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The human gut microbiota is of increasing interest, with metagenomics a key tool for analyzing bacterial diversity and func-

tionality in health and disease. Despite increasing efforts to expand microbial gene catalogs and an increasing number of

metagenome-assembled genomes, there have been few pan-metagenomic association studies and in-depth functional anal-

yses across different geographies and diseases. Here, we explored 6014 human gut metagenome samples across 19 countries

and 23 diseases by performing compositional, functional cluster, and integrative analyses. Using interpreted machine learn-

ing classification models and statistical methods, we identified Fusobacterium nucleatum and Anaerostipes hadrus with the highest

frequencies, enriched and depleted, respectively, across different disease cohorts. Distinct functional distributions were ob-

served in the gut microbiomes of both westernized and nonwesternized populations. These compositional and functional

analyses are presented in the open-access Human Gut Microbiome Atlas, allowing for the exploration of the richness, dis-

ease, and regional signatures of the gut microbiota across different cohorts.

[Supplemental material is available for this article.]

Metagenomic studies have enabled a deeper understanding of the
functional potential and taxonomic composition of the micro-
biome and its implications in identifying health and disease signa-

tures across different body sites and geographic regions (Lozupone
et al. 2012; David et al. 2014; Sommer et al. 2017). The large-scale
integration of microbiome functional changes and their associa-
tions with clinical data could provide new insights into their im-
pact on host physiology and disease pathophysiology, as well as
new microbiome-based treatments and therapies (Lozupone
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et al. 2012; David et al. 2014). Recently, several studies have fo-
cused on the discovery of new uncultured microbes through the
generation of metagenome species (Nielsen et al. 2014; Almeida
et al. 2019; Nayfach et al. 2019; Plaza Oñate et al. 2019), whereas
others have focused on the investigation of alterations in micro-
biome composition owing to disease, geographical location, and
interventions in the gut microbiome (Jalanka-Tuovinen et al.
2011; David et al. 2014; Mehta et al. 2018; Pasolli et al. 2019).

The key to advancing our understanding of the critical role of
the microbiome in health and disease is access to data from a wide
range of studies and cohorts. Public resource collection and pro-
cessing of microbiome data are essential, contributing to the labo-
rious and necessary task of standardizing and making this
accumulated information accessible. Some have particularly fo-
cused on the human gut microbiome: gutMDisorder (Cheng
et al. 2020), GIMICA (Tang et al. 2021), Disbiome (Janssens et al.
2018), and GMrepo (Wu et al. 2020). However, there is a lack of in-
tegrative functional and compositional analyses across cohorts
and regions to provide a mechanistic understanding of the micro-
biome and identify biomarkers. In this study,we integrated public-
ly available data from a wide range of studies across different
countries from both healthy and diseased individuals. To over-
come the current limitations ofmeta-analyses ofmicrobiome stud-
ies, we used a machine learning approach to extract microbial
features from different diseases. We calculated the enrichment of
microbial species for both disease and geographical regions and
performed Shapley additive explanations (SHAP) interpretations
on random forest classification models to identify biomarkers of
disease associated with metagenomic species pan-genomes

(MSPs). Additionally, we present an open-access Human Gut
Microbiome Atlas (HGMA) (https://www.microbiomeatlas.org)
that allows researchers to explore an integrative analysis of compo-
sitional, functional, richness, disease, and regional signatures of
the gut microbiota across 19 geographical regions and 23 diseases.

Results

The HGMA: a pan-metagenomic study of compositional

and functional changes of the human gut microbiome

We analyzed 6014 publicly available shotgun metagenomic stool
samples to create a public resource for investigating the micro-
biome across diverse settings. A total of 6014 samples with at least
10 million high-quality sequencing reads were selected from
healthy and diseased cohorts from 19 different countries across
five continents (Fig. 1A,B; Supplemental Table S1). We included
metagenomic samples of normal subjects in nonwesternized
countries for comparison of the differences between westernized
and nonwesternized regions and later with disease signals; howev-
er, disease samples from nonwesternized regions were very limited
and thus were not included in this study. We normalized all
metagenomic sample abundances to enable comparative analysis
across cohorts (Methods). Using these samples, we created the
HGMA by quantitative analysis of shotgun metagenomics based
onmicrobial genomes assembled usingMSPs (Fig. 1C; Supplemen-
tal Fig. S1A). We generated gene counts using the IGC2 10.4 mil-
lion gene catalog from all raw metagenome data and, after
normalization of gene counts, profiled MSP abundances for all
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Figure 1. Characterization of the global gut microbiome in health and disease. Pan-metagenomics association studies of health and disease.
Corresponding data sets were publicly shared as a resource: the Human Gut Microbiome Atlas (HGMA). (A) The geographical distribution of the data
sets used in this study (the number of the samples is shown in parentheses). (B) Disease data sets of shotgun metagenomics used in this study. (C) The
workflow of the metagenomic species pan-genome (MSP) quantification together with functional characterization. We first constructed 1989 MSPs for
gut microbiome by MSPminer based on co-abundant gene profiles, which give clues to identify gene cluster markers likely belonging to the same species.
Next, all the short reads aligned to the IGC2 catalog and, subsequently, gene abundances were profiled, downsized, and normalized. Based on co-abun-
dant genemarkers from the givenMSP, mean signals were used to estimate species abundance profiles. In total, 6014 shotgunmetagenome samples were
aligned against the gene catalog of the human gut microbiome and quantified at the level of MSP. (D) Heatmap showing the top 20 significantly over-
represented MSPs between western and nonwestern cohorts colored by mean species Z-score for each country against all countries. (E) Monocle ordina-
tion of the gut microbiome. Individual samples from nonwestern and western countries were colored blue and orange, respectively. (F ) Difference in gene
content between western and nonwestern enriched species. Those species gene content was annotated by those that were CAZymes, antimicrobial-resis-
tance (AMR) genes, and virulence factors (PATRIC database) and summed across all species. Total number of each gene was normalized and plotted as a
stacked bar plot to show regional overrepresentation (Methods).
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samples based on the co-abundant gene markers of given MSPs
(Wen et al. 2017).We further characterized the functions and phe-
notypes of the identified MSPs in seven categories: KEGG ortho-
logs (KOs) (Kanehisa et al. 2004), protein families (Pfam)
(Bateman et al. 2004), carbohydrate-active enzymes (CAZymes)
(Terrapon et al. 2017), antimicrobial resistance (AMR) (Ruppé
et al. 2019), microbial phenotype (Mukherjee et al. 2021), viru-
lence factors (Mao et al. 2015), and biosynthetic gene clusters
(BGCs) (Blin et al. 2017). We identified 7763 co-conserved func-
tional clusters across species (Methods). All these data are freely
available in the HGMAwithout restrictions in the public open-ac-
cess database (https://www.microbiomeatlas.org).

