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Abstract. Code smells are indicators of potential issues in software code
that can make maintenance more challenging. Traditional approaches to
detecting code smells have primarily relied on handcrafted rules and
heuristics, while recent advances have explored Machine Learning (ML)
and Deep Learning (DL) techniques. In this paper, we investigate the
application of prompt-based Large Language Models (LLMs) for code
smell detection, utilizing state-of-the-art models, namely Generative Pre-
trained Transformer-4 (GPT-4) and Large Language Model Meta AI
(LLaMA). We conduct an extensive analysis of the Machine Learning
Code Quality (MLCQ) dataset, focusing on how these LLMs perform
when prompted to identify and classify code smells. By systematically
evaluating each model’s performance, we provide insights into their preci-
sion, recall and ability to generalize across different types of code smells.
Our results aim to demonstrate the potential of LLMs as a promising
tool for automating certain types of code smells while underperforming
for others.

Keywords: Code Smells · GPT-4 · Large Language Models · LLaMA ·
LLMs · Machine Learning

1 Introduction

Code smells are indicators of potential issues in the codebase that suggest a
need for refactoring. Their presence affects the readability, maintainability and
extensibility of the source code. Early detection of code smells is therefore cru-
cial for the software evolution process, helping to reduce the long-term costs
associated with refactoring. The detection of code smells has been an area of



extensive study. Traditional approaches primarily rely on heuristics and man-
ually crafted metrics to classify code elements as "smelly" or "non-smelly" [1].
However, these metrics often lack a consensus among developers [2, 3], leading
to inconsistent detection outcomes. To address this, recent research has shifted
toward ML methods, particularly supervised learning, for automated smell de-
tection.

In the ML-based approach, models are trained on labeled data to classify code
segments such as methods or classes—based on their likelihood of containing
code smells. This method can significantly reduce manual effort by leveraging
large datasets to train classifiers capable of automatically identifying relevant
metrics and establishing thresholds for smell detection. The features provided to
these classifiers can include standard code metrics (for example: Lines Of Code
(LOC) and Number Of Attributes (NOA)) [4], token sequences extracted from
the code [5], or graph-based representations capturing the semantic structure of
the code such as Abstract Syntax Trees (ASTs) [6, 7].

In this paper, we investigate the use of prompting techniques with LLMs
specifically GPT and LLaMA, to detect code smells in the Machine Learning
Code Quality (MLCQ) dataset. We evaluate their ability to identify smells and
their severity. The code is available at 1

The paper is organized as follows. Section 2 provides an overview of related
work, while Section 3 presents a background on code smells and ML in the
software landscape. Section 4 describes the dataset and the process followed.
Section 5 discusses the results. Finally, Section 6 concludes the study.

2 Related Work

Code smell detection has traditionally been approached through heuristic meth-
ods, where specific characteristics or patterns in code, defined by expert-crafted
rules, indicate the presence of a smell. For instance, approaches such as DECOR
[1] relied on manually defined thresholds for code metrics like complexity or
coupling to classify code as "smelly" or "non-smelly." However, the need for ex-
ternal intervention to define these thresholds and rules presents limitations, as
code smell detection is inherently subjective and context-dependent.

With the rise of ML, there was a shift towards using statistical models trained
on code metrics. Techniques like decision trees and Random Forests classified
code snippets based on features such as LOC, cyclomatic complexity and cou-
pling measures [4]. Although these methods provided more flexibility than purely
heuristic approaches, they still relied on engineered features, which might not
fully capture the semantic richness of source code.

The adoption of Deep Learning (DL) represented a more significant shift,
moving from feature-based classification to token-level processing. Models, such
as Convolutional Neural Networks (CNNs) [8], Long Short-Term Memory net-
works (LSTMs) [5] and fully connected networks, were used to process sequences
1 https://github.com/Kheims/llm_mlcq.git
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of tokens from code snippets, thereby learning complex patterns directly from
the source code. This approach provided more accurate representations of the
code’s structure and semantics, exceeding the capabilities of traditional ML.

