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Abstract Increasing the awareness of society about climate change by using a simplified way for the
explanation of its impacts might be one of the key elements to adaptation and mitigation of its possible effects.
This study investigates climate analogs, which allow the possibility to find, today, a place on land where
climatic conditions are similar to those that a specific area will face in the future. The grid‐based calculation
of analogs over the selected European domain was carried out using a newly proposed distance between
multivariate distributions, the Wasserstein distance, that has never been used so far for climate analog
calculations. By working on the whole multivariate distributions, the Wasserstein distance allows us to account
for dependencies between the variables of interest and for the shape of their distribution. Its features are
compared with the Euclidean and the Mahalanobis distances, which are the most used methods up to now.
Multi‐model climate analogs analysis is achieved between the reference period 1981–2010 and three future
periods 2011–2040, 2041–2070, and 2071–2100, for seasonal temperatures (mean, min, and max) and
precipitation, from five different climate models and three different socio‐economic scenarios. The agreement
between climate models in the location and degree of similarity of the best analogs decreases as warming
intensifies and/or as time approaches the end of the century. As the climate warms, the similarity between future
and current climatic conditions gradually decreases and the spatial (geographical) distance between a location
and its best analog increases.

Plain Language Summary This study explores the concept of climate analogs, which can help us
understand and prepare for future climate conditions. Climate analogs are places on Earth today that have
similar climate conditions to what a specific area will experience in the future. The study focuses on Europe and
uses a newmethod called theWasserstein distance to calculate these analogs. This method takes into account the
relationships between different climate variables. We analyze multiple climate models and emission scenarios
for different time periods. The findings indicate that as we approach the end of the century and as scenarios
become more severe, the agreement between climate models on best analogs decreases, although they point to
similar geographical areas. Toward the end of the century, the similarity between future and current climate
conditions will decline, and the distance between a location and its best analog will increase. This means that
finding suitable climate analogs becomes more challenging. Overall, this study highlights the importance of
understanding climate change impacts and finding ways to adapt and mitigate its effects through simplified
explanations and climate analogs.

1. Introduction
Changing behaviors starts with awareness as the first step even if it is not sufficient by itself (Arlt et al., 2011;
Halady & Rao, 2010). Therefore, awareness of climate change is required to reach the goals of the Paris
Agreement and has been recently highlighted in the last Intergovernmental Panel on Climate Change (IPCC)
reports (IPCC, 2022a, 2022b). The gap between recognizing the risks of climate change and taking social action is
influenced by various factors, but shifting public perceptions and understanding of climate change is seen as
essential for increasing public involvement (Fitzpatrick & Dunn, 2019; Khatibi et al., 2021; Owen, 2020).
Explaining in a way that society can better understand is one of the most important factors in raising awareness
against the threats that climate change will cause (Lee et al., 2015; O’Neill & Nicholson‐Cole, 2009; Rohat
et al., 2018). However, it is not easy to translate a very complex and uncertain phenomenon into a popular
language that people can relate to their daily lives (Lorenzoni & Pidgeon, 2006). Therefore, climate analogs (CA)
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are an effective method that can be used to make the studies of scientists understandable to the public (Fitzpatrick
& Dunn, 2019).

The idea of CA is based on matching, that is, pairing, climate conditions at one location in a given time period
(i.e., present), with climate conditions at another location and another time period (i.e., future). Matching the
future and current climatic conditions of different locations provides a simplified representation of the changes
due to climate change. As a simple example, while it makes sense for a climate scientist that, for a given region,
the summer precipitation will decrease by one standard deviation from the mean and that temperature will in-
crease by 1.5°C, it is a more understandable definition for the public that the city (i.e., Paris) they live in today will
resemble the city in a region located further south/equatorward (i.e., Bordeaux) in the future. In this way, a farmer
or a municipality can act by understanding how its activities can be adapted in the future, building experience
from current conditions at this other southern location. Therefore, the utilization of CA in the presentation of
potential regional changes not only facilitates a basic understanding but also can support the development
of dependable adaptation strategies.

CA, as a (dis)similarity or distance‐based method, requires the use of an appropriate metric to accurately measure
the (dis)similarity of matches made using climate variables like precipitation and temperature. This measurement
is achieved through the use of similarity (or, inversely, dissimilarity) calculations, which is a mathematical
distance. By comparing the climate conditions of different locations and determining their similarity, the climatic
similarity of these two locations can be established. There are many studies in the literature in which various
similarity metrics are used and developed for the calculation of CA at different scales. The choice of similarity
metric depends on the research question, computational complexity and data scale. The most commonly used
metric to calculate climate analogs is the Euclidean distance (ED) which measures the straight‐line distance
between two points in a multidimensional space. ED based CA were used to investigate different topics such as
climate change from a global city analogs analysis (Bastin et al., 2019), European cities' climate (Rohat
et al., 2018), novel and disappearing climates on a global scale (Williams et al., 2007), and production potential
under climate change on existing agricultural areas around the world (Pugh et al., 2016). The methodology of CA
has been widely employed in studies of cities, primarily to investigate which cities will be climatically similar to
current cities in the future, or to identify the global climate types that will emerge or decline over time. Apart from
studies that use recent historical data, CA have also been examined using past earth system paleoclimate variables
(Burke et al., 2018). Furthermore, Grenier et al. (2013) examined six different techniques previously used in the
CA literature and concluded that standardized ED is the best metric for selecting spatial analogs. However, it is
important to note that the evaluation was conducted using the methods available at that time. Therefore, it did not
include the two other methods besides ED, which are used in this study and explained in the following paragraphs.

In the literature, the CA are generally calculated from statistical parameters, such as the mean or standard de-
viation, derived from chosen multiple climate variables (generally based on temperature and precipitation) over
the present and future time periods. However, the dependence (i.e., correlation) between these multiple variables
of interest was generally left unaddressed, while the possible change of the dependence between variables within
time (e.g., interannual variability or extremes) also affects the joint distribution of the variables. The importance
of the dependency between climatic variables has been clearly illustrated for extreme weather events (Leonard
et al., 2014; Salvadori et al., 2016). In recent years, the Mahalanobis distance (MD) presented by Mahony
et al. (2017) started to become a more dominant method in CA studies (Fitzpatrick & Dunn, 2019; King, 2023;
Lotterhos et al., 2021). MDmethod offers more benefits compared to ED as it uses of variable dependencies at the
location of interest while searching for the best analogs in candidate locations. Even though the MD method
considers the dependencies between the variables at the focal location, due to the use of climatological means
(long‐term means) as variables for analog locations calculation, it still leaves out some points (such as; de-
pendencies between variables at candidate locations and shapes of the variable distributions) which are later
discussed in the following sections. When considering the dependencies between variables as a criterion for
selecting the best climate analog, it's important to note that while the ED method lacks this feature, the MD
method incorporates the interannual variability and the correlation between climate variables but only for the
focal/reference location, thereby losing an important part of the climate signal, the interannual variability and the
correlation at the analog position. On the other hand, theWasserstein distance (WD) method uses dependencies as
a criterion by calculating them for both focal and candidate locations (see Section 2.2 about the calculation of the
different distances). What we mean by “criterion” in this context is that similarly to sharing climatology being a
criterion for identifying the best analog, having reference and analog locations sharing similar dependencies
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between variables is a significant criterion for the WD method. In other words, only the WD method searches for
analogs by considering the dependencies between variables. Therefore, considering the dependence between
variables in the calculation of multivariate climate analogs should allow a more complete understanding of the
relationships between the climate variables, which can improve the accuracy and reliability of the analogs and
ultimately provide more robust information for decision‐making related to climate change.

In this paper, we propose a new approach, based on the WD Rüschendorf (1985) for climate analog calculations,
that considers the multivariate (i.e., joint) distribution of the climate variables of interest and, therefore, is able to
account for both univariate statistics and intervariable dependencies. The method is applied to grid‐based climate
model outputs in order to identify analogs for every region (grid point) on Earth, as opposed to being limited to
specific cities or sites. The grid‐based analysis aims to enhance the comprehensiveness of results in CA analysis
through the implementation of unconstrained location matching, apart from looking at analogs on land only.
Thus, the best analog of each grid point within Europe is found from globally available grid points over lands.
In addition, this study enables the identification of robust analogs through a multi‐model analysis and also
evaluates the agreement across climate models from a CA perspective.

The paper is organized as follows. In Section 2, information about the datasets used is given and the definitions of
Euclidean, Mahalanobis and Wasserstein distance methods are provided. In Section 3, a comparison between the
three methods by using a synthetic dataset is performed and discussed. In Section 4, the CA results obtained by
using WD for the example city of Paris from various GCMs are provided, as well as the investigation of multi‐
model best CA results and their consistencies. In addition, the detailed overall CA results for the selected Eu-
ropean domain are presented and discussed. In Section 5, conclusions and some future research directions are
given.

2. Materials and Methods
In this study, the CA methodology aims to look for the location with today's (or very recent past) climate con-
ditions similar to the simulated future climatic conditions of a selected reference location (location of interest).
This approach is basically based on the calculation of distances between the simulated future climatic conditions
at the location of interest and today's conditions at any other terrestrial location. The outcome of such an analysis
provides comprehensive information regarding the temporal (as specified by the designated time periods) and
spatial variations of climatic conditions, contingent upon Shared Socioeconomic Pathways (SSP).

The smallest distance corresponds to the highest (i.e., best) similarity, so the location where the current climatic
conditions are the most similar to the possible future conditions at the reference location can be called the best
analog. Unlike previous CA studies, this study aims to identify the best analog locations not based on similarity
comparisons between selected cities or specific areas, but on a globally gridded scale. Specifically, similarity
calculations are performed between each grid point within the study region and all other grid points available over
land across the globe.

In this study two different analyses are performed; first, Euclidean, Mahalanobis and Wasserstein distance
methods are applied to synthetic datasets in order to compare the properties of the methods. Then, the calculation
of CA using climate variables is carried out with the most novel approach, the Wasserstein distance method.
All analyses regarding this study are performed using the R environment (R Core Team, 2021).

2.1. ISIMIP3b Climate Data

The input climate variables used in this study are obtained from the Inter‐Sectoral Impact Model Intercomparison
Project (ISIMIP) which aims to assess the impacts of climate change on different sectors at various time horizons
(Warszawski et al., 2014). The project's third protocol (ISIMIP3b) offers five bias‐adjusted CMIP6 (Coupled
Model Inter‐comparison Project Phase 6) climate models (Table 1) for three different socio‐economic scenarios
including low SSP126 (SSP1‐RCP2.6), mid SSP370 (SSP3‐RCP7.0), and high SSP585 (SSP5‐RCP8.5), inter-
polated at 0.5° spatial resolution (Lange & Büchner, 2021).

In total, the 15 different available global climate datasets (five Global Climate Models (GCMs) and three SSPs)
are used in the study. Climate conditions for a specific time period are defined using 30 consecutive years:
current/reference climate (referred as Historical—HS) uses years between 1981 and 2010, Early Future (EF)
conditions are for 2011–2040, Mid Future (MF) for 2041–2070, and Far Future (FF) for 2071–2100.
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In our analysis, four climate variables are used to diagnose the CA: total daily precipitation, as well as mean,
minimum and maximum daily temperature. All four seasons (e.g., the summer season in the northern hemisphere
is JJA—June‐July‐August—while it is DJF—December‐January‐February—in the southern hemisphere) are
considered therefore, in total, 16 variables are used to calculate the mathematical distances. Seasonal values are
computed from daily datasets by taking the sum of daily precipitation for total seasonal precipitation and taking
the mean, minimum and maximum temperature values within each season respectively for the mean, minimum
and maximum seasonal temperature values. The seasonal minimum and maximum temperatures are thus
respectively the smallest and highest daily temperature within the related season. Consequently, datasets of
16 × 30 × 4 (variables × number of years × defined time periods) dimensions are generated for each grid point on
a global scale for each GCM and SSP. Therefore, for a given triplet (GCM, SSP and future time period) the
method will measure the distances between two sets of gridded climate data: today's climate (i.e., the HS period,
hereafter referred to as the A matrix) and the time horizon targeted (i.e., the selected future period which can be
EF, MF or FF, hereafter referred to as the B matrix).

The gridded climate data, A and B, are (n × K) × T matrices, n being the number of land points examined, K the
number of climate variables per grid point (16 herein), and T the number of years per climate data (30 herein).
In our analysis, n equals 92,889 land points for matrix A (all land points on the globe), while for matrix B it either
equals 6,797 when we concentrate over Europe or one if we are interested in only one grid point/city (hereafter
Paris).

In our study, searching for the best analog for a focal location j, in matrix B, means finding the candidate analog
location, i, from matrix A that minimizes the mathematical distance between their climatic conditions.

2.2. Methods of Calculating Distances

We intend to compare three methods, two of them being commonly used in the field of climate analogs
(the standardized Euclidean Distance, hereafter referred to as ED, and the Mahalanobis Distance, hereafter
referred to as MD). The third method is the one we propose, the Wasserstein Distance, hereafter referred to
as WD.

We define some notations below that will be further used for the distance calculations:

aikt is the value of the climate variable k, at location i and for year t, within the matrix A, which means for the HS
period 1981–2010 (i.e., summer precipitation at Paris for year 1981);

bjkt is the value of the climate variable k, at location j and for year t, within the matrix B, which means for the
targeted future period (i.e., summer precipitation at Barcelona for year 2071).

Therefore, ai and bj refer to (K × T) sub‐matrices that store 30 years of data (at the seasonal time scale) for
K variables. The other quantities we need for the distance calculations are:

aik: the climatological (temporal) mean of aikt;

bjk: the climatological (temporal) mean of bjkt;

sjk: the standard deviation of variable k (i.e., measuring the interannual variability) at location j in matrix B. It is
the standard deviation of the projected future climate data at our focal location j ((bjkt) t = 1,..,T row vector).

Table 1
List of Used GCMs in ISIMIP3b

Model Institution Reference

GFDL‐ESM4 Geophysical Fluid Dynamics Laboratory, USA (Dunne et al., 2020)

IPSL‐CM6A‐LR Institut Pierre‐Simon Laplace, France (Boucher et al., 2020)

MPI‐ESM1‐2‐HR Max Planck Institute for Meteorology, Germany (Mauritsen et al., 2019)

MRI‐ESM2‐0 Meteorological Research Institute, Japan (Yukimoto et al., 2019)

UKESM1‐0‐LL Met Office Hadley Center, UK (Sellar et al., 2019)
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2.2.1. Euclidean Distance

The Euclidean distance (EDji) between the projected climate data bjk at a focal location j (over future period) and
the historical climate data aik at any location i, is formulated by Williams et al. (2007) as follows:

EDji2 =∑
K

k=1

(bjk − aik)
2

sjk
(1)

Here, location i is the analog candidate. The ED is computed separately for each climate variable and the squared
distances are summed up. All climate variables are treated equally, no weighting of variables is applied, no
correlation between variables is accounted for. The standardization of each variable (to make them comparable
and summable) is accounted for via the standard deviation of the projected climate sjk. The final best analog is the
location i whose aik minimizes the ED with respect to bjk. More details can be found in Williams et al. (2007).

2.2.2. Mahalanobis Distance

The Mahalanobis distance, MDji, between the focal location j (over the future period) and a location i, its analog
candidate (over the historical period) has been formulated by Mahony et al. (2017) as follows:

MDji2 = [b′j − a′i]
T
[Rj]

− 1
[b′j − a′i] (2)

where Rj is the correlation matrix of the bj (K × K) and a′i and b′j are the row vectors (1 × K) of standardized
30 year mean climatological values at locations i and j respectively, defined as

a′i = (a′ik)k=1,...,k and b′j = (b′jk)k=1,...,k (3)

with a′ik =
aik − clk
σ(clk)

and b′jk =
bjk − clk
σ(clk)

where clk and σ(clk) are the mean and standard deviation of variable k at the focal location l. It is important to note

that in Mahony et al. (2017), both vectors of past (a′i) and future (b′j) mean climatological values were stan-
dardized with respect to clk and σ(clk) , see Equation 3, that is, which in the original study was based on observed
dataset. In this study, the standardization is done with respect to the data of the focal location j, over the selected

future period, that is, with mean bjk and standard deviation sjk. Therefore, the a′i and b′j terms in Equation 2
become

a′ik =
aik − bjk
sjk

and b′jk =
bjk − bjk
sjk

= 0 (4)

and the final MDji formulation to use becomes

MDji2 = [a′i]
T
[Rj]

− 1
[a′i] (5)

For clarification, the MD method is applied as in Mahony et al. (2017). However, the inclusion of an additional
dataset (observational data, clk) for standardization introduced an extra term in the equation. In this study, we used
only the GCM dataset, applying the standardization to a single dataset. As a result, only the standardized past
values of the possible analog locations remain, while the standardized future focal location value canceled out.

The final best analog is the location i whose a′i minimizes MDji. More details can be found in Mahony
et al. (2017). Compared to the ED, the correlations between the selected climate variables in the targeted future are
accounted for (via the Rmatrix). However, these correlations are not compared to the correlations at present time
and at other locations, they allow the distance metric to weigh correlated variables more heavily. In other words,
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when variables are highly correlated, the MD further adjusts by ‘shrinking' the distance in the direction of high
correlation, making it more sensitive to the true geometry of the data.

In the study byMahony et al. (2017), MDwas converted into Sigma Dissimilarity (SD) measures by transforming
distances into percentiles of the chi distribution, with degrees of freedom equal to the number of climate variables,
thus accounting for dimensionality. In our study, we also calculated SD values as the final results of MD method.
However, for simplicity, we refer to this method simply as MD.

2.2.3. Wasserstein Distance

The Wasserstein distance (WDji) between the focal location j (over the future period) and i, its analog candidate
(over the historical period) is calculated between the standardized yearly values of the (K × T) matrices b′j and a′i .
The values of the b′j and a′i matrices are calculated using:

a′ikt =
aikt − bjk
sjk

and b′jkt =
bjkt − bjk
sjk

(6)

One major difference with the other two methods is that the WD is using all the 30 year annual values of each
variable, while the other methods are only or mostly based on climatological mean values of 30 years.

The WD is a metric based on optimal transport theory. It measures the optimum total transport cost required
to move a set of n points from one distribution to another distribution in an m‐dimensional phase space
(Villani, 2009). Let's take a simple example with one‐dimensional data (i.e., a single variable for each location). In
this case, the location i over the historical period is only described by a′it values (no more k index anymore) and the
location j over the future period is only described by b′jt values. Now, let µ and ν be two discrete probability
measures, characterizing non‐parametric distributions respectively of a′it and b′jt, defined as:

µ =∑
T

t=1
µtδa′it and ν =∑

T

t=1
νtδb′jt (7)

where δa′ it and δb′ jt are Dirac masses at points a
′it and b′jt respectively (i.e., functions such that δa′ it(x) = 1 if

x = a′it and 0 otherwise; and δb′ jt(x) = 1 if x = b′jt and 0 otherwise) and whose fractional masses are µt and νt,

respectively, with ∑
T

t=1
µt = ∑

T

t=1
νt = 1 and all terms in the summation are positive.

The quadratic Wasserstein distance, WD2, between these two discrete distributions µ and ν can be written as
(Vissio et al., 2020):

WD2(μ,ν) = infγ
t,t′
∑

t,t′

γt,t′ [d(a′it ,b′jt′ )] (8)

where, γt,t′ is the set of coefficients called the transport plan which describes how the fraction of mass transports

from a′it to b′jt and d(a′it,b′jt′ ) is the usual ED between a′it and b′jt′ . When all possible transport plans (γt,t′ ) are

considered, Equation 8 is an optimization problem based on minimizing the transport cost. Therefore, the opti-
mum transportation plan, in other words the WD value, is the result of this problem. The optimization is done by
using the network simplex algorithm due to its availability and previous usage in a climate study (Robin
et al., 2017, 2019). Since the WD is a mathematical distance, a value of zero means exact match while values
greater than zero indicate distances between the distributions. Therefore, in practice in our case, the final best
analog is the location i whose a′i minimizes WD(μ,ν) .

In simple terms, WD refers to the overall transportation cost needed to move the distribution of a′i values to match
that of b′j values. The values a′i and b′i can be visualized as the coordinates of datapoints (30 yearly climate
variables data in 16 dimensions). The cost calculation involves utilizing the optimal transportation plan between
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these coordinates of a′i and b′i and the location i where the minimum cost is found is the final best analog. More
information about theWD and its mathematical explanation can be reached from the studies of Robin et al. (2017,
2019) and references therein. In this study, WD calculations are done by using the “transport” package
(Schuhmacher et al., 2020) in the R environment.

In summary, the key differences between the methodologies of the three distance calculation methods first lies in
their use of datasets. ED relies on mean values for both focal and other locations (Figure 1a); MD utilizes the
complete 30 year dataset for the focal point but only average values for other locations (Figure 1b), while WD
uses all 30 year datasets in all calculations and locations (Figure 1c). Another major distinction is how they handle
dependencies between variables. WD is the only method that accounts for dependencies between variables
because of its optimum transport plan calculation applied to the multivariate distributions (lines in Figure 1c); MD
uses intervariable correlations only at the focal point and employs it only as weighting factors applied to ED
values in Equation 2; and ED does not consider any dependency.

3. Comparison of the Methods
3.1. Synthetic Dataset

In order to evaluate the performance of the different distance calculation methods we have constructed synthetic
bivariate datasets that have been divided into four categories based on the correlation between variables and the
probability distribution types. These four categories are labeled as (a) “dependent and gaussian”, (b) “independent
and gaussian”, (c) “dependent and skewed”, and (d) “independent and skewed”. The terms “dependent” and
“independent” refer to the correlation between variables within the bivariate dataset, while “Gaussian” (the data
points cluster around the mean and the distribution is symmetric) and “Skewed” (the data points are not
distributed symmetrically around the mean, with more observations on one side of the distribution) refer to the
shape of the probability distribution of the data. The distinction between categories is solely based on dependency
and marginal probability distribution types, while other statistical properties such as the mean and standard
deviation of each variable are kept similar. Each category contains 100 samples of bivariate data, and each sample

Figure 1. Scatter plots of the annual temperature, precipitation values and their climatological (temporal) means for three illustrative locations (red focal location, green
and blue for possible analog locations) used in each distance calculation methods: (a) Euclidean, (b) Mahalanobis and (c) Wasserstein. The colored points indicate the
used data in calculation, circular points are the annual values where square points show climatological means and lines between focal location and possible candidate
locations represent calculated distances. When the points are colored it means they are used for the distance calculations (e.g., at panel b and c interannual values are
used to calculate correlation).
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has 30 data points for each of the two variables. This number of data points is chosen to be consistent with the
main analysis of the study, which uses climate variables obtained from 30 year periods.

The rmvnorm (Genz et al., 2021) and unonr (Qu & Zhang, 2020) R functions are used to generate synthetic
data from a multivariate normal and multivariate non‐normal distributions, respectively. In both functions
three arguments: n, which specifies the number of data to be generated, the mean vector, which specifies the
average value of each variable in the distribution, and the sigma which is the covariance matrix specifies the
relationships between the variables, are required. We used the rmvnorm function with n = 30 and the mean
vector (2, 37) for all four categories while only changing the covariance matrix (variances are 9 and 11) to
generate dependent (Pearson's r = 0.7) and independent (r = 0) normal bivariate datasets. For the non‐normal
datasets, we used the same set of arguments and just added the skewness argument as one in the unonr
function, allowing to generate bivariate non‐Normal data using the Vale and Maurelli's method (Vale &
Maurelli, 1983).

The distribution and scatter plot of the synthetic datasets (100 samples × 4 categories × 30 data points × 2
variables) are presented in Figure 2. The mean values of the first and second variables are indicated by dashed
lines, and the correlation between the variables is provided in the bottom right corner of each scatter plot.

For instance, the first sample from the categories of gaussian distribution (a) and (b) include bivariate data sets
(a1,i, a2,i) and (b1,i, b2,i) (where i= 1,…, 30), respectively. The means and standard deviations of the (a1,i, b1,i) and
(a2,i, b2,i) pairs are identical in both categories. Therefore, the only distinction between categories (a) and (b) is the
degree of correlation between their bivariate data sets; there is a non‐zero correlation between (a1,i, a2,i), while the
correlation between (b1,i, b2,i) is null. Similarly, categories (c) and (d) are created by adhering to the same logic but

Figure 2. Scatter plots and distributions of the 100 samples for each synthetic bivariate dataset category. Categories are;
(a) dependent‐gaussian, (b) independent‐gaussian, (c) dependent‐skewed, and (d) independent‐skewed. The mean values of
the variable are shown in dashed lines and the Pearson correlation values between variables are given at the bottom right.
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with the use of skewed distribution (positive skewness, with most values concentrated around the left tail) instead
of gaussian distribution, in order to examine the effect of the distribution type on the distance calculations.

3.2. Comparison of Distance Calculation Methods

We calculated the distance between the different synthetic datasets by using all three distance methods. As the
calculated distances from each method have different value ranges, we normalized the distances in order to allow
a visual comparison of the results. The normalization process involves subtracting the mean and dividing by the
standard deviation. Subsequently, for visualization purposes, values less than − 2 and greater than+2 are censored
to these thresholds. Finally, all values are rescaled to fit within the 0 to 1 range. In Figure 3, blue indicates the
closest distance and red the furthest. The diagonal of the matrix, representing the distance between a sample and
itself, is always zero.

The results obtained with the EDmethod (Figure 3a) show that all samples are nearly equidistant, regardless of the
category, meaning that the ED method cannot distinguish between correlated and uncorrelated datasets. This is
because ED only compares climatological means, variable per variable. The potential correlation between var-
iables is not accounted for when calculating the distances.

The MD method results are displayed in Figure 3b and are expected to outperform the results obtained using the
ED method in identifying the best analog from samples according to their dependencies between variables. This
expectation stems from its use of a correlation matrix derived from the focal location (R correlation matrix in
Equation 2). Figure 3b shows that the MD method differs from the ED one only when the focal point belongs to
categories with dependent variables (columns a and c). In those columns indeed, lower distances are calculated
when analogs are looked for within dependent samples (rows a and c), while relatively higher distances are
obtained when analogs are searched for in the independent samples (rows b and d). When the focal point belongs
to some independent categories (columns b and d) ED and MD distances are similar. Thus, the MD method is not
more capable than the ED method to distinguish correlated samples from uncorrelated ones. This is because MD
uses the correlation information only from the focal location, and not from both the focal and the candidate
locations.

Figure 3. Matrices of the normalized distance values between each pair of samples, as calculated by the Euclidean Distance (ED, panel (a), Mahalanobis Distance (MD,
panel (b) and theWasserstein Distance (WD, panel (c). The focal samples are located in the x‐axis where distance values calculated with respect to those are given in the
y‐axis. The diagonal values are all zeros, and the category labels are the synthetic data categories; (a) dependent‐gaussian, (b) independent‐gaussian, (c) dependent‐
skewed, and (d) independent‐skewed. Blue indicates the smallest distance and red the highest one.
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In contrast, the results obtained using theWDmethod (Figure 3c) demonstrate a clear clustering of the categories.
The majority of the minimum distances are observed between samples from the same category. This implies that,
if a selected sample is characterized by correlated bivariate data with a Gaussian distribution, it is most likely that
the sample with the smallest distance to the selected one also possesses similar characteristics. Furthermore, it is
evident that the correlation between variables has a significant impact on the calculation of distances when
comparing the results obtained in the category of correlated variables (the darker blue grids on the diagonal of
columns/rows a and c), and in the category of uncorrelated variables (the lighter blue grids on the diagonal of
columns/rows b and d). The overall findings indicate that the WD method demonstrates enhanced utility for
determining distances between distributions, considering both the dependence between variables and the types of
distributions.

Table 2 shows the category of the nearest sample for each method used (ED, MD, or WD) across all samples in
each category. For instance, for the first row, which corresponds to the dependent‐gaussian samples, ED and MD
both split the best analogs over all four categories, favoring the dependent samples (a and (c) but finding quite a
significant number of analogs in the samples with skewed distribution (b and (d). Moreover, within the dependent
samples (i.e., a and (b), ED and MD are only slightly favoring the Gaussian compared to the skewed data (37 vs.
25 for MD, 36 vs. 29 for ED), showing the relatively poor distinction between the different categories. On the
other hand, the WD method (a) finds most of the analogs (94 out of 100) in the original distribution, (b) finds a
very small number of analogs (6 out of 100) in the other dependent distribution, and (c) finds no analog at all in
both independent distributions (b and (d). The similar results can be seen for the other categories (i.e., in other
rows a, c, and (d). This shows that only the WDmethod (more than 83 out of 100 for each category) is able to find
the best analog from the same exact category that the focal sample belongs to, in a robust way.

In addition to this comparison, we provide, in the supplementary document (Figure S1 in Supporting Informa-
tion S1 and Table S1 in Supporting Information S2), a similar comparison using 16 variables (instead of 2 and by
using the same methodology given in Section 3.1. The covariance matrix, mean and standard deviations of 16
variable synthetic data are given in Tables S2 and S3 in Supporting Information S2), that is, a number of variables
similar to our real‐case application (Section 4). This 16‐variables comparison provides results and conclusions
similar to the 2‐variables comparison discussed above.

Based on these results, in the following, we only focus on the WD method, to search for climate analogs.
However, to illustrate the differences in climate analog (CA) results among the three methods, we have included
maps of Paris's CA calculated by each method using Sigma Dissimilarity (Figure S2 in Supporting
Information S1).

4. Results From the Climate Simulations
4.1. Where Are the Analogs for the City of Paris Located?

We start our analysis focusing on Paris and looking at the grid points “today”, throughout the globe, where the
climate today looks like Paris's climate “tomorrow”, with “tomorrow” being calculated from 5 GCMs in the mid‐
future (MF, 2041–2070) for the SSP370 scenario, and “today” being the reference period HS, 1981–2010. The
maps showing the calculated WD are displayed in Figure 4. The maps also show, in a small plot zooming over

Table 2
Distribution of the Best Analog (Only 1) Category (Rows a to d) for Each Dataset

Synthetic data categories

Number of selected best analogs from each category

ED MD WD

(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

Focal Sample (a) dependent‐gaussian 36 22 29 13 37 23 25 15 94 0 6 0

(b) independent‐gaussian 20 31 17 32 20 27 18 35 5 83 2 10

(c) dependent‐skewed 26 14 36 24 24 15 37 24 4 1 93 2

(d) independent‐skewed 16 29 16 39 17 29 17 37 0 2 10 88

Note. Each category has 100 samples and their best analog can be found in any of the 4 categories (columns a to d), for each
method to compute the distances. The sum of each row for each method thus equals the size of the sample (100 data).
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Europe, the analogs, among the 50 best ones (i.e., grid points with the 50 lowest WD values), that are located in
Europe. The lower the WD value (bluest colors, WD < 10), the more similar the climate is to the one that Paris
will experience in the mid future. The maps show that the best analogs remain located within the temperate
climate zone (between the 30° N and 50° N latitudes) for all models, and the 50 best ones can be found in southern
Europe and the northern part of north Africa. For the UKESM model, relatively low WD values (<20) are also
found in more southern regions, implying that future climate conditions in Paris are more likely to be similar to
hotter regions than in the other four models. For UKESM the 50 best analogs are located at more southerly
positions (Spain and north‐eastern Algeria) than for the other GCMs. However, for the ensemble mean, the
50 best analogs are located in southern France, Italy, the Pyrénées and Spain.

In the supplementary material (Figure S2 in Supporting Information S1) we show that, although both other
methods (ED and MD) also show analog locations south and south west of Paris, there are two major differences
with WD. First, ED and MD find that today's climate in Paris and Bordeaux (in Nouvelle Aquitaine) are very
similar, with a sigma dissimilarity value smaller than 1. In reality, both climates today are quite different, as
captured by the WD method. Second, when the climate warms, the sigma dissimilarity values for ED and MD
notably differ from those obtained usingWD. Particularly, only the WDmethod suggests that no analog locations

Figure 4. Wasserstein Distances (WD, dimensionless) calculated between the climate of Paris in the mid‐future (2041–2070) and today's climate (1981–2010)
everywhere on the globe, for the SSP370 scenario, and the 5 GCMs. The bottom right figure is the ensemble mean of all calculatedWDs. In the inserts that show the map
of Europe, blue dots are the analog locations, among the 50 best, that are located in Europe. The values (NN/50) give the number of analogs, among the 50 best, that are
located in this zoom. We see that all ‘NN’ are 50, confirming that the 50 best analogs are all located within the zoom except the GFDL model (46/50) for this time
horizon and level of warming.
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with less than 1 sigma dissimilarity will exist in the future. This means that, even for the closest analog, the
distribution of climate variables will be substantially different and this is not caught by ED nor by MD. Such
dissimilar climates, even for the closest analog, may have significant implications for adaptation.

4.2. Do GCMs and Scenarios Agree on the Locations of Analogs for Paris?

We now investigate the level of agreement among the five climate models, the three socio‐economic scenarios
and the three chosen time horizons in the exact location of the best 50 analogs for Paris with the WD method
(Figure 5). If all models agree on these locations (perfect agreement), then each European map should only
include 50 dark green grid points. If all models disagree (complete disagreement), then the maps should include
5 × 50 (i.e., 250) red grid points. In other words, Figure 5e represents the overlapping of the inserted panels

Figure 5. Agreement between the 5 GCMs in projecting the locations of the best 50 climate analogs for Paris with the WD
method, for the 3 scenarios (in column) and 3 future time‐periods (in rows; EF: Early Future, MF: Mid Future, FF: Far
Future). Colors refer to the number of models that agree on a specific location: red when only 1 model finds a CA at this
location, orange when 2 models agree, pale green when 3 models agree, light green when 4 models agree and dark green
when all 5 models agree. Numbers on each map for each color refer to the number of locations showing similar model
agreement.
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(spatial distribution of the best 50 analogs located within the study area) of all individual model results from
Figure 4.

The best agreement between all 5 models is found for the EF period, whatever the scenario Figures 5a–5c. For all
scenarios, agreement between GCMs decreases with time, that is with increased global warming (going from
greenish to reddish colors on the maps). Up to 2040 (early future time horizon), scenarios can hardly be
distinguished: most analogs are located south west of Paris in France, in the Center Val de Loire and eastern Pays
de la Loire, as well as in southern Nouvelle Aquitaine and Occitanie. Some marginal analogs can also be found in
Spain and Italy. Agreement is the largest between various models for locations in the southern part of Nouvelle
Aquitaine and in Occitanie. There is consensus that by 2040, the climate in Paris is likely to resemble the current
climate of those areas.

Starting from the mid‐future (after 2040), agreement between GCMs worsen with the socio‐economic scenario
(from SSP126 to SSP370 and then to SSP585). Most analogs are found outside France for both SSP370 and
SSP585 scenarios: in Spain, Italy, northern Africa (Morocco, Algeria, Tunisia), Greece, with some marginal
locations in Türkiye and Syria. Although the spatial distribution of the best 50 analogs gets less and less consistent
between models with increasing warming, they remain clustered in very specific areas: along the Pyrénées, south‐
western Spain, Portugal and coastal north Africa. These high concentrations of individual analogs suggest that
these particular regions are likely to be the analog regions of future Paris' climate at more distant time horizons.

In summary, Paris climate in the future will resemble today's south western French climatic conditions within the
next 20 years, while it will progressively move to more Mediterranean conditions after 2040 with increasing
global warming.

4.3. Climate Analogs for Europe

The CA analysis, previously performed for the sole city of Paris (Section 4.1), is repeated for all grid points
throughout the European domain in order to identify their best analogs with the WDmethod. As for Paris, analogs
for each grid point in the studied area are looked for over the entire globe, but on terrestrial areas only. For each
grid point we have performed ensemble averages of the calculated WDs using the 5 climate models (hereafter
referred to as the ensemble WD). Figure 6 shows, for one socio‐economic scenario (SSP370) and three time
horizons in the future, three information for each European grid point: the ensemble WD value obtained for its
best analog (dimensionless, Figures 6a, 6d and 6g), the geographical distance to its best analog (in km, Figures 6b,
6e and 6h) and the cardinal direction where its (Figures 6c, 6f and 6i) best analog is located.

The warmer the climate (from EF to FF), the less similar are the analogs, as illustrated in Figures 6a, 6d and 6g
where the colors go from dominant blue and dark green in EF to light green, orange and even red in FF, which
indicates increasingWD. This means that, the further we move toward the future (or the warmer the climate gets),
the more difficult it will be to find historical locations with similar climate conditions. The increase in WD values
is larger south of 35°N in northern Africa and the eastern side of the Mediterranean in Iran and Iraq. In those
regions, future climate conditions are found to be less similar to historical global conditions in comparison to the
rest of the study area.

In the EF period (Figure 6a), WD values greater than five (greenish colors) are mostly distributed at relatively
high altitude in the Alps, in Scandinavia, Central Taurus, Caucasus and High Atlas. This indicates that changes in
mountainous regions will more quickly move away from known current climate conditions than any other
location. In addition to the mountainous areas, the regions over the eastern shore of the Mediterranean Sea where
hot‐summer Mediterranean climate is observed (Peel et al., 2007) and the Nile Delta will experience the same
higher WD values. In other words, the availability of a location with analog climate conditions will be lower for
these regions even in the near future.

When climate warms, that is, when we move towards the end of the century, not only analogs are less and less
similar (increase in WD) but also the geographical distance (in km) between the grid point of interest and its
closest analog increases (Figures 6b, 6e and 6h). In the EF, nearly all analogs can be found within a 500 km radius
(three darkest blue colors), with some exceptions for which analogs are located more than 500 km away, in the
north‐east of Germany, in Poland and parts of north eastern Russia, and in some mountainous regions. In the MF,
distances from their CA increase to more than 1,000 km (reddish colors) for the south of Spain, the western,
northern and eastern coasts of the Black Sea, central Anatolia, and some countries in northern Africa and on the
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southern edge of the Baltic Sea. In the FF, distances from their CA exceed 1,000 km in nearly all eastern Europe
locations, the coastal zone of Norway, and most Mediterranean regions. In western Europe, CA locations remain
mostly within a 500–750 km radius. The Rioni basin between the Greater and Lesser Caucasus is an exception
with analog distances greater than 3,000 km for all periods, due to its unique climate regime (considered as humid
subtropical climate using the Köppen‐Geiger climate classification, Peel et al. (2007)), distinct from nearby
regions even in current conditions.

The right column of Figures 6c–6f–6i shows that, whatever the targeted time period or whatever the level of
warming, almost all climate analogs of our selected domain are located southward, from south‐west to south‐east
(light green, yellow, light orange). Some climate analogs can be found east (dark orange) or west (dark green)
along the same latitude, especially in the EF. Northward locations are marginal and found essentially in the
earliest future (Figure 6g). This is consistent with the warming of all regions in the future. For many European
regions, EF analogs are located south‐west or west while when moving forward in time, their locations become

Figure 6. (a‐d‐g) Ensemble mean WD (dimensionless) calculated from the best analog for each grid point (b‐e‐h)
geographical distance (km) between a grid point and its best analog (c‐f‐i) ordinal or cardinal direction indicating where to
find the closest analog of a grid point. All results are for the SSP370 scenario and three future time horizons, the early future
(EF, 2011–2040; (a‐b‐c), the mid future (MF, 2041–2070; (d‐e‐f) and the far future (FF, 2071–2100; (g‐h‐i).

Earth's Future 10.1029/2024EF004972

BULUT ET AL. 14 of 18

 23284277, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

F004972 by C
ochrane France, W

iley O
nline L

ibrary on [13/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



south and south‐east, that is not only hotter but also drier andmore continental. The climate analogs found onmost
oceanic or sea facades tend to be located towards the east. The direction of analogs remains eastward only over the
Balkans during all study periods. The best climate analog can also be outside of the study area, such as in some
grid points in Spain and Russia in the far future. In these cases, the calculated analog locations indicate distances
greater than 3,000 km to the west, beyond the Atlantic Ocean (Figures 6h and 6i). The overall results are in
accordance with the previous CA studies which generally concluded the CA locations are moving towards
southerly directions for the cities located in the northern hemisphere.

In addition, the same figures prepared for the other two socio‐economic scenarios (SSP126 to SSP585) are given
in supplementary documents (Figures S3 and S4 in Supporting Information S1). Messages are relatively similar to
the ones discussed above: when climate warms, WD values and spatial distances increase, and analogs move
globally to the south, with a dominant eastward direction south of 50°N. In SSP126 however, WD increase from
EF to FF with no further change in geographical distance and direction, implying less similar analogs. In SSP585,
WD and geographical distances increase significantly from EF to FF suggesting that the term “analog” may not be
appropriate any more.

4.4. Where Can We Find the Analogs of Big Capital Cities?

In Table 3, the best climate analogs for the selected capitals from the study domain are given at three future
horizons. The results are obtained from the best CA grid point based on the ensemble mean of all GCMs and under
the SSP370 scenario (Figures 6a, 6d and 6g). It is important to note that the method used to identify the analog
cities is based on finding the city closest to the best analog grid point, rather than relying solely on analog cal-
culations between cities. Paris is projected to experience future climate conditions similar to those currently
experienced in Toulouse in the south west of France, Ancona at the shore of the Adriatic Sea in the northern part
of Italy, and Potenza in the southern part of Italy, inland, at respectively the early, mid, and late future periods of
the century. Paris is the analog of Berlin's climate in the mid future, and that of Brussels in the near and mid future.

Although making comparisons with previous studies in the literature is desired, it is important to note that
variations in study design can hinder such comparisons. For example, the majority of studies generally focused on
evaluating the conditions of selected cities to identify the most appropriate analog, instead of considering pos-
sibilities across all locations. Additionally, the use of different General Circulation Models (GCMs) or Regional
Climate Models (RCMs) introduces further complexity for the comparison. Nonetheless, when examined in a
general manner, a common observation across multiple studies is that the future climate in Europe is expected to
resemble climates found in more southerly regions.

For more detailed information on CA of the selected capital cities and also CA of cities with a population greater
than 250 k, please refer to the Table S4 in Supporting Information S2 (as a separate file), where readers can find
the precise locations of the CA and the calculated WD values for all SSP scenarios.

5. Conclusion and Potential Future Use of Those Climate Analogs
This study aimed to show how climate will change within a selected European domain, by comparing the pro-
jected climate in Europe to historical (recent past) climatic conditions everywhere on the globe, on land areas
only. This is known as the climate analog method that allows one to look away and find a place that already
experiences the climate its “home” will experience in the future.

To do so, we have used the Wasserstein distance (WD) method that offers a unique contribution to the field by
using the complete multivariate distributions, instead of some statistical parameters only, and thus accounting for
dependencies between variables in the analog calculation process. We first compared the WD method with the
Euclidean distance (ED) and Mahalanobis distance (MD) methods, that are more traditionally employed for
climate analogs, using synthetic data we have generated on purpose. While such pronounced differences may not
always be observed in real‐world scenarios compared to those obtained with synthetic data, our results
demonstrate the added value of the WD method in selecting analogs more accurately than both the ED and WD
methods, based on a comparison of the calculated CA from all methods in the Paris example.

Regarding the terminology of dependencies between climate variables, the MD method addresses variance
inflation caused by correlations at the focal location. In contrast, our study emphasizes the WDmethod's ability to
account for dependencies and distributions of climate variables. For instance, if temperature and precipitation are
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correlated at a focal location, the WD method ensures that the analog location exhibits similar dependencies. The
MD and ED methods do not provide this capability, as they do not account for such dependencies between
variables at both focal and analog locations.

We have then applied our WD method to a set of 4 climate variables (rainfall, mean, maximum and minimum
ambient air temperature) on four seasons (winter, spring, summer and fall), which means a set of 16 climate
variables. Climate analogs are computed with the WD method using the distribution of these 16 variables over
30 year periods. It is thus the interannual distribution and the dependence between those variables, during a

Table 3
The Nearest Cities to the Model Ensemble's CA of the Selected Capitals Located in the Study Domain (for SSP370)

Reference location

The nearest city to the best CA grid point location

EF (2011–2040) MF (2041–2070) FF (2071–2100)

Algiers/Algeria Oujda‐Angad/Morocco Mahdia/Tunisia Tripoli/Libya

Amman/Jordan Beersheba/Israel At Tafilah/Jordan Tabuk/Saudi Arabia

Amsterdam/Netherlands Rouen/France Rennes/France Nantes/France

Ankara/Türkiye Ankara/Türkiye Gorgan/Iran Qazvin/Iran

Athens/Greece Paphos/Cyprus Paphos/Cyprus Mahdia/Tunisia

Baghdad/Iraq Al Kut/Iraq Kuwait City/Kuwait Al Farwaniyah/Kuwait

Baku/Azerbaijan Baku/Azerbaijan Gorgan/Iran Semnan/Iran

Beirut/Lebanon Al Qunaytirah/Syria Dar'a/Syria Madaba/Jordan

Belgrade/Serbia Goeycay/Azerbaijan Gorgan/Iran Bojnurd/Iran

Berlin/Germany Mainz/Germany Paris/France Bologna/Italy

Brussels/Belgium Paris/France Paris/France Toulouse/France

Bucharest/Romania Gorgan/Iran Gorgan/Iran Bojnurd/Iran

Budapest/Hungary Szeged/Hungary Belgrade/Serbia Novyy Karanlug/Azerbaijan

Cairo/Egypt El‐Tor/Egypt Hurghada/Egypt Luxor/Egypt

Copenhagen/Denmark Schwerin/Germany Lille/France Potenza/Italy

Damascus/Syria Baalbek/Lebanon As‐Suwayda/Syria Homs/Syria

Dublin/Ireland Dublin/Ireland Saint Savior/Guernsey Torteval/Guernsey

Kyiv/Ukraine Ialoveni/Moldova Slobozia/Romania Gorgan/Iran

London/United Kingdom Rouen/France Rennes/France Valladolid/Spain

Madrid/Spain Tissemsilt/Algeria Tebessa/Algeria Ouled Djellal/Algeria

Minsk/Belarus Rivne/Ukraine Bratislava/Slovakia Timisoara/Romania

Moscow/Russia Homyel/Belarus Chernihiv/Ukraine Zaporizhzhya/Ukraine

Oslo/Norway Sarpsborg/Norway Trento/Italy Bremen/Germany

Paris/France Toulouse/France Ancona/Italy Potenza/Italy

Prague/Czechia Tatabanya/Hungary Szeged/Hungary Novi Sad/Serbia

Rabat/Morocco Casablanca/Morocco Al Khums/Libya Misratah/Libya

Rome/Italy Vlore/Albania Jijel/Algeria Skikda/Algeria

Sofia/Bulgaria Mitrovice/Kosovo Yambol/Bulgaria Goeycay/Azerbaijan

Stockholm/Sweden Vejle/Denmark Kiel/Germany Chiesanuova/San Marino

Tbilisi/Georgia Terter/Azerbaijan Zangilan/Azerbaijan Novyy Karanlug/Azerbaijan

Tripoli/Libya Zuwarah/Libya Laayoune/W.Sahara Medina/Saudi Arabia

Vienna/Austria Resita/Romania Bologna/Italy Thessaloniki/Greece

Warsaw/Poland Potsdam/Germany Mainz/Germany Belgrade/Serbia

Yerevan/Armenia Kapan/Armenia Yeghegnadzor/Armenia Orumiyeh/Iran
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climatological time‐period (historical, early future, mid future or far future), that are compared from one grid
point over future times to other grid‐cells during the historical time to find the best match. We have examined
three socio‐economic scenarios and five global climate models, all projections being available following the
CMIP6 exercise, downscaled and bias‐corrected within the ISIMIP project. We have also performed ensemble
calculations, averaging the WDs computed by the 5 climate models from which we have derived the best analogs
for major European cities. This is different from what most studies have done so far, creating ensemble climate
conditions (averaging climate variables) before computing the distances. This approach provides a clearer picture
of the potential range of climate futures and allows us to assess the level of agreement or disagreement among the
models, offering more robust and reliable insights for understanding climate analogs.

Our results show that, as the climate gets warmer, climate analogs for Europe will generally be found south‐
westward as well as westward for most of the northern part of Europe, while south‐eastward and eastward
movements are found in southern and eastern Europe. The warmer the climate is, the bigger the eastward
component, suggesting an increase in continentality. In some isolated regions in central and eastern Europe, there
are pure southward movements. Similarities between future and historical climates decrease with the level of
warming, and the geographical distance from the best analogs increases and can exceed more than 1,000 km. This
means that the warmer the climate gets, the more difficult it will be to find useful analogs elsewhere, based on our
selected four seasonal climate variables.

What conclusions can be drawn from these results? What precise information should the authors of this paper
provide to the readers? Being able to anticipate what climate could happen in the future, by an immersive
experience, can be useful to accelerate adaptation and transitions. The immersive experience means a possibility
to “go there, see, and feel” what the climate is like, and “learn” from what is being done at this analog place, how
people live, grow crops and which crops, how they manage water resources, etc. This means there is an additional
step to this paper, that is a more thorough analysis, per region, to clearly identify where the analogs are, and how
robust they are. We have shown for example, that the analogs for Paris (and its surroundings) remain clustered
despite different locations projected by the five climate models. More in‐depth analyses may help choose some
preferential ones based on soils, altitude, exposure to dominant winds, etc., before starting to suggest adaptation
solutions to sectorial activities.

In this study, we offered climate analogs in a general manner using temperature and precipitation variables from
each season. It offers a first insight into the effect of climate change for various sectors as well as in our daily
routines and practices. Furthermore, to conduct a comprehensive sector‐specific analysis, various variables
relevant to each sector should be employed. For instance, in agriculture, variables like soil moisture and
evapotranspiration, while in the energy sector, factors such as global horizontal irradiation or wind speed can be
considered. Hence, this study is a brick to go further in the understanding and appropriation of future climate
changes and to build the adaptation strategies that must be implemented.

Data Availability Statement
The R code and sample seasonal climate data to calculate and compare climate analogs from all methods at user‐
defined locations within the study area available in Bulut (2024). The ISIMIP3b climate forcing input data are
available in Lange and Büchner (2021).
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