Using all cohorts, we determined the geographical distribu-
tion of the gut microbiome. Both Clostridium and Bacteroides were
found to have higher mean relative abundance within western
countries, whereas Prevotella species had a higher mean relative
abundance within nonwestern countries (Fig. 1D; Supplemental
Table S2), in accordance with previous studies (Yatsunenko et al.
2012). We applied an unsupervised clustering method, Monocle,
to MSP abundance profiles of all samples (Methods) (Trapnell
et al. 2014; Qiu et al. 2017) and observed that there were two dis-
tinct ordinations of nonwesternized and European samples of sub-
jects connected by a mixture of western/nonwestern samples
belonging to China or Japan and to the United States (Fig. 1E;
Supplemental Fig. S1B). Based on a comparative analysis across dif-
ferent regions, we identified 742MSPs specifically enriched in cer-
tain regions (Methods) (Supplemental Table S3). Functional
annotation analysis across geographical clusters revealed enrich-
ment of CAZymes for degrading N-glycans, food carbohydrates
of animal origin, and storage carbohydrates inwesternized popula-
tions, inwhichAMRandvirulence factorswere alsomoreprevalent
(Fig. 1F; Supplemental Table S4). A comparison of the functions of

region-enrichedMSPs inwesternized countries revealed that genes
encoding vancomycin resistance and lipopolysaccharide (LPS) bio-
genesis are overrepresented. Anoverrepresentationof genes encod-
ing complex polysaccharide-binding proteins mostly belonging to
the Prevotella genus was found in the nonwesternized cohorts
(Prasoodanan et al. 2021), and we identified that the cluster for
vancomycin resistance was enriched in the westernized popula-
tion, whereas the tetracycline-resistance cluster was enriched in
the nonwesternized population.

Pan-metagenomics association study across 23 diseases

Weperformed a pan-metagenomics association study (Pan-MGAS)
of multiple disease cohorts (23 diseases across 43 cohorts from 14
countries) to distinguish between diseased versus healthy micro-
biomeswithinmultiple cohorts.We reported the enriched and de-
pleted species within the different disease cohorts compared with
healthy samples from the same country, by determining the effect
size and using the magnitude of enrichment/depletion of given
species in abundance (greater than the medium effect size, 0.3;
Methods) (Fig. 2A; Supplemental Tables S5, S6; Supplemental
Fig. S2A,B). Some cohorts showed depletion of multiple species,
notably in cancer (non-small-cell lung cancer [NSCLC] from
France, renal cell carcinoma [RCC] from France, and adenoma
from Italy) (Fig. 2A). Conversely, some diseases have several en-
riched species, as observed in most colorectal cancer (CRC)
cohorts.

To explore the connection between enriched species in both
healthy western and nonwestern populations with disease, we in-
vestigated the effect size values for those enriched species across
disease cohorts (Supplemental Fig. S2C).We found that effect sizes
center around zero in both groups, suggesting most of these

0.00

0.25

0.50

0.75

1.00

E
ffe

ct
 S

iz
e

Enriched in disease
Parvimonas micra Flanvonifractor plautii

0.00

0.25

0.50

0.75

1.00

C
ol

or
ec

ta
l c

an
ce

r (
AT

)

C
ol

or
ec

ta
l c

an
ce

r (
C

N
)

C
ol

or
ec

ta
l c

an
ce

r (
FR

)

C
ol

or
ec

ta
l c

an
ce

r (
D

E)
1

C
ol

or
ec

ta
l c

an
ce

r (
D

E)
2

C
ol

or
ec

ta
l c

an
ce

r (
IT

)

C
ol

or
ec

ta
l c

an
ce

r (
JP

)

C
ol

or
ec

ta
l c

an
ce

r (
U

S)
N

SC
LC

 (F
R

)
R

en
al

 c
an

ce
r (

FR
)

M
el

an
om

a 
(U

S)
Ad

en
om

a 
(IT

)
Ad

en
om

a 
(J

P)
Ad

en
om

a 
(A

T)
Ad

en
om

a 
(F

R
)

G
D

M
 (C

N
)

IG
T 

(S
W

)
T1

D
 (L

U
)

T2
D

 (C
N

)
T2

D
 (E

S)
T2

D
 (S

W
)

Li
ve

r c
irr

os
is

 (C
N

)
Li

ve
r c

irr
is

is
 (G

B)
N

AF
LD

 (E
S)

N
AF

LD
 (I

T)
N

AF
LD

 (U
S)

C
ro

hn
's 

di
se

as
e 

(C
N

)

C
ro

hn
's 

di
se

as
e 

(E
S)

U
lc

er
at

iv
e 

co
lit

is
 (E

S)
AC

VD
 (C

N
)

At
he

ro
sc

le
ro

si
s 

(S
W

)
O

be
si

ty
 (D

K)

Be
hc

et
's 

di
se

as
e 

(C
N

)
VK

H
 d

is
ea

se
 (C

N
)

R
he

um
at

oi
d 

ar
th

rit
is

 (C
N

)

An
ky

lo
sy

ng
 s

po
nd

yl
iti

s 
(C

N
)

Ac
ut

e 
di

ar
rh

ea
 (U

S)

Pa
rk

in
so

n'
s 

di
se

as
e 

(D
E)

M
E/

C
FS

 (U
S)

Disease cohort

E
ffe

ct
 S

iz
e

Depleted in disease

Blautia obeum

Anaerostipes hadrus

N
um

be
r 

of
 c

oh
or

ts

Anaerostipes
hadrus 1

Oscillibacter
sp. KLE 1728

bacterium LF−3

unclassified Clostridiales

Flavonifractor
plautii

Blautia obeum
Peptostreptococcus stomatis

unclassified Clostridiales

Ruminococcus bromii 2

Coprococcus comes

Clostridium symbiosum

Fusobacterium nucleatum
subsp. animalis

Clostridium bolteae

Clostridium
clostridioforme 1

4

8

�6 �2 2 6

Number of different
diseases

1 3 5 7 9

EnrichedDepleted

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

E
ffe

ct
 s

iz
e

E
ffe

ct
 s

iz
e

Fusobacterium nucleatum subsp. animalis

Anaerostipes hadrus (1)

Can
ce

r
Ade

no
m

a

Hyp
er

gly
ca

em
ia

Liv
er

 d
ise

as
es IB
D

Obe
sit

y&
CVD

In
fla

m
m

at
or

y
Oth

er
s

Cancer
Adenoma

Hyperglycaemia
Liver diseases

IBD
Obesity & CVD

Inflammatory
Others

A B C
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species exhibit little change in response to disease. This observa-
tion does not, however, rule out the possibility that there is a con-
nection between region and disease that warrants future analysis
to explore.

In our Pan-MGAS analysis, some species were either enriched
or depleted across multiple cohorts, regardless of geographical
differences. For example, Anaerostipes hadrus and Coprococcus
comes, which have been associated with healthy individuals, are
among the most frequently depleted species found in at least
six different disease cohorts (Fig. 2B; Supplemental Fig. S3). The
two species have been described as butyrate producers and are
the dominant species isolated from the healthy human colon
(Holdeman and Moore 1974; Louis and Flint 2009; Allen-Vercoe
et al. 2012).

Between the species found enriched in at least six different
cohorts, we find Fusobacterium nucleatum, Clostridium bolteae, Clos-
tridium clostridioforme, Clostridium symbiosum, Peptostreptococcus
stomatis, Flavonifractor plautii, Parvimonas micra, among others
(Fig. 2C; Supplemental Fig. S3). Several of themhave also been iso-
lated from oral samples (F. nucleatum [Socransky et al. 1998], P. sto-
matis [Downes and Wade 2006], P. micra [Rôças and Siqueira

2008]), and somehavebeen identified in infections, includingbac-
teremia (C. bolteae [Finegold et al. 2005],C. clostridioforme [Finegold
et al. 2005], P. micra [Löwenmark et al. 2020]). Along with F. nucle-
atum and C. symbiosum, which are enriched in western countries
and are associated with CRC (Elsayed and Zhang 2004; Castellarin
et al. 2012; Kostic et al. 2012), we also identified P. micra to be en-
riched inmultiple cohorts of CRC, and P. stomatis enriched several
times in solid tumor cohorts (Supplemental Table S6; Supplemen-
tal Fig. S3).

Disease-enriched functional clusters show distinct links to gut

microbiome dysbiosis

To analyze the functional content in the MSP from the human
microbiome, we applied an unsupervised clustering approach to
the annotated functions (Methods) (Fig. 3A,B; Supplemental Fig.
S4A,B). This analysis provided a better representation of microbial
functions than single annotations or known pathway definitions
(e.g., KEGG) (Fig. 3C). We identified 7763 functional clusters
and 6297 singletons using the community detection algorithm
(Supplemental Fig. S4C; Supplemental Table S7). For example,

A

C D

E

B

Figure 3. Analysis of functional clusters of the human gut microbiome. For the functional characterization of human gut MSPs, we annotated respective
genes with 19,540 features of microbial function/phenotype databases and identified 7763 functional clusters better representing the microbiome. (A)
Identification of functional clusters based on co-conserved molecular and biological functions across species. Unlike the manually curated module data-
base, we identified functional clusters based on high co-conservation across species using the unsupervised clustering method. (B) The overall scheme
of identification of functional clusters and checking functional coverage (cluster size) and taxonomic coverage (number of enriched species). (C) We found
that among different sources of microbial functional annotations (e.g., KEGGmodule and pathway), co-conservation of molecular and biological functions
across different species was substantially low (Jaccard index< 0.5). (D) Functional clusters identified by unsupervised community detection. The y-axis dis-
plays the number of genes within the functional cluster (i.e., functional coverage), and the x-axis displays the number of MSPs possessing >70% of the
clusters’ genes (i.e., taxonomic coverage). (E) Functional clusters projected on enriched/depleted MSPs across disease cohorts. The scatter plot displays
the frequency of functional clusters significantly associated with the enriched/depleted species (hypergeometric test P-value < 0.0001) in disease cohorts.
Each point represents a gene cluster; all values in the plot are integers; and jitter was added to remove overlapping points. The y-axis shows the total fre-
quency of cohorts in which a functional cluster was found significantly associated with enriched/depleted species. The x-axis shows the difference in the
number of cohorts in which a function was found enriched minus the frequency it was found depleted. Point colors changed from red (left) to blue (right)
according to x-axis values. Common enriched/depleted functional gene clusters among cohorts were identified when total frequency≥3 and absolute
subtracted frequency≥2.
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AMR and secondary biosynthetic genes were found to be single-
tons that were not co-conserved with other functional genes.
After excluding singletons and unreliable functional clusters de-
tected in fewer than three species, 591 representative clusters of
microbial functions were retained. One of the two largest clusters
(CL-12, named “comm-cluster” hereafter) (see Supplemental Table
S7)was overrepresented amongmany commensal species, whereas
the other (CL-10, named “patho-cluster”) was enriched in a few
pathobionts, such as Klebsiella spp., Enterobacter spp., and Eschri-
chia coli. The comm-cluster was enriched with genes involved in
the biosynthesis of amino acids. In contrast, the patho-cluster was
enriched in functions associated with uptake of several substrates.
These include siderophores, amino acids, and vitamin transport,
thus improving competitive fitness against commensal bacteria.
We also found other functionally enriched clusters, such as the
butyrate metabolism cluster, propionate metabolism cluster, and
CRISPR-Cas system cluster (Fig. 3D); a number of these were corre-
lated with phylum-level taxonomy (Supplemental Table S7).

Next, we extracted the enriched/depleted species in each co-
hort and recovered the functional clusters associated with these
species (hypergeometric tests, P-value<10−4) (Fig. 3E). We found
several functional clusters commonly associatedwith the enriched
species in the disease. Among these, we found that CL-1006 is re-
lated to antibiotic resistance; CL-1032, a competence-related DNA
transformation transport, could provide an advantage by improv-
ing the integration of new functions into the genome; or clusters
related to metabolic pathways that could contribute indirectly to
pathogenicities, such as the pentose phosphate pathway (Rytter
et al. 2021) or ethanolamine utilization (Garsin 2010). Among
themost frequent functional clusters that accompany the depleted
species in disease, we found the CL-12 comm-cluster and other
clusters with functions related to pectate degradation and biofilm
formation (Fig. 3E), all of which were related to the normal func-
tion of the healthy microbiota.

Global view of gut MSPs

To obtain a holistic view of human gut MSPs, we generated a phy-
logenetic tree displaying the taxonomic resolution of disease- and
region-enriched species and estimated proportionality between
MSP pairs (Methods) (Supplemental Fig. S5A). Most MSPs are pre-
sent in both the western and nonwestern regions. Although some
were enriched in one of the two regions, we could not identify any
apparent phylogenetic pattern. When looking at the enrichment/
depletion across the different cohorts, the Streptococcus genus
showed particularly interesting features: Members within this
genus were found to be enriched in some cohorts while being de-
pleted in others. For example, three different species within the
genus (Streptococcus anginosus, Streptococcus parasanguinis, and
Streptococcus vestibularis) were enriched in two distinct liver disease
cohorts, whereas Streptococcus salivarius and Streptococcus sanguinis
were depleted in cancer cohorts (Supplemental Fig. S5B;
Supplemental Table S6).

In addition, we observed proportionality between the MSPs
(Supplemental Fig. S5C). A high proportionality value between a
pair of MSPs suggests that they tend to increase or decrease simul-
taneously. Most MSPs with the highest proportionality values be-
longed to the same genus. Only a small subset of MSPs with
proportionality values above the selected threshold was found.
Many of the MSP pairs we found were inhabitants of the oral cav-
ity, and the Streptococcus genus stood out again. Bacterial infec-

tions of the Streptococcus genus play a central role from a clinical
perspective (Krzysćiak et al. 2013; Marzhoseyni et al. 2022).

A random forest classification model can identify biomarkers

of disease from MSPs

To identify disease biomarkers, we implemented feature-selection-
based random forest classifier models trained using the MSPs con-
structed from each cohort on the HGMA for each disease cohort
that had matched healthy controls (Fig. 4A). These models were
able to distinguish between the diseased and control groups with
variable discriminatory performances. Prediction performance
was evaluated using the area under the ROCcurve (AUROC)metric
(Fig. 4B). As a consequence of the disproportionate sample num-
bers for each disease, we recognize that overfittingwas a possibility
during the analysis for those diseases with low sample numbers.
Nonetheless, the models with the highest predictive capabilities
were those for myalgic encephalomyelitis/chronic fatigue syn-
drome (ME/CFS), Vogt–Koyanagi–Harada (VKH), and Crohn’s dis-
ease (CD).

The generalization of these models was assessed with inter-
study cross-validation, which demonstrated that a model trained
on the CRC training cohort (Yu et al. 2017) was able to maintain
the predictive power of disease classification when applied to the
CRC test cohort (AUROC=0.74) (Fig. 4C; Zeller et al. 2014).
Additional validation of the importance of randomly selected
healthy samples was performed by combining 30 random groups
of 40 healthy samples with 40 randomCRC samples and repeating
the cross-validation. The AUROC of predicting the test cohort was
0.75±0.04, showing conservation of predictive capabilities.

The interpretable machine learning framework SHAP was
used to identify disease-specific gut microbiome features
(Štrumbelj and Kononenko 2014). SHAP is a state-of-the-art frame-
work that has recently been used to explain gut microbiome clas-
sification models (Manor and Borenstein 2017; Bar et al. 2020). By
interpreting the disease classification models using directional
mean absolute SHAP values, the importance of metagenomic spe-
cies as biomarkers for 16 diseases in the HGMA was measured
(Supplemental Table S8).

When comparing SHAP score-calculated biomarkers to effect
size biomarkers for all diseases, several key species were shared (Fig.
4D). The highest directional mean SHAP scoring species for the
CRC predictive model were F. nucleatum, P. micra, Solobacterium
moorei, and S. parasanguinis, all of which are known species bio-
markers (Li et al. 2016; Löwenmark et al. 2020; Rebersek 2021).

Of note, an increase in the abundance of commensal oral bac-
teria, including Haemophilus parainfluenzae, Veillonella dispar,
Veillonella atypica, and Veillonella parvula, was shown to be highly
important in predicting liver cirrhosis but not nonalcoholic fatty
liver disease (NAFLD), as found previously (Patel et al. 2022), and
was found to be enriched in multiple cohorts regardless of region
(Fig. 4E). In the NAFLD model, an increase in the abundance of
S. parasanguinis was the most important factor in predicting the
disease. This species was found to be enriched across multiple co-
horts of HGMA and is part of a cluster of oral commensal species
previously shown to be biomarkers of the disease (Behary et al.
2021). NAFLD also shares biomarkers with T1D, including A. had-
rus and Eubacterium hallii. These two diseases have previously been
shown to be metabolically associated (Cusi et al. 2017).

Therewere somediseases inwhich themost highly important
species for disease prediction were depleted (such as CD).
Additionally, there were several shared disease-predictive species,
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Figure 4. Random forest (RF) models trained onmultiple cohorts to discriminate between disease and healthy controls. (A) Schematic of RF classification
method. (B) AUROC scores for each disease RF classification model. (C ) AUROC curves of an inter (top) and intra (bottom) cohort validation for a RF model
that predicts CRC. (D) Box plot of directional mean absolute SHAP scores for all disease predictive models. Red and blue boxes represent species that were
depleted/enriched using effect size calculation. (E) Clustered heatmap (dendrogramomitted) of themost important species for prediction of 16 diseases by
RF classification as calculated by directional mean SHAP score (rows contain at least one species with directional mean SHAP score above 0.0125 in any of
the diseases; Methods). Positive values indicate that higher relative abundance is more likely to classify the disease versus healthy samples. Negative values
indicate that lower relative abundance is more likely to classify the disease versus healthy samples. The right color bar indicates mean species bias for en-
richment or depletion in all diseases. Acronyms are as follows: (CRC) colorectal cancer, (NSCLC) non-small-cell lung cancer, (RCC) renal cell carcinoma,
(T1D) type 1 diabetes, (T2D) type 2 diabetes, (LC) liver cirrhosis, (NAFLD) nonalcoholic fatty acid liver, (CD) Crohn’s disease, (RA) rheumatoid arthritis,
(SPA) ankylosing spondylitis, (ME_CFS) myalgic encephalomyelitis/chronic fatigue syndrome, (IGT) impaired glucose tolerance, and (VKH) Vogt–
Koyanagi–Harada.
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such as S. parasanguinis and Dorea longicatena, with their presence
and absence characterizing a general dysbiotic state (Fig. 4E;
Supplemental Fig. S6).

Discussion

One of the most pressing requirements to allow us to fully realize
the potential of thewealth of datawe can nowgenerate around the
microbiome to our understanding of disease is integrated resources
for assessing and analyzing data from a wide range of different
studies. Here, we performed a comprehensive integrative analysis
of global and temporal gut microbiomes and developed an open-
access HGMA portal (https://www.microbiomeatlas.org) to enable
browsing these data sets. This resource allows for the integration of
several studies linking species to disease, region, and function. It
also presents a means for phylogenetically contextualizing gene
and species enrichment, as well as identifying common features.
Notably, the difference in origin (western/nonwestern) is reflected
in the gut microbial composition, with species/genes being over-
or underrepresented in the different regions. Importantly, some
species and functions were enriched or depleted across multiple
diseases and studies with a number of these species being impor-
tant predictors of diseases.

Increasing numbers of shotgun metagenomic studies have
been conducted in the past decade. However, because of inconsis-
tencies in bioinformatic pipelines andmicrobiome references used
alongwith the difficulties in correcting confounding factors owing
to lack of clinical metadata, a proper meta-analysis of these shot-
gun metagenomic studies has to date not been performed. Many
recent studies have now introduced machine learning approaches
to overcome confounding effects and large per-study variations by
cross-validations (Wirbel et al. 2021). In this study, we applied a
standardized bioinformatics pipeline with machine learning ap-
proaches to overcome the challenges in meta-analysis of shotgun
metagenomic studies.

Within microbiome research, there are limitations owing to
batch effects, confounding factors (e.g., age, sex, or ethnicity),
DNA extraction protocols, and use of differential abundance anal-
ysis tests. Here, we performed PERMANOVA tests for country-
matched controls (that did not have matched controls in the
study) and found there is no significant effect on microbiome
composition (Supplemental Table S9). Moreover, we also applied
PERMANOVA to calculate the association of age, BMI, and gender
and found there is a limited effect on themicrobiome composition
(Supplemental Table S10). Some approaches exist for removing
batch effects in microbiome data sets (Ling et al. 2022; Ma et al.
2022); however, they assume that all confounding factors are
known, which can be challenging when public data sets are used
that do not providemetadata. This can limit the power of batch ef-
fect correction techniques, potentially leading to reduced statisti-
cal power or confounding with batch-introduced variation. This
stresses the need for careful experimental planning and the impor-
tance of every research group to document confounding variables
in their public data sets (Soneson et al. 2014).

In addition, effect size estimates based onnonparametric tests
might be different from the linear modeling after data transforma-
tions, such as centered log ratio (CLR) and log-transformations.
Differences between identified species using distinct differential
abundance methods have been documented before (Nearing
et al. 2022; Yang and Chen 2022), although no consensus exists
on what is the best approach. Therefore, we applied MMUPHin
(Ma et al. 2022) for batch effect correction and regression analysis

withMaAsLin 2 (Mallick et al. 2021) and aggregated the results us-
ing a fixed/mixed effectmodel with default parameters. These out-
puts are in the HGMA (Supplemental Table S11).We assumed that
cohorts of the same disease type might share common effect sizes
for disease-associated microbes, akin to fixed-effect models.
However, such assumptionsmight need further validation in inde-
pendent data sets.

Confirming previous observations (Yatsunenko et al. 2012;
Pasolli et al. 2019), we described the regional specificity of the
gut microbiome, which needs to be considered before using the
gutmicrobiome for patient stratification or designing intervention
studies. In addition, we found that there were distinctions in func-
tions enriched in westernized and nonwesternized countries, in-
cluding resistance to vancomycin and tetracycline, respectively.
Interestingly, we found some difficulty in defining geographic re-
gions into western versus nonwestern countries or into industrial-
ized versus nonindustrialized countries. Thus, regional specificity
needs further investigation of lifestyle or diet factors that can drive
this regional dichotomy.

The physiological changes caused by the diseasemight partly
explain why some diseases have a pronounced compositional im-
balancewhereas others do not. Diseases affecting the bowel show a
high effect size for many species, whereas diseases affecting other
body parts tend to produce smaller imbalances. Other factors
might also be involved in the magnitude of the imbalance, for ex-
ample, changes in diet (Shen et al. 2014; Riaz Rajoka et al. 2017) or
the use of drugs for treating the disease (Le Bastard et al. 2018; Vich
Vila et al. 2020; Weersma et al. 2020).

Notably, we observed that some of the more frequently de-
pleted species in disease were butyrate producers. Butyrate has
been associated with beneficial effects in the colon (inhibition of
inflammation, reinforcement of the epithelial barrier, decreased
oxidative stress) (Hamer et al. 2008). In addition, butyrate-produc-
ing species are also depleted in our models of CD presented here,
suggesting that depletion of health-driving species is as significant
as enrichment of disease-driving species in disease status.
Conversely, some enriched species may induce disease pathology
by driving new infections, potentiating disease symptoms, or
even weakening immune responses. For example, some reports
suggest F. nucleatum promotes CRC development and metastasis
(Casasanta et al. 2020; Chen et al. 2020). We found a similar link
using the SHAP-interpreted random forest predictive model.
Others report that F. plautii, a species enriched in six cohorts in
the HGMA, suppresses Th2 immune responses in mice (Ogita
et al. 2020), suggesting that this species exerts a similar effect in
humans. The Pan-MGAS we present here is dominated by CRC
studies because of the greater number of these data sets available.
As future studies includemore countries and diseases, our analyses
will be updated and balance out this bias.

All the species in the present studywere derived frommetage-
nomic gut samples; however notably, many of the species identi-
fied in our analyses as either enriched or depleted in disease
states are not exclusively found in the gut but also present in the
oral cavity. This is particularly true for representatives of the
Streptococcus genus. Many of the streptococcal species identified
here are members of the viridans group Streptococci, a diverse group
that hasmembers associated with disease and polymicrobial infec-
tion (e.g., S. anginosus, associated with liver and soft tissue abscess-
es) (Conte et al. 2020), as well asmembers that have been proposed
for use as probiotics (e.g., S. salivarius) (Shen et al. 2014; Riaz
Rajoka et al. 2017). We recently found that the translocation of
oral bacteria to the gut may lead to systemic inflammation during
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disease pathogenesis, including liver cirrhosis, and rifaximin treat-
ment may prevent this oralization, thereby improving disease
symptoms, including hepatic encephalopathy (Patel et al. 2022).

The projection of functions associated with enriched/deplet-
ed species in disease supports observations made using species
alone. Functions commonly enriched in diseases potentialy pro-
vide their carriers with increased ecological fitness, meaning that
they have a better chance of thriving in altered conditions, playing
indirect roles in disease pathology, for example, by utilizing addi-
tional carbon sources (e.g., CL543-pentose phosphate pathway
[Rytter et al. 2021], ethanolamine [Garsin 2010]) or increasing
their ability to survive environmental stresses (CL-592 osmopro-
tectant cluster) (Riaz Rajoka et al. 2017). However, enrichment of
these functions does notmean that they are exclusive to pathogen-
ic organisms. For example, although anaerobic sulfite-reducing ac-
tivity is often used as amarker for food contamination (Doyle et al.
2018), it is also present in several nonpathogenic bacteria.
Conversely, functions depleted in different diseases may also
play an active role in healthmaintenance. For example, pectic sub-
stances can inhibit gut inflammation and relieve inflammatory
bowel disease symptoms (Doyle et al. 2018).

Finally, the integration of metagenomic data from many
studies spanning five continents provides a valuable knowledge re-
source for researchers investigating the impact of the microbiome
on individual health parameters. This open-access atlas will be up-
dated routinely with the new publicly available gut metagenomics
data, including the recently announced One Million Microbiome
Project, to provide comprehensive open-access metagenomics
data frommultiple research centers. Therefore, an in-depth analy-
sis of the impact of the gut microbiome on health and disease will
be used to facilitate future studies to reveal the critical role of the
gut microbiome in maintaining human health.

Methods

Metagenomics species pan-genome creation

The 1601metagenomic samples used to build the Integrated Gene
Catalog of the human gut microbiome (IGC2) were downloaded
from the European Nucleotide Archive (ENA; https://www.ebi.ac
.uk/ena/browser/home) (Supplemental Fig. S1A; Li et al. 2014).
Using the Meteor software suite (Pons et al. 2010; see https
://forgemia.inra.fr/metagenopolis/meteor), reads from each sam-
ple were mapped against the IGC2 catalog, and a raw gene abun-
dance table was generated. This table was submitted to
MSPminer (Plaza Oñate et al. 2019), which reconstituted 1989
metagenomic-species pan-genomes (MSPs). MSPs are gene clusters
thatmost likely belong to the same species (with a genome average
nucleotide identity≥95%), based on thehypothesis introduced by
Nielsen et al. (2014) that genes belonging to the same species
should be co-abundant across multiple metagenomic samples
(SupplementalMaterials). In this study,MSPswere used to identify
species-specific core genes that allow for high-sensitivity and
high-specificity taxonomic profiling. The remaining genes that
were part of the pan-genome of the species were also used to assess
the functional potential of microbial species or to study intra-spe-
cies gene content variability. Quality control of each MSP was
manually performed by visualizing heatmaps representative of
the normalized gene abundance profiles. In addition, MSP com-
pleteness and contamination were assessed by searching for 40
universal single-copy marker genes (Sunagawa et al. 2013) and
by checking taxonomic homogeneity.

MSP taxonomic annotation with phylogenetic tree

MSP taxonomic annotationwas performed by aligning all core and
accessory genes against nt and NCBI WGS (version of September
2018 restricted to the taxa bacteria, archaea, fungi, viruses, and
blastocystis) using BLASTN (version 2.7.1, task =megablast, word_
size = 16) (Altschul et al. 1997). The 20 best hits for each gene were
retained. A species-level assignmentwas given if >50%of the genes
matched the RefSeq reference genome of a given species, with a
mean identity of ≥95% and mean gene length coverage of
≥90%. The remaining MSPs were assigned to a higher taxonomic
level (genus to superkingdom) if >50% of their genes had the
same annotation.

Forty universal phylogenetic marker genes were extracted
from MSPs using MOCAT (Kultima et al. 2012). MSPs with fewer
than five markers were excluded. The markers were then aligned
separately using MUSCLE (Edgar 2004). Forty alignments were
merged and trimmed using trimAl (Capella-Gutiérrez et al. 2009).
Finally, the phylogenetic tree was computed using FastTreeMP
(Price et al. 2010) and visualized using iTOL (Letunic and Bork
2021). Phylogenetic placement was used to improve and correct
taxonomic annotation. Phylogenetic data, species labels, and phy-
lum coloring can be accessed from the INRAE data portal (https
://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/FLANUP),
with annotations for enriched species found at GitHub (https
://github.com/sysbiomelab/ATLAS).

Functional annotation of the gut gene catalog and MSP

The IGC2 catalog was annotated for antibiotic-resistance determi-
nants (ARDs) described in theMustard database (v1.0) (Ruppé et al.
2019; http://www.mgps.eu/Mustard/). Protein sequences were
aligned against 9462 ARD sequences using BLASTP 2.7.1+ (option
–evalue =10–5). Best-hit alignmentswere filtered for identity≥95%
and bidirectional alignment coverage≥90% (at the query and sub-
ject levels), giving a list of ARD candidates belonging to 30 fami-
lies. Annotation of the CAZymes of the IGC2 catalog was
performed by comparing the predicted protein sequences to those
in the CAZy database and to hiddenMarkovmodels (HMMs) built
from each CAZyme family (Terrapon et al. 2017), following a pro-
cedure previously described for other metagenomic analyses
(Svartström et al. 2017). Proteins in the IGC2 catalog were also an-
notated to KOs using DIAMOND (version 0.9.22.123) (Buchfink
et al. 2015) against the KEGG database (version 82). Best-hit align-
ments with an e-value≤10−5 and bit scores≥60 were considered.
Proteins involved in the virulence factors of PATRIC (Gillespie
et al. 2011; Mao et al. 2015) were matched against IGC2 (Li et al.
2014) using BLASTP (best identity >50%, e-value<10−10). The phe-
notypes of MSPs were manually checked and annotated based on
the JGI-GOLD phenotype (organism metadata) (Mukherjee et al.
2019). We identified the biosynthetic genes of MSPs using the
standalone antiSMASH program with the minimal run option, fo-
cusing on core detection modules (version 5) (Blin et al. 2017).

Quality control/normalization of gene counts and species

abundance profiling

We collected 6014 of gut microbiome samples across 19 different
countries. To assess the technical biases for theDNA extraction, we
checked for all the available extraction protocols (Supplemental
Table S12). Only four data sets (8% of total samples) stated that
in-house DNA extraction protocols were used, whereas other
data sets used standard protocols or commercially available extrac-
tion kits (MB Biomedicals, MoBio, Qbiogene, and Qiagen). To
test degrees of variability in outputs, we performed PERMANOVA
tests and concluded that different DNA extraction protocols
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do not have a significant effect on microbiome composition (Df =
14, F = 5273, P-value =0.422). We filtered out human reads and
then mapped metagenomic data on the IGC2 catalog of the hu-
man gut metagenome using METEOR (Pons et al. 2010). Based
on the aligned reads, we estimated the abundance of each refer-
ence gene in the catalog, normalizing multiple mapped reads by
their numbers and summing up normalized counts for a given
gene. To reduce the variability by sequencing depths, gene count
values were downsized to 10million reads per sample, and samples
with fewer than 10 million mapped reads were excluded from our
data set. Normalized gene counts were used to quantifyMSP abun-
dance using the R momr (MetaOMineR) package (Le Chatelier et al.
2013). MSP abundances were estimated by themean abundance of
its 100 “marker” genes (i.e., the genes that correlate the most alto-
gether). If <10% of “marker” genes were seen in a sample, the
abundance of the MSPs was set to zero.

Tracing the diversification of healthy metagenomic samples

of different geographies

After quantification and per-million scaling of MSP abundance
profiles, we employed trajectory analysis in the RMonocle version
2 package to identify how samples were clustered (Qiu et al. 2017).
In short, we selected the species profiles of all normal samples from
different geographical origins and reduced the sample profiles into
two dimensions using the advanced nonlinear reconstruction al-
gorithm DDRTree. Based on the reduced two-dimensional compo-
nents, we presented how the samples were closely clustered as
branches in the scatter plots.

Identification of region-enriched species and genes from

geographically distinct cohorts

The regional enrichment of species was calculated by the Z-score
for each MSP from the difference between the mean relative abun-
dance of each country and the entire population. By selecting the
top 100 overrepresented MSPs in the western and nonwestern
groups, two separate cumulative sums of their genes were filtered
to obtain more than 90 genes. The genes in each list were mapped
against the CAZy, PATRIC, andMustard databases. Eighteen of the
maximum differences between the western and nonwestern gene
count lists were calculated and plotted.

Pan-metagenomics association studies

First, we selected healthy and diseased samples without interven-
tions and redundant measurements (i.e., multiple visits) and per-
formed comparative analyses of the chosen samples (for the
number of selected samples, see Supplemental Table S1). We esti-
mated the effect sizes of Wilcoxon rank-sum (one-sided) tests for
MSP enrichment and depletion in diseases compared with healthy
controls in a given country (Fritz et al. 2012) and identified signifi-
cantly enriched or depleted species with medium effect sizes (effect
size≥0.3). To estimate the effect-size values, the Z-statistics calculat-
ed from the P-valuewere dividedby the square root of the total num-
ber of samples (Fritz et al. 2012). Manhattan plots of Pan-MGAS
based on effect sizes were plotted using the R qqman package
(Turner 2018). To identify theMSPs frequently enriched or depleted
in disease, we counted the number of times eachMSP had an effect
size above 0.3 in eachdifferent disease cohort included in this study.

Unsupervised clustering of co-conserved functions of gut

microbiota

We calculated the Jaccard index among functional annotations to
calculate the number of species that shared a pair of functions,

which were compared at the annotated term levels not the gene
levels. We selected highly shared pairs of functions (Jaccard in-
dex≥0.75) and merged them into a functional co-occurrence net-
work using the R igraph package (Csardi and Nepusz 2006).
Functional clusterswithin the networkwere identified by unsuper-
vised community detection, the short random walk algorithm
(cluster_walktrap function) (Pons and Latapy 2006; Uhlen et al.
2017), and singleton functions within the network. Among non-
singleton functional clusters, we selected representative functional
clusters if the functions of given functional clusters were found in
more than three species, thereby excluding functional clusters
sparsely annotated over MSPs. MSPs were associated with a func-
tional cluster if the given MSP covered >75% of the functions of
the functional cluster (Supplemental Table S7).

Enrichment of functional clusters in disease cohorts

To project the functional clusters associated with enriched/deplet-
ed MSPs within a disease cohort, we applied a hypergeometric test
to determine the probability of finding the set of MSPs associated
with the functional cluster overlapping with the set of enriched/
depleted MSPs within the disease cohort. We only applied the
test to those functional clusters with at least 10 associated MSPs
and established a P-value cutoff of 0.0001. To identify the func-
tional clusters frequently enriched in disease, we counted the
number of times each cluster had a P-value below the cutoff in
each different cohort included in this study.

Proportionality between MSPs

Proportionality was estimated using the propr R package (Quinn
et al. 2017). We used the relative abundance matrix of all samples
against the MSP as the input. Only MSPs with relative abundance
values above zero inmore than 50 sampleswere included. FDR cut-
off values were estimated using the propr function updateCutoffs.
We created a network representation of the resulting MSP pairs
with proportionality values greater than 0.65.

Random forest classification model to predict disease phenotype

We trained a random forest classifier with hyperparameters “boot-
strap”: true, “ccp_alpha”: 0.0, “class_weight”: none, “criterion”:
“criterion,” “max_depth”: none, “max_features”: “auto,” “max_
leaf_nodes”: none, “max_samples”: none, “min_impurity_
decrease”: 0.0, “min_samples_leaf”: 1, “min_samples_split”: 2, “min_
weight_fraction_leaf”: 0.0, “n_estimators”: 500, “n_jobs”: –1, “oob_
score”: false, “random_state”: 1, “verbose”: 0, “warm_start”: false to
distinguishbetweenequalnumbersofdiseaseandhealthycontrols for
each disease data set that has a corresponding matched healthy con-
trol using the scikit-learn Pythonpackage (Pedregosa et al. 2011). First,
the relative abundance data were standardized using the scikit-learn
implementation of the StandardScaler function. Training and testing
were performed on randomly selected samples split 70% and 30%
of the full diseased data set, respectively, with a fixed random seed
to ensure the reproducibility of the model. Hyperparameters were
tuned using Python package “Pycaret” (Pol and Sawant 2021).
Model performancewasmeasured using AUROC scoring. Python im-
plementation of the explainable AI algorithmSHAPwas used to show
the species contribution to disease classification (Lundberg and Lee
2017). Themeanabsolute SHAP score for eachdisease predictivemod-
el was determined using the sign of the Spearman’s rank correlation
between the feature value and the SHAP score. Positive values indicate
that a higher relative abundance is more likely to classify the disease
than inhealthy samples. Negative values indicate that a lower relative
abundance is more likely to classify the disease than in healthy
samples.
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Data sets

The list of public data sets used in this study are available at https://
www.microbiomeatlas.org, on the downloads page under “bio
proj.csv” with relevant project accession code of the raw data
and references. Additionally, these data sets were provided in
Supplemental Table S1. In the case of the samples, their
metadata were available (including age, gender, BMI, and geogra-
phy); they are provided in the https://www.microbiomeatlas
.org, download page under the “sampleID.csv.” The complete
interactive MSP phylogenetic tree with effect size and western
versus nonwestern annotations in Supplemental Figure S5 is
accessible through the “iTOL” link (https://itol.embl.de/tree/
130237251127435861638193829). The downloadable link for
the genome-scale metabolic models (GEMs) linked to the MSPs
is provided at https://www.microbiomeatlas.org, on the down-
loads page under “MSP_GEM_models.zip,” and the construction
and details of the GEMs have been reported in our other paper
(Bidkhori and Shoaie 2024).

Software availability

The scripts for functional cluster characterization, SHAP calcula-
tion, plotting, and enrichment in disease/region are included in
the Supplemental Code and are publicly available at GitHub
(https://github.com/sysbiomelab/ATLAS). The R language com-
puting program was used for most of the analysis (R Core Team
2022).
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