Recently, the emergence of LLMs, such as Bidirectional Encoder Represen-
tations from Transformers (BERT), GPT-3, GPT-4 and Claude, pretrained on
massive datasets including both text and code, has opened new avenues for code-
related tasks. These models excel in understanding and generating code [9–11],
suggesting that they could potentially be adapted for detecting code smells as
well.

The adoption of LLMs in code-related tasks has opened new possibilities for
code smell detection. Building on the capabilities of models like BERT and GPT-
4, recent approaches explore ways to leverage LLMs’ semantic understanding to
identify subtle design issues in code. For instance, [12] introduces PromptSmell,
a method that utilizes prompt-based learning combined with Abstract Syntax
Tree (AST) traversal to detect code smells in Java. By framing code snippets
as natural language prompts and translating model outputs to predefined smell
categories through a verbalizer, PromptSmell effectively addresses multi-label
classification challenges in code quality assessment. Their results demonstrate
that this prompt-based approach outperforms traditional and fine-tuned models
in both accuracy and F1 scores.

Similarly, [13] assesses LLMs like GPT-4, Gemini Advanced and Mistral
Large in identifying test smells across multiple programming languages. This
study underscores the efficiency of LLMs in capturing a wide range of test smells,
with GPT-4 identifying up to 70% of smell types. These implementations show
that by directly leveraging LLMs’ rich contextual understanding, it is possible
to streamline the detection of both code and test smells, minimizing the reliance
on handcrafted rules and manual intervention.

3 Background

Code smells, originally introduced by Kent Beck 2 within the context of refac-
toring, are indicators in the code that signal potential issues, though they do
not necessarily imply an immediate malfunction. Unlike bugs, code smells don’t
prevent the software from working, but they often point to suboptimal design
choices or poor coding practices. These smells can degrade code readability, in-
troduce unnecessary complexity and make the code more difficult to maintain.
Detecting code smells is critical because they contribute to making the code
harder to comprehend and modify, thereby increasing the risk of errors and fu-
ture bugs. These smells can be of three types [14] : implementation, design and
architectural smells all signaling problems at different levels of the code base.

Traditionally, detecting code smells relied on heuristics and manually defined
rules derived from expert knowledge [1], which made these approaches dependent
on human intervention and prone to subjectivity. With the rise of ML and DL,
2 https://martinfowler.com/bliki/CodeSmell.htmlr
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there has been a shift towards automating code smell detection by leveraging
statistical methods and language models.

LLMs have recently emerged as powerful tools for a variety of natural lan-
guage processing tasks, including code-related tasks like code generation and
analysis. LLMs are a class of DL models that rely on self-attention mechanisms
to capture dependencies between tokens in sequences of text, including code [15].
Their ability to process vast amounts of data has made them the leading ap-
proach for language tasks. LLMs differ from traditional language models in terms
of their size and the amount of data they are trained on, allowing them to capture
more intricate relationships in text.

We note three types of LLMs based on their architecture :

– Encoder-only LLMs (for example: BERT [16]): these models use only the en-
coder module to transform input text into hidden representations. Encoder-
only models capture word relationships and contextual information using
bidirectional attention, allowing the model to consider both the preceding
and following context of each word. These models excel in tasks like text
classification and code comprehension.

– Encoder-decoder LLMs [17]: these models consist of an encoder that pro-
cesses the input and a decoder that generates output. The encoder converts
input text into a hidden representation, which serves as a bridge between
input and output formats. The decoder uses this hidden space to generate co-
herent and contextually relevant output text, making these models suitable
for tasks like translation or summarization.

– Decoder-only LLMs (for example: the GPT series [18]): these models focus
on generating output text in an autoregressive manner, predicting each to-
ken one at a time based on the preceding tokens. Decoder-only models are
particularly powerful for text and code generation tasks due to their ability
to handle long sequences and generate coherent output.

Given the rise of LLMs and their emergent behavior at excelling in working
on code-related tasks such as code generation [10], code summarization [19] and
bug localization [20], we hypothesize that their application to code smell detec-
tion could provide significant advantages. Unlike traditional methods, LLMs can
learn the complex patterns and semantics of code directly from data without
relying on manually designed rules, potentially making them more effective at
detecting subtle smells and predicting their severity. For this intent, we aim to
explore the effectiveness of using GPT-4 as well as LLaMA 3.

GPT-4 is a large-scale AI-based text generator built upon the InstructGPT
architecture [21]. InstructGPT introduced Reinforcement Learning with Human
Feedback (RLHF), enhancing the model’s ability to understand human intent
beyond conventional next-token prediction. Through this combination of instruc-
tion tuning and conversational format conversion, GPT-4 has demonstrated sig-
nificant improvements in various natural language processing tasks. It produces
text outputs by leveraging a larger scale of compute, following power laws to
optimize its training on vast datasets. This makes GPT-4 an advanced model



not only for text generation but also for tasks requiring nuanced reasoning and
contextual understanding [22].

LLaMA 3 [23], developed by Meta, is an open-source LLM that natively sup-
ports multilingual tasks, coding, reasoning and tool usage. The largest LLaMA
model features 405 billion parameters and a context window extending up to
128K tokens, with significant improvements in inference scalability through the
Grouped Query Attention (GQA) mechanism [24]. LLaMA comes in various sizes
and for this study, we focus on the 8B Instruct version—utilized in both 16-bit
and 8-bit precision modes.

Meta’s hardware recommendations for running the LLaMA 3.1 8B model
include a modern processor with at least 8 cores and a minimum of 16 GB of
RAM. For GPU requirements, Meta suggests the NVIDIA RTX 3090 or RTX
4090 (24 GB VRAM) for models in 16-bit mode. The estimated disk space
required is approximately 20-30 GB for the model and associated data, with GPU
memory usage varying by precision, specifically for the 32-bit mode: 38.4 GB of
memory is needed, whereas the 16-bit mode halves the memory requirement to
19.2 GB. Due to hardware constraints, we conducted our experiments on the 8B
Instruct LLaMA model for both the 16 bit mode and the 8 bit mode, running
the inference on a system with 2 x Intel Xeon Gold 6148 (20 cores / 40 threads
@ 2.4 GHz Skylake), 384 GiB of RAM and a NVIDIA Tesla V100 GPU with 32
GiB of RAM (NVLink).

Fig. 1: MLCQ statistics

4 Dataset and Process

4.1 Dataset

Our work studies the applicability of smell detection through LLMs for the
MLCQ dataset [25], an industry dataset comprising nearly 15000 samples cre-
ated by expert software developers who reviewed industry-relevant Java open
source projects. The dataset contains for each sample the smell found between 4
implementation smells: Blob Class, Data Class, Feature Envy and Long Method



and severity for each smell ranging from none, minor, major and critical (see
Fig. 1). In addition the developers went through an extensive survey to fill in
multiple pieces of information on their professional experience making it a reli-
able dataset to study in comparison to datasets solely made through the use of
heuristics tools that may introduce inherent bias.

(a) Vanilla Prompt Structure

(b) Few Shot Prompt Structure

Fig. 2: Comparison of Prompt Structures for Code Smell Detection



4.2 Prompts

Our process to define the prompts follows an iterative process where we first
provide the models with a vanilla prompt, specifying the range of smells that can
be found as well as their range of severity and enforcing the result schema. The
summary of the prompt can be seen in Fig. 2a. Then, we incorporate examples
into the prompts for few-shot learning in order to assess the model’s ability to
specialize in a specific task and whether it is indeed effective. The prompt can
be seen in Fig. 2b.

4.3 Evaluation Metrics

To assess the LLMs’ performance in detecting smells we apply the widely used
metrics precision, recall and F1 measure.

– Precision (P) is the proportion of predicted positive cases that are correctly
identified:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

– Recall (R), also known as sensitivity or true positive rate, is the proportion
of actual positive cases that are correctly identified:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

– F1 Score (F1) is the harmonic mean of precision and recall, which provides
a balance between the two:

F1 = 2 · Precision · Recall
Precision + Recall

In this context, precision measures the proportion of correctly identified
smelly snippets among all snippets classified as smelly, indicating the model’s
ability to avoid false positives. Recall, on the other hand, evaluates the pro-
portion of correctly identified smelly snippets out of all actual smelly snippets,
reflecting the model’s ability to minimize false negatives.

5 Results

To better understand the contribution of different components to the perfor-
mance of our models, we conducted a study focusing on the following aspects:

– Prompting Style (Vanilla vs. Few-shot): We assessed the impact of includ-
ing few-shot learning examples in the prompt. Table 1 shows the relative
improvement in precision, recall and F1 score across all models when tran-
sitioning from vanilla to few-shot prompting.



– Model Quantization (16-bit vs 8-bit): We analyzed the trade-off between
computational efficiency and performance for LLaMA models by comparing
the quantized 16-bit version with the quantized 8-bit version. Tables 1 and 2
show that the loss in performance is minimal while quantization significantly
reduces memory usage and speeds up inference.

The overall performance of the models, as indicated by the precision, recall
and F1 scores, suggests that code smell detection using LLMs is still a chal-
lenging task. The models underperform relative to what would be expected for
practical code analysis, with most metrics falling below the level needed for reli-
able detection. GPT-4, as the best performer, demonstrates its ability to closely
follow the prompt and produce responses that are well-aligned with the expected
format. This is especially true in terms of its adherence to the schema for smells
and severity. GPT-4 achieves higher precision and F1 scores than LLaMA, show-
ing its general capability for instruction-following and task-specific adaptation.
However, the performance still remains low in absolute terms, suggesting the
complexity of the task and the inherent difficulty in recognizing and classifying
code smells correctly.

In contrast, LLaMA presents a unique challenge. When using the vanilla
prompt, it often provides extensive, detailed analyses of the code, focusing on
logical and semantic interpretations rather than adhering strictly to the task of
identifying smells and severity. This behavior points to the model’s tendency
to over-explain and generate exhaustive outputs, which, while informative, do
not align with the required concise answers. This necessitates substantial post-
processing to extract relevant information and align it to the desired structure.

The few-shot prompting approach significantly enhances the model’s perfor-
mance, particularly for GPT-4, where a marked improvement in detecting smells
such as long method and data class is observed. Few-shot examples seem to en-
able GPT-4 to generalize better from limited supervision, improving its ability
to handle more complex smells. The F1 scores increase substantially, indicating
that GPT-4 can learn from examples and apply this learning to new instances.

For LLaMA, few-shot prompting proves to be a game-changer. The model
transitions from providing verbose, loosely aligned answers to generating more
concise, schema-conforming outputs although the results are still afar from GPT-
4 providing reasonable results only for the data class smell. LLaMA’s quantized
8-bit version, despite offering some computational benefits, exhibits a slight drop
in performance compared to its 16-bit counterpart. This trade-off is expected in
exchange for faster inference times and reduced memory requirements.



Table 1: Comparison of Precision, Recall and F1-Measure with Vanilla Prompt

Smell GPT-4 LLaMA (Quantized 16-bit) LLaMA (Quantized 8-bit)
Precision Recall F1 Precision Recall F1 Precision Recall F1

Feature Envy 0.143 0.02 0.035 0.09 0.62 0.157 0.081 0.558 0.141
Long Method 0.44 0.78 0.562 0.20 0.20 0.20 0.18 0.18 0.18
Blob 0.25 0.006 0.012 0.06 0.001 0.002 0.054 0.001 0.002

Table 2: Comparison of Precision, Recall and F1-Measure with Few-Shot
Prompting

Smell GPT-4 LLaMA (Quantized 16-bit) LLaMA (Quantized 8-bit)
Precision Recall F1 Precision Recall F1 Precision Recall F1

Feature Envy 0.172 0.03 0.051 0.11 0.68 0.19 0.095 0.62 0.165
Long Method 0.62 0.85 0.717 0.24 0.24 0.24 0.20 0.20 0.20
Blob 0.30 0.008 0.015 0.072 0.002 0.003 0.065 0.0011 0.002
Data Class 0.765 0.78 0.772 0.70 0.09 0.16 0.648 0.075 0.134

6 Conclusion

In this study, we explored the application of LLMs, specifically GPT-4 and
LLaMA, for the task of code smell detection, using the MLCQ dataset. Our
results indicate that while LLMs have shown promise in various code-related
tasks, their performