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Abstract 
The time-resolved analysis of heart rate (HR) and heart rate variability (HRV) is crucial for the 

evaluation of the dynamic changes of autonomic activity under different clinical and behavioral 

conditions. Standard HRV analysis is performed in the frequency domain because the 

sympathetic activations tend to increase low-frequency HRV oscillations, while the 

parasympathetic ones increase high-frequency HRV oscillations. However, a strict separation 

of HRV in frequency bands may cause biased estimations, especially in the low frequency 

range. To overcome this limitation, we propose a robust estimator that combines HR and HRV 

dynamics, based on the correlation of the Poincaré plot descriptors of interbeat intervals from 

the electrocardiogram. To validate our method, we used electrocardiograms gathered from open 

databases where standardized paradigms were applied to elicit changes in autonomic activity. 

Our proposal outperforms the standard spectral approach for the estimation of low- and high-

frequency fluctuations in HRV, and its performance is comparable to newer methods. Our 

method constitutes a valuable, robust, time-resolved, and cost-effective tool for a better 

understanding of autonomic activity through HR and HRV in healthy state and potentially for 

pathological conditions. 

Keywords 
Autonomic nervous system, Poincaré plot, sympathetic activity, parasympathetic activity, vagal 

activity  
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Introduction 
 

The analysis of autonomic dynamics through heart rate variability (HRV) is a standard 

approach for clinical and fundamental research [1–3]. Biomarkers based on HRV serve for the 

non-invasive analysis of physiological responses to different stimuli, which allows the 

assessment of several pathological conditions [4–6]. Additionally, HRV analysis can enable the 

characterization of neural processes, which can help to enlighten the physiological 

underpinnings behind homeostatic regulations, sensorimotor function, and cognition [7].  

Heartbeats are generated from the continuous interactions within the autonomic nervous 

system, between sympathetic and parasympathetic systems [8]. These interactions occur 

specifically on the sinoatrial node, which contains the pacemaker cells that contract to produce 

the heartbeats [9]. The fluctuations in the autonomic modulations to the sinoatrial node cause 

the heartbeat generation at different rhythms [10], as a function of the sympathetic and 

parasympathetic activations that cause changes in the release rate of noradrenergic and 

cholinergic neurotransmitters [11]. The estimation of the sympathetic and parasympathetic 

activities is usually performed through HRV spectral integration at the low- (LF: 0.04–0.15 Hz) 

and high-frequency (HF: 0.15–0.4 Hz), respectively [12,13]. However, the spectral components 

of HRV series can be biased in certain conditions [14]. Specifically, the fixed subdivisions for 

the frequency ranges (LF and HF) cannot successfully separate the influences of the ongoing 

sympathetic and parasympathetic activities, which are potentially overlapped in the LF range 

[1]. To overcome this issue, alternative strategies have been proposed to estimate autonomic 

dynamics and to disentangle the low and high-frequency HRV oscillations [15–20]. 

We propose a method for a robust estimation of sympathetic and parasympathetic 

activities. The method is grounded on the measurement of the successive changes in interbeat 

intervals, by analyzing the changes of the Poincaré plot geometry over time. Our approach 

effectively estimates cardiac sympathetic and parasympathetic responses in healthy subjects. 

We achieve this under standard autonomic stimulation protocols, including the transition to 

sympathetic dominance, as achieved with postural changes and a cold-pressor test [21,22]. 

Additionally, we compare our estimations sympathetic activity with spontaneous fluctuations 

in blood pressure, a marker of sympathetic activity [23], demonstrating how effectively our 

method captures fluctuations in autonomic activity over time. Our method holds potential for 

the future development of biomarkers for clinical conditions related to dysautonomia.  
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Materials and Methods 
 

Databases description 
Twenty-four adults were recruited for the cold-pressor test. A total of 18 subjects (12 males 

and 6 females, aged 21 ± 1.11 years on average, body mass index 21.6 ± 1.48 Kg/m2 on average) 

were included in this study (six of them were discarded because of missing data in their ECG). 

Participants reported maintaining a healthy lifestyle, including non-smoking, and had no history 

of cardiovascular disease. Three trials of the cold pressor test were performed. Each trial 

consisted in a 5-minute resting period, followed by a 3-minute immersion of the hand in ice 

water (0°C) and a 2-minute recovery through immersion of the same hand in warmer water 

(32°C). Trials were considered in the -120 to 120 s with respect the onset of the cold-pressor 

test. Therefore, the first 3 minutes in resting state and the 2 minutes of recovery were excluded 

from the analysis. This approach helps minimize the potential effects on autonomic activity that 

might accumulate after completing one or more trials. ECG and blood pressure (reconstructed 

brachial arterial pressure) were measured using Finapres NOVA system (Finapres Medical 

Systems, Amsterdam, The Netherlands) with a sampling frequency of 200 Hz. Blood pressure 

was available in only 16 out of the 18 participants. For further detail on the experimental 

procedures, please refer to the original study [24]. 

Ten adults (5 males and 5 females, aged 28.7 ± 1.2 years on average, body mass index 

23.7 ± 1.51 Kg/m2 on average) were recruited for the tilt-table test. Participants reported 

regularly engaging in light to moderate physical activity and had no history of cardiovascular 

disease. The subjects performed six trials, starting in a horizontal supine position and then 

transitioning to vertical position. The transitions to vertical position were performed in random 

order, encompassing two slow tilts (50 s from 0 to 70°), two fast tilts (2 s from 0 to 70°), and 

two self-paced stand ups. Subjects remain in each condition (completely horizontal or vertical 

position) for approximately 180 s. In this study, slow, fast and self-tilt were analyzed separately, 

and the two trials performed by each participant were considered as individual measurements. 

Trials were considered in the -120 to 120 s with respect the onset of the postural change. 

Therefore, the first 60 s in the horizontal position and the last 60 s in the vertical position were 

excluded from the analysis. This approach helps minimize the potential effects on autonomic 

activity that might accumulate after completing one or more trials. For further detail on the 

experimental procedures, please refer to the original study [25,26]. The entire protocol lasted 

between 55 and 75 minutes for each participant. ECG and arterial blood pressure were measured 
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using Hewlett-Packard 1500A system (Hewlett-Packard, Palo Alto, California, United States 

of America) with a sampling frequency of 250 Hz.  

 

Estimation of sympathetic and parasympathetic indices 
The R-peaks from ECGs were detected automatically using a method based on the Pan–

Tompkins algorithm [27]. Consecutively, the detected R-peaks were manually corrected for 

misdetections. Potential misdetections were first identified by detecting peaks on the derivative 

of the interbeat interval series (IBI), which was computed recursively after performing manual 

corrections. Note that manual corrections were performed in cases of ECG borderline traces, 

artifacts caused by movements or contact noise, or relatively similar R and T peak amplitudes. 

Visual inspections of the ECG with the detected R-peaks, together with IBI histograms were 

consistently performed per each recording.  

IBI series were constructed, based on the R-to-R-peak durations. Poincaré plot was used 

to depict the fluctuations on the duration of consecutive IBI [28], as shown in Figure 1A. 

Poincaré plots were used to depict successive differences in IBI (by plotting IBIi vs IBIi+1, where 

i is the index of each of the IBI identified in the ECG). Poincaré plots of IBI typically depict an 

ellipsoid-shaped distribution, from which we quantified three features: baseline cardiac cycle 

duration (CCD), measured as the distance to the origin, and the variability the minor and major 

ratios of the ellipsoid (SD1 and SD2, respectively) representing the short- and long-term 

fluctuations of HRV, respectively [29]. Figure 1B displays the calculations of the Cardiac 

Sympathetic Index (CSI) and Cardiac Parasympathetic Index (CPI) for a single subject 

undergoing a cold-pressor test. These indices are derived by integrating the time-resolved 

estimates of CCD, SD1, and SD2. Additionally, these estimates are displayed alongside their 

spectral counterparts, LF and HF. 

The time-varying fluctuations of the distance to the origin and the ellipsoid ratios were 

computed with a sliding-time window, as shown in Eq. 1, 2 and 3: 

	
𝐶𝐶𝐷(𝑡) 	= 	(𝑚𝑒𝑎𝑛(𝐼𝐵𝐼!,…,$%&)' 	+	𝑚𝑒𝑎𝑛(𝐼𝐵𝐼!(&,…,$)'	 (1) 

	
𝑆𝐷&(𝑡) 	= 	(𝜆)!(1,1) (2) 

	
𝑆𝐷'(𝑡) 	= 	(𝜆)!(2,2)	 (3) 

 

where 𝜆!* is the matrix with the eigenvalues of the covariance matrix of 𝐼𝐵𝐼",…,%&' and 

𝐼𝐵𝐼"(',…,%, with  𝛺):	𝑡	– 	𝑇	 ≤ 	 𝑡* 	≤ 	𝑡, and 𝑛 is the length of IBI in the time window 𝛺) .	The 
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method implementation includes four approaches to compute SD1 and SD2: “exact”, “robust”, 

“95%” and “approximate”. The exact approach computes the standard covariance matrix giving 

the covariance between each pair of elements. The robust approach computes the covariance 

matrix using a shrinkage covariance estimator based on the Ledoit-Wolf lemma for analytic 

calculation of the optimal shrinkage intensity [30]. The 95% approach computes the covariance 

matrix using the Fast Minimum Covariance Determinant Estimate [31]. This covariance 

estimation method selects ℎ observations out of total 𝑛. The selection of ℎ fulfills the 

relationship ℎ	 ≈ (1 − 𝑂𝑢𝑡𝑙𝑖𝑒𝑟) 	 ∙ 𝑛 , with 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 = 0.05. Then the selected points fulfill a 

standard covariance matrix with the lowest determinant. Finally, the approximate approach 

computes SD1 and SD2 as follows [16]: 

	

𝑆𝐷&(𝑡) 	= 	5
&
'
	𝑠𝑡𝑑(𝐼𝐵𝐼+)!)' (4) 

	

𝑆𝐷'(𝑡) 	= 	5𝑎𝑏𝑠(2	𝑠𝑡𝑑9𝐼𝐵𝐼)!:
' − &

'
	𝑠𝑡𝑑9𝐼𝐵𝐼+)!:

')	 (5) 

 
where IBI+ is the derivative of IBI, std() refers to the standard deviation, abs() refers to 

the absolute value, and Ω,:	t	– 	T	 ≤ 	 t" 	≤ 	t. In this study, the main results are reported using T 

= 15 s, as per previous simulation studies in humans [32], and using the robust approach. 

Additionally, results for the first trial of the cold pressor test are displayed for T = 5, 10, 15, 20, 

25 s.  

The distance to the origin 𝐶𝐶𝐷- and ellipse ratios 𝑆𝐷-' and 𝑆𝐷-. correspond to the 

computation on the whole recording and were computed to re-center the time-resolved 

estimations of CCD, SD1 and SD2. Then, the Cardiac Parasympathetic Index (𝐶𝑃𝐼) and the 

Cardiac Sympathetic Index (𝐶𝑆𝐼), are computed as follows: 

	
𝐷(𝑡) 	= 	CCD>>>>>>(𝑡) +	𝐶𝐶𝐷, (6) 

	
𝐶𝑃𝐼(𝑡) = k- ∙ (𝑆𝐷&>>>>>(𝑡) +	𝑆𝐷,&) + 	𝐷(𝑡) (7) 

	
𝐶𝑆𝐼(𝑡) = k. ∙ (𝑆𝐷'>>>>>(𝑡) +	𝑆𝐷,') +	𝐷B(𝑡)	 (8) 

 
 

where 𝑆𝐷/JJJJJ is the demeaned 𝑆𝐷/ and 𝐷K is the flipped 𝐷 with respect the mean. The 

coefficients k0 and k1 define the weight of the fast and slow HRV oscillations, with respect the 

changes in the baseline cardiac cycle duration. The coefficients k0 and k1 define the weight of 

the fast and slow HRV oscillations, with respect the changes in the baseline cardiac cycle 

duration. Those coefficients are aimed to represent the well-stablished effects of autonomic 
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modulations on cardiac dynamics: Sympathetic modulations primarily reduce the cardiac cycle 

duration [33], but also increase slower HRV changes, although, not exclusively [1,12]. 

Parasympathetic modulations are typically captured by quantifying overall HRV changes and 

the increase in cardiac cycle duration, but more specifically the faster—short-term HRV 

changes [1]. In this study, the values were defined empirically using one third of the datasets. 

For this, paired comparisons between experimental conditions were performed using a two-

sided Wilcoxon signed-rank test, for k0 and k1 ranging from 1 to 10. Optimal k0 and k1 values 

were selected based on a good separability of the experimental conditions (assessed by the 

Wilcoxon’s Z), but also considering the physiological priors: dominance of the HR component 

in sympathetic activity and the HRV component in parasympathetic activity. 

 
Fig. 1.  Estimation of the fluctuating parameters of the Poincaré plot. (A) The Poincaré plot illustrates the sequential changes in interbeat 
intervals (IBI). It allows us to estimate the Cardiac sympathetic (CSI) and parasympathetic indices (CPI) by calculating the minor (SD1) and 
major ratios (SD2) of the formed ellipse and the distance (R) from its center to the origin. (B) The estimated CSI and CPI are presented 
alongside their corresponding spectral counterparts: the low-frequency (LF) and high-frequency (HF) components of heart rate variability, 
which are aimed to index sympathetic and parasympathetic activity, respectively. 
 

Time-frequency estimation of cardiac sympathetic and parasympathetic activities  
  The estimation of sympathetic and parasympathetic activities was compared to standard 

HRV spectral analysis. HRV analysis in the frequency domain was computed following the 

adapted Wigner–Ville method for estimating the LF and HF as time series [34]. The HRV series 

were constructed as IBI time course. Consecutively, the IBI series were evenly re-sampled to 4 

Hz using the spline interpolation [35]. In brief, the pseudo-Wigner–Ville algorithm consists of 

a two-dimensional Fourier transform with an ambiguity function kernel to perform two-

dimensional filtering, which comprises ellipses whose eccentricities depend on the parameters 

ν0 and τ0, to set the filtering degrees of time and frequency domains, respectively [36]. An 

additional parameter λ is set to control the frequency filter roll-off and the kernel tails’ size 
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[34,36]. The parameters are set as: v0 = 0.03, τ0 = 0.06 and λ = 0.3, as per previous simulation 

studies [34]. Finally, low-frequency (LF) and high-frequency (HF) series were integrated 

withing the 0.04–0.15 Hz and 0.15–0.4 Hz, respectively [12,13]. 

The same procedure was applied to gather the LF component from QT interval series 

(LFQT), which has been proved more robust, especially for sympathetic activity estimation 

[19,37]. The detection of QT intervals consisted in a two-step process. From the detected R-

peaks, we defined search windows around each R-peak to identify the Q peak and T peak end. 

The Q peak was determined by locating the minimum value within the 50 ms preceding the R-

peak. For the T peak end, the minimum value within the 100-500 ms following the R-peak. 

Then, QT interval series were computed as the difference between the T peak end and the Q 

peak. From this, the time-frequency analysis was performed with an adapted Wigner–Ville 

method as well [34].  

Laguerre functions-based estimators of cardiac sympathetic and parasympathetic 

activities  
The estimation of sympathetic and parasympathetic activities was compared to a model 

based on Laguerre expansions (namely the sympathetic and parasympathetic activity indices, 

SAI and PAI)  [15]. This approach has been validated in numerous experimental conditions and 

proved valuable for modeling heartbeat generation [32]. In  brief, the theoretical model expands 

IBI series by convolving them with a set of Laguerre functions, capturing both slow and fast 

fluctuations in the IBI series. Laguerre functions of orders 0 and 1 represent sympathetic 

oscillations, while orders 2 through 8 capture parasympathetic oscillations. Autoregressive 

models are used to estimate time-varying Laguerre coefficients. These coefficients are modeled 

as a dynamic system and estimated using a Kalman filter with a time-varying observation 

matrix. The kernel values for sympathetic and parasympathetic activities were derived from 

previously reported empirical estimates [38]. For accounting for both HR and HRV changes, 

the estimation of sympathetic activity is finally divided by the original IBI series, whereas 

parasympathetic activity is multiplied by the original IBI series. For a comprehensive overview 

of the methodology, please refer to the original studies [15,32,38]. 

 

Statistical analysis 
To statistically evaluate the performance of the methods in discerning the experimental 

conditions, we used nonparametric statistics. Time series were z-score normalized per trial. The 

time-resolved information for all the estimated features was condensed as the average value for 
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each experimental session, and the group-wise descriptive measures are expressed as medians 

and median absolute deviations (MAD).  

Paired comparisons (supine vs vertical position; ambient vs cold-pressor) were 

performed using a two-sided Wilcoxon signed-rank test. Significance was set to a=0.05/N, 

based on Bonferroni correction for N comparisons (4 comparisons for sympathetic, and 3 for 

parasympathetic activities). 

Spearman correlations were performed to determine the relationships between CSI and 

blood pressure measurements. Significance was set to a=0.0001 and positive correlation 

coefficient (r). Spearman p-values were derived using a Student’s t distribution approximation. 

For the specific case of the tilt-table dataset, correlations were computed excluding the 0-30 s 

interval because of the orthostatic hypotension effect caused by the posture change [26]. To 

determine if the majority of participants had a significant correlation between their CSI and 

blood pressure series, a post-hoc statistical test was performed. This test evaluated the 

proportion of cases with significant correlations and calculated a p-value using the binomial 

cumulative distribution. 

To evaluate the effect of different time window lengths (5, 10, 15, 20, and 25 seconds) 

on CSI and CPI computations, a group-wise statistical analysis was conducted using the non-

parametric Friedman test for paired samples. This analysis was performed on data from the first 

trial of the cold-pressor test. 

Finally, to assess sensitivity to outliers (e.g., ectopic beats), we computed the CSI on a 

single recording from the cold-pressor dataset. Computations were performed after artificially 

incorporating 30 ms delays to up to 10 IBIs. We evaluated the performance of various 

methods—robust, approximate, exact, and 95%—by averaging the CSI estimations from 

experimental conditions 1 and 2. The difference between these estimates, termed the effect 

magnitude, was used to quantify sensitivity. A reduced effect magnitude indicates higher 

sensitivity to outliers. 

Data and code availability 
All physiological data used in this study are publicly available. Postural changes and 

intense exercise data were gathered from Physionet [25]. Cold-pressor data were gathered from 

Donders Institute repository [39]. Relevant code for this research work are stored in GitHub: 

https://github.com/diegocandiar/robust_hrv and have been archived within the Zenodo 

repository: https://doi.org/10.5281/zenodo.11151540 
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Data to reproduce the results presented in this study are available in DataDryad: 

https://doi.org/10.5061/dryad.6djh9w18t. 

 

Ethical approval statement 
The cold-pressor study was approved by the local ethical committee (Radboud 

University, Nijmegen, The Netherlands, number ECS17022 and REC18021). The tilt-table test 

study was approved by the local ethical committee (Massachusetts Institute of Technology, 

Cambridge, United States, number COUHES 2895 and MIT CRC 512).  

All participants signed informed consent to participate in the study as required by the 

Declaration of Helsinki.  
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Results 
We examined cardiac dynamics derived from HR and HRV in healthy individuals 

undergoing autonomic elicitation in two different conditions: tilt-table postural changes and 

cold-pressor test. Cardiac sympathetic and parasympathetic indices (CSI and CPI) were 

computed using our proposed method based on Poincaré plot descriptors of IBI series. 

First, we defined the combination of HR and HRV components using the coefficients 

k1 and k0, which represent the weight of the HRV component in the sympathetic and 

parasympathetic estimations, respectively. Optimal values for k1 and k0 were determined from 

one-third of the datasets, based on the statistical separability of the experimental conditions. 

Figure 2A shows the change in the Z-value when comparing ambient temperature versus cold 

pressor for CSI and CPI. The results indicate that k1 = 1 provides the best separability for CSI, 

while CPI separability remains unaffected by changes in k0. Figure 2B shows the Z-value 

changes when comparing supine position versus fast tilt, exhibiting a similar trend to the cold 

pressor dataset. Based on these findings, we set the coefficients for the remainder of the study 

to k1 = 1 and k0 = 10. These values were chosen due to their alignment with well-established 

effects of autonomic modulation on cardiac dynamics: sympathetic modulations primarily 

affect baseline heart rate, while parasympathetic modulations are generally captured through 

HRV changes [11,15]. For illustration, Figure 2C presents the computation of CSI and CPI 

using k1 = 1,… , 10 and k0 = 1,… ,10. 

 

 
Fig. 2.  Estimation of CSI (Cardiac Sympathetic Index) and CPI (Cardiac Parasympathetic Index) for a single subject. Rows display the 
estimation with the HR and HRV components combined, achieved by applying weights to the HRV component using the parameters 'ks' and 
'kp' for CSI and CPI estimation, respectively. The experimental condition involves the cold pressor test, with cold pressure initiating at t = 0. 
Horizontal red lines indicate the CSI or CPI median values before and after the cold-pressor onset 
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We then compared the separability of the different autonomic estimators. First, the 

protocol on individuals undergoing a cold-pressor test [24], in which the subjects immersed 

their hand in ice cold water. As shown in Figure 3A and B, our findings revealed that variations 

in temperature induce alterations in autonomic activity in the three trials, where an increase in 

sympathetic activity and a decrease in parasympathetic activity is expected [22,40–42]. While 

all parasympathetic markers displayed similar outcomes, the sympathetic markers exhibited 

divergent trends in relation to the experimental conditions. For example, LF did not show the 

anticipated changes in sympathetic activity, and LFQT only captured the expected effects in trial 

3. In contrast, the other markers, SAI and our developed CSI, performed comparably. However, 

while SAI estimation followed the expected trend related to changes in baseline heart rate, the 

HRV changes exhibited a significant high-frequency variability on top of this trend.  

The protocol on individuals undergoing postural changes consisted in transitioning from 

a horizontal/supine position to a vertical/head-up position using a tilt-table [26]. Our findings 

indicated that the proposed method precisely captured the dynamic fluctuations in autonomic 

activity in response to postural changes. Consistent with previous literature, we successfully 

observed the rise in sympathetic activity during the transition to an upright position [21,43–46], 

as depicted in Figure 4A and B. Again, when distinguishing between the two experimental 

conditions during postural changes, spectral counterparts underperformed, while CSI and CPI 

exhibited comparable performance to SAI and PAI. Similarly to the cold-pressor results, SAI 

and PAI present elevated high frequency components over their respective trends. Overall, these 

results demonstrate that the CSI and CPI estimators outperform their counterparts in these 

standard experimental conditions of autonomic elicitation. 
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Fig. 3.  Cardiac autonomic indices CSI and CPI, and their spectral (LF, LFQT, HF) and Laguerre (SAI, PAI) counterparts the Cold-pressor test. 
The indices were used to quantify the autonomic changes triggered by the temperature changes with respect to the baseline. (A) Time course 
of the computed indices between -120 to 120 s with respect to the condition change onset. The plot indicates the group median and the shaded 
areas the median absolute deviation. Time series were z-score normalized per subject before averaging. (B) Distributions and statistical 
comparison using a signed rank Wilcoxon test, comparing the mean 120 s after the condition change with respect to the 120 s before. All signal 
in panel (A), obtained from the z-score normalization, are measured in standard deviation units. 
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Fig. 4.  Cardiac autonomic indices CSI and CPI, and their spectral (LF, LFQT, HF) and Laguerre (SAI, PAI) counterparts the tilt-table test. The 
indices were used to quantify the autonomic changes triggered by the postural changes with respect to the baseline. (A) Time course of the 
computed indices between -120 to 120 s with respect to the condition change onset. The plot indicates the group median and the shaded areas 
the median absolute deviation. Time series were z-score normalized per subject before averaging. (B) Distributions and statistical comparison 
using a signed rank Wilcoxon test, comparing the mean 120 s after the condition change with respect to the 120 s before. All signal in panel 
(A), obtained from the z-score normalization, are measured in standard deviation units. 
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correlation in both the cold-pressor and tilt table datasets (all binomial tests comparing 

significant vs. non-significant cases, p < 0.001). 

 
Fig. 5.  Cardiac sympathetic index (CSI) and the relationship with blood pressure (BP). The first column shows the time course of the computed 
CSI (in light blue), and BP (in yellow), between -120 to 120 s with respect to the condition change onset. The plot indicates the group median 
and the shaded areas the median absolute deviation. Gray shaded areas indicate the first 30 seconds of the tilt-table trials that were not 
considered due to orthostatic hypotension effects. Time series were z-score normalized per subject before averaging. All signal amplitude units 
are arbitrary units. The second column shows the histograms of Spearman correlation coefficients computed between CSI and BP. Significant 
cases (in blue) were distinguished from the non-significant ones (in red) after resulting in a positive correlation coefficient (r) and p<0.0001. 
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balance, offering both sufficient time resolution and the ability to capture gradual fluctuations 

in HRV around 0.1 Hz. We then statistically compared CSI and CPI using data from the first 

trial of the cold-pressor test. We found that the length of the time window did not significantly 

impact the ability to distinguish between the two experimental conditions, when comparing the 

statistical separability of the condition per each time window, using a paired Wilcoxon test 

(Figure 6B). However, a Friedman test on the CSI and CPI difference between the two 

conditions (cold pressor minus ambient), across different time window computations, resulted 

in significant differences (CSI: p= 0.0024, Friedman stat= 16.5333; CPI: p=0.000002, Friedman 

stat= 31.5111). These results highlight how the choice of time window can affect the assessment 

of modulations because the smoothing effect produced in HRV, particularly in CPI 

computation. It’s important to note that HRV fluctuations in the LF band can occur at 

frequencies as high as 0.15 Hz. Therefore, CSI estimates using a time window shorter than 7 

seconds might capture HR effects rather than HRV effects. Conversely, longer time windows 

might reduce the visibility of HRV effects in CPI computation. 

 
Fig. 6. Time window length effect on the estimation of CSI and CPI. (A) Estimation of CSI (Cardiac Sympathetic Index) for one subject and 
(B) for the group average, for different sliding time windows. The window length displayed correspond to 5, 10, 15, 20 and 25s. The 
experimental condition involves the cold pressor test, with cold pressure initiating at t = 0. Statistical comparisons were performed with a 
Wilcoxon test between 120 s prior and after the condition change. All signals, obtained from a z-score normalization, are measured in standard 
deviation units. 
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correspond to the four different approaches, with each column representing the estimation 

results when ectopic heartbeats/outliers are externally introduced. Our findings indicate that the 

robust, exact, and approximate methods yield qualitatively similar estimations, with minor 

variations in response to the presence of ectopic heartbeats, as shown in Figure 7B. On the other 

hand, the 95% approach exhibits a strong resistance to outliers but results in a relatively poor 

overall estimation, which is demonstrated in the overall low effect magnitude (differences on 

CSI during the cold-pressor and baseline), but also in the high variability of the measurements 

with respect to the presence of outliers, as shown in Figure 7C. 

 

 
Fig. 7.  Estimation of CSI (Cardiac Sympathetic Index) for one subject. (A) Each row displays the method of estimation used (exact, 
approximate, robust or 95%). Each column displays the result of the estimation with the presence of misdetection of R peaks from the ECG. 
The number of misdetections is indicated by n = 0, 2, 6, 10. The dashed line indicates the onset of the cold-pressor at t=0. Horizontal red lines 
indicate the CSI median before and after the cold-pressor onset. Shaded gray areas indicate the timing in which the outliers were introduced. 
The misdetections were introduced by adding a delay of +30 ms to the occurrence of randomly selected R peaks. (B) Effect magnitude measured 
as the mean CSI during the cold pressor minus the mean CSI during ambient temperature, as a function of the number of ectopic 
heartbeats/outliers introduced. (C). Median and Median absolute deviation (MAD) of the effect magnitude among the eleven estimations for 
the number of outliers n=0,1, …, 10, for each of the four approaches. 
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Discussion 
We have introduced a method for the precise and time-resolved estimation of 

sympathetic and parasympathetic indices in humans using ECG data. Our findings highlight the 

remarkable consistency of the time-resolved estimations of sympathetic and parasympathetic 

activities across the conditions studied. This indicates that our proposed method can accurately 

capture and reproduce the alterations observed in sympathetic and parasympathetic activities. 

We also demonstrated a consistent correlation between CSI and concurrent blood pressure 

measurements, which further supports the validity of our method. 

Our method uses Poincaré plots, which effectively depict the beat-to-beat alterations in 

IBIs, capturing both short-term and long-term fluctuations in HRV while also accounting for 

nonlinearities [28,47]. Previous studies have employed Poincaré plot-derived measures to 

examine sympathetic and parasympathetic influences on heart rate [16,48–50], including 

investigations into the changes observed in pathological conditions [51–53]. Our proposal 

focuses on delivering a time-resolved estimation method, enabling a comprehensive exploration 

of the dynamic shifts in autonomic regulations.  

Our results demonstrated that CSI and CPI outperformed spectral estimations (LF, LFQT, 

and HF) and were on par with Laguerre-based estimations (SAI and PAI). One advantage of 

CSI and CPI is their computational efficiency, as they do not require autoregressive modeling 

like SAI and PAI. In the two datasets we examined, SAI and PAI showed the expected trends, 

but with notable high-frequency variability on top of those trends. Although we did not verify 

whether this variability corresponded to actual physiological dynamics, CSI and CPI provided 

a smoother estimator. 

Physiological modeling of bodily signals plays a crucial role in uncovering the 

underlying aspects of autonomic dynamics by analyzing time-varying modulations of specific 

components. Future investigations can explore additional applications of this method, such as 

investigating the sympathetic and parasympathetic components involved in brain-heart 

dynamics [54,55], considering specific directionalities, latencies, and higher order 

dependencies with other physiological signals. Our proposed method, focusing on time-

resolved estimations, facilitates a comprehensive exploration of dynamic shifts in autonomic 

regulations and their potential relation with ongoing brain activity [16,42]. This approach holds 

particular promise for studying pathological conditions [56] given the high level of integration 

in within physiological networks, which highlights the significance of modeling interoceptive 

processes to gain insights into multisystem dysfunctions [57]. This agrees with previous 
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research that has already demonstrated the relevance of studying brain-heart interactions, as 

heartbeat dynamics have been implicated in various clinical applications [58]. 

Our study has some limitations, including the lack of direct ground truth measurements, 

such as sympathetic and parasympathetic neurograms or pharmacological manipulations 

[20,59]. Nevertheless, the reliability of our method is supported by tests on standardized 

conditions, and comparisons with blood pressure measurements—a known index of 

sympathetic activity—showing successful results, and therefore, serving as a validation. 

Another limitation of our study is the absence of a more comprehensive comparison with other 

measures of cardiac sympathetic and parasympathetic activity, such as symbolic representations 

[20]. Since the primary aim of our research is to offer a time-resolved estimation, our analysis 

was intentionally focused on time-resolved measures rather than a broader range of cardiac 

indicators. It is worth mentioning that our method relies on the geometry of the Poincaré plot, 

which has been criticized due to high sensitivity to the presence of outliers and artifacts [60]. 

To overcome this issue, we have implemented within our method a correction of potential 

outliers for a robust computation of the covariance matrices [30,31], which can be compared 

by the users to standard approaches through our open-source codes. 

Conclusion 
Our method holds great potential for advancing our understanding of the dynamics of 

sympathetic and parasympathetic fluctuations. This tool for analyzing cardiac dynamics may 

also contribute to the development of physiologically inspired models for the understanding of 

autonomic dynamics in different contexts, such as the physiological underpinnings of 

sensorimotor and cognitive challenge. By employing a more accurate estimation of the ongoing 

autonomic dynamics we can gain deeper insights into the intricate interplay within large-scale 

neural dynamics.  
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