ 3) by the equation:

z̃ε(Nε) = z̃ε(Nε− ε) + v(4qε)ε, z̃ε(0) = z0. (20)

We then verify by recurrence that we have at any time t = Nε:

zjε(Nε) = z̃ε(Nε) + (1 + i)

√
}ε
4m

(
snuj − uj

)
. (21)

As s4uj = uj , we deduce from (21) that zjε(4qε) = z̃ε(4qε) for all j. As
∑j=4

j=1 s
nuj = 0, we deduce

from (19) that the process z̃ε(t) is the average of the four processes zjε(t). Its real part x̃ε(t) can be
interpreted as the average position of the particle. The position xj

ε(t) of each point j, real part of the
process zjε(t), satisfies the equation:

xj
ε(nε) = x̃ε(nε) +

√
}ε
4m

(
snuj − uj

)
. (22)

This equation demonstrates the evolution of the four points of the extended particle in relation to its
center of mass. The evolution of this extended particle over a period of 4ε is visualized in figure 2.

Figure 2: Evolution of the four points of the extended particle over a period of time 4 ε from left to
right (punctual at 4qε, in extension at (4q + 1)ε and (4q + 2)ε, then in contraction at (4q + 3)ε and
4(q + 1)ε).

We can consider that the four points xj
ε(t) of the particle define the structure of a closed string. The

movement of its four points corresponds to the vibration of the string. At the moment t = 4qε, the four
points are located in the center of a square and the length of the string at that moment is therefore
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zero. At the moments t 6= 4qε, it takes an extension. At times (4q + 1)ε and (4q + 3)ε, the four points
are located in the center of the sides of the square. At the moment (4q+2)ε, the four points are located
on all four corners of the square. Furthermore, this interpretation suggests a kind of creative process
between moments t = 4ε and (4q+ 1)ε followed by a process of annihilation between moments (4q+ 3)ε
and (4q + 4)ε.

The equation (21) yields zjε(t) = z̃ε(t) +O(
√
ε) for all j and all t = Nε. Let z̃(t) be the solution to

the differential equation:
dz̃(t)

dt
= v(t) with z̃(0) = z0. (23)

Since v(t) is continuously differentiable, we have z̃ε(t) = z̃(t) + O(ε) for any t = Nε, and therefore
zjε(t) = z̃(t) + O(

√
ε). We deduce that each process z̃jε(t) continuously converges towards z̃(t) when

ε→ 0+.

Remark 3 - In [5], Feynmann and Hibbs show that the "important paths" of quantum mechanics,
although continuous, are very irregular and nowhere differentiable. They admit an average speed

lim
∆t→0+

〈xk+1 − xk
∆t

〉 = v, but not a root mean square speed because 〈(xk+1 − xk
∆t

)2〉 =
i~
m∆t

. The four

processes xj
ε(t) verify the same properties as Feynmann’s paths, being increasingly irregular and non-

differentiated when ε→ 0+; however, the value of ε = ∆t, although very small, remains finite.

5 Emergence of spin and Heisenberg’s uncertainty relations
An extended particle was associated with four points and a four-point variation cycle during the period
T = 4ε. It is assumed that the properties of such a particle correspond to the average of the properties
of the four points taken over the four instants of the period.

We therefore define the mean angular momentum of the extended particle verifying the equation
(21) by:

σ = En,j(σ
j
n) =

1

16

4q+3∑
n=4q

4∑
j=1

σj
n

with

σj
n = rjn ∧ pjn, rjn = xj

ε(nε) = r̃n +

√
~ε
4m

(snuj − uj)

and

pjn = m
rjn+1 − rjn

ε
= m

r̃n+1 − r̃n
ε

+

√
~m
4ε

(sn+1uj − snuj).

Using the relationship
∑4

j=1 s
nuj = 0 for all n, we obtain σ = ∧mr̃ ∧mṽ + 1

16}
∑4

j=1(uj ∧ suj) with
r̃ = 1

4

∑4q+3
n=4q r̃n and ṽ = ṽ(4qε). For s = s+, we have

σ ≡ σz = m (xṽy − yṽx)− }
2
.

Proposition 1 - For any ε >0, the extended particle corresponding to the real part of the process (19),
admits an angular moment intrinsic average sz = −}

2 for permutation s+ and sz = +}
2 for permutation

s−.

Let x̃ε(nε) be the position average on the x axis of the particle at the moment nε (with n = 4q+ r)
and mṽ(4qε) its average impulse. The calculation of standard deviations 4x and ∆px of the position
and the impulse on the x axis is obtained from the following equations:

〈∆x〉2 =
1

16

4q+3∑
n=4q

4∑
j=1

(
rjn − r̃n

)2
x
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〈∆px〉2 =
1

16

4q+3∑
n=4q

4∑
j=1

(
pjn − p̃n

)2
x

with p̃n = m r̃n+1−r̃n
ε . We find 〈∆x〉 = ~ε

2m et 〈∆px〉 = ~m
ε .

Proposition 2 - For any ε >0 and for any s, the extended particle corresponding to the real part of
the process (19) satisfies Heisenberg’s uncertainty relations:

〈∆x〉 · 〈∆px〉 =
}
2
. (24)

Let f be a class C2 application from C2 × R in C. We consider the Dynkin complex operator,
introduced by Nottale [17] under the name of "quantum covariant derivatives", by:

D =
∂

∂t
+ v · O− i }

2m
4. (25)

Proposition 3 - For all ε > 0 and for all s, the process Yε(t) defined by:

Yε (t) = Ef(zjε (t) , t) =
1

4

∑
j

(
f
(
zjε (t) , t

))
(26)

with zjε (t) built on the equation (19), satisfies for all t = 4qε (q integer):

Yε(t)− Yε (t− ε) = Df (z̃ (t) , t) ε+ 0
(
ε2
)
. (27)

Proof : First of all, we have Yε (4qε) = f (z̃ (4qε) , 4qε). In using (21) and taking into account∑j=4
j=1 s

nuj = 0, then we have for every t = Nε

Ef(zjε (t) , t) = f(z̃ε(t), t) +
i}ε
4m

E

∑
k,l

∂2f(z̃ε(t), t)
∂xk∂xl

(
snuj − uj

)
k

(
snuj − uj

)
l

+ 0
(
ε2
)
.

For n = 4q− 1, E(snuj −uj)k(snuj −uj)l = 4+4
4 δkl and the calculation of the last term of Ef(zjε (t) , t)

yields i}ε
4m2∆f . We deduce:

Yε (4qε− ε) = f(z̃ε(4qε− ε), 4qε− ε) + i
}ε
2m

∆f(z̃ε(4qε− ε), 4qε− ε) + 0
(
ε2
)

hence equation (27) developed thanks to (20 ) f(z̃ε(4qε− ε), 4qε− ε) in order one.�

Remark 4 - We obtain the analog of proposition 3 for the one-dimensional particle model constructed
on the equations (12) of section 3.

6 The complex Hamilton-Jacobi equation of the second order
We now show that the evolution corresponding to the processes zjε(t) defined by the equations (19),
is governed by a complex second-order Hamilton-Jacobi equation. To do so, we use an analytical
mechanic complex and a generalized principle of least action. The analytical mechanism complex is a
generalization of classical analytical mechanics, with objects having a complex position z(t) ∈ C2, a
complex speed v (t) ∈ C2, and using the minimum of one complex function and the minmost-complex
analysis we introduced in [8, 7, 12] and whose principle we recall in Definition 1 and Definition 2.

Definition 1 - For a complex function f (z) = f (x + iy) from Cn to C written under the form f (z) =
P (x,y)+ iQ (x,y), the complex minimum, if it exists, is defined as follows min {f (z) /z ∈ Cn} = f (z0)
where (x0,y0) must to be a point of P (x,y): P (x0,y) ≤ P (x0,y0) ≤ P (x,y0) ∀(x,y) ∈ Rn ×Rn.
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We say that a complex function f (z) is (strictly) convex if P (x,y) is (strictly) convex in x and
(strictly) concave in y. We verify that, if f (z) is in addition holomorphic, the minimum condition
becomes ∇f(z) =0.

Then, from a classical Lagrange function L(x, ẋ, t), an analytical function in x and ẋ, we define by
analytical prolongation the complex Lagrange function L(z,v, t).

Definition 2 - For any complex function that is strictly convex, we associate its complex Fenchel-
Legendre transform p ∈ Cn 7−→ f̂ (p) ∈ C ended by:

f̂ (p) = max
z∈Cn

(p.z− f (z))

We can then define a complex Hamilton-Jacobi action for the extended particle corresponding to the
processes (19). As for the classical case, we give ourselves, at the initial instant, a complex Hamilton-
Jacobi action S0 (z), and a holomorphic function of C2 in C. As announced in Note 1, the complex
Hamilton-Jacobi action associated with process (19) is obtained from a generalization of the optimality
equation (4).

Definition 3 :Principle of least generalized action - The Hamilton-Jacobi action is defined as
complex Sε(z, t) at times t = 4qε (q ≥1) by the following optimality equation:

Sε(z, t) = min
v(t)

1

4

∑
j

{
Sε(z− v(t)ε− γ(s4uj − s3uj), t− ε) + L(z, v(t), t)ε

}
(28)

where the minimun is taken in the sense of the minimum complex on the possible complex speeds v (t),
and for t = 0 by the initial condition:

Sε (z, 0) = S0 (z) ∀z ∈ C2.

At time t = 4qε, we have z̃ε(t) = zjε(t) = zjε(t − ε) + v(t)ε + γ(s4uj − s3uj) for all j. We obtain
the optimality equation (28) from the optimality equation (4) by identifying x to z and u(t)ε to the
various v(t))ε+γ(s4uj−s3uj). Equation (28) can thus be interpreted as a new principle of lesser action
adapted to the processes defined by (19). In this case, the decision on the command is made only at
the instants t = 4qε, that is to say, at the instants corresponding to annihilation-creation.

THEOREM 2 - If a complex process satisfies the principle of generalized action (28) and admits
L(x, ẋ, t) = 1

2mẋ
2−V (x) like a Lagrangian, then the complex action verify the Hamilton-Jacobi equation

complex of the second order:
∂S
∂t

+
1

2
(OS)

2
+ V (z)− i }

2m
4S = 0 ∀ (z, t) ∈ C2 × R+ (29)

S (z, 0) = S0 (z) ∀z ∈ C2 (30)
and the complex speed is given for each (z,t) by the speed field:

v (z, t) =
OS (z, t)

m
. ∀ (z, t) ∈ C2 × R+ (31)

Proof : Formal proof is made here only in assuming that Sε(z, t) is a very regular function in ε and
that it is holomorphic in z and derivable in t. Thanks to proposition 3, by taking f=Sε, one obtains:

1

4

∑
j

{
Sε(z− v(t)ε− γ(s4uj − s3uj)), t− ε)

}
= Sε(z, t)−DSε(z, t)ε+ 0(ε2).

We deduce at the point (z, t) the following equation:

∂Sε
∂t

= min
v

(
L(z,v,t)− v · OSε + i

}
2m
4Sε + 0 (ε)

)
(32)

hence equation (29) is obtained by making ε tend towards 0+, and then taking the transform from the
Fenchel complex of L(z,v, t). As L(z,v, t) = 1

2mv
2 − V (z, t), the minimum of (32) is obtained when

mv− OSε = 0, which leads to (31). �
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7 Schrödinger’s equation "pilots" the center of mass

By defining as wave function Ψ = ei
S
} and taking the restriction of (29) (30)and (31) to the real part x

of z, theorem 2 allows to deduce:

THEOREM 3 - If a complex process verifies the principle of generalized least action (28) and admits
L(x, ẋ, t) = 1

2mẋ2 − V (x, t) as a Lagrangian, then its wave function satisfies Schrödinger’s equation:

i}
∂Ψ

∂t
= − }2

2m
4Ψ + V (x, t)Ψ ∀(x, t) ∈ R2 × R+ (33)

Ψ(x, 0) = Ψ0(x) ∀x ∈ R2. (34)

Moreover, the x̃(t) center of mass of the particle follows a trajectory whose velocity is given at each
point (x,t) by the velocity field proposed by de Broglie [3] and Bohm [2]:

v(x, t) =
OS(x, t)

m
. (35)

where S(x, t) is the phase of the wave function Ψ(x, t) written in the semi-classical representation
Ψ(x, t) =

√
ρ(x, t)ei

S(x,t)
~ .

Proof : As we have assumed S(z, t) to be holomorphic in z, equations (33) and (34), where Ψ(x, t)
is the restriction of Ψ(x, t) to the real x part of z, can be deduced from equations (29) and (30). Since
S(x, t) is the real part of the complex action

S(x, t) = S(x, t)− i}
2
logρ(x, t), (36)

we deduce (35) from equation (31) and the center of gravity of the particle x̃(t) satisfies the differential
equation:

dx̃(t)

dt
=
∇S(x, t)

m
|x=x̃(t), x̃(0) = x0. (37)

To specify the model, one must choose the ε time step. To define it, we make two hypotheses:
Inside the extended particle, the passage from one state to the next is done at the speed of light and
the distances correspond to Compton’s wavelength λC as seems to be shown with Foldy-Wouthuysen’s
transformation [6]. So we shall assume:

4ε = T ' λC
c

=
h

mc2
. (38)

Remark 5 - As in Remark 3, the analogy of theorems 2 and 3 is obtained for the one-dimensional
particle model constructed on the equations (12) of Section 3. In this case, we obtain:

2ε = T ' λC
c

=
h

mc2
. (39)

Remark 6 - How do we interpret our discrete particle models? Are there fictitious particles represented
by the different points? Or is there a continuous model of the particle whose different points correspond
to a sampling whose frequency is twice the maximum frequency of the particle? Thanks to Nyquist-
Shannon’s sampling theorem, it is not necessary to choose between these two hypotheses. One can also
wonder whether the xj

ε(nε) process of equations (18) and (22), composed of a classical x̃ε(nε) part and
a small periodic oscillatory part, could be connected to Schrödinger’s Zitterbewegung [19].
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8 Conclusion

By taking up the idea of Nelson’s stochastic processes with pseudo-random and non-point processes,
we have shown that in dimension 2 there is an extended quantum particle model that admits a spin
and verifies Heisenberg’s equations. Thanks to a generalization of the optimality equation from the
principle of least action to a complex action for an extended particle, we have associated it with a wave
function that verifies the Schrödinger equation. The center of gravity of this quantum particle model
then follows the de Broglie-Bohm trajectories generalizing to quantum mechanics the case of the center
of gravity of a classical particle which is driven by the classical Hamilton-Jacobi action.

This particle model corresponds to a deepening of the wave-particle duality in quantum mechanics:
an extended particle with a small extension vibrates like a small string. The equation for the evolution
of its center of gravity verifies a time-dependent Schrödinger equation, i.e. the equation for a wave that
spreads over time.

We thus find through a different method the interpretation of the double scale-theory that we have
just defined [11]. Indeed, by taking up the idea of Louis de Broglie’s double-solution theory, we show
that the complete wave function of a quantum system, such as an atom or a molecule, is the product
of two wave functions: an external wave function for the evolution of its center of mass and an internal
function for the evolution of its internal variables in the reference frame of the center of mass. These two
wave functions do not correspond to the same scale and have different meanings and interpretations.
The external wave function represents the macroscopic view of the quantum system: it "drives" the
center of mass and spin and corresponds to the de Broglie-Bohm "pilot wave". The internal wave
function represents the microscopic view of the quantum system: our interpretation is the one proposed
by Schrödinger at the 1927 Solvay congress: the particles are expanded and the square of the modulus
of the (internal) wave function of an electron corresponds to the density of its charge in space. This
double solution (wave and soliton) depending on the scales clearly explains the wave-corpuscle duality.
It clarifies the debates on the interpretation of quantum mechanics, which did not differentiate between
external and internal wave functions.

By placing ourselves in Clifford’s algebra Cl3, it should be possible to extend this model to dimension
3 with a spinner verifying Pauli’s equation and a spin orienting itself during the measurement operation
as in Stern and Gerlach’s experiment [10].

The hypothetical model we have just presented is only one possible model that can have many
variants. It is also compatible with Lorentz and Poincaré’s electron model [18] as well as with Dirac’s
extensible model [4].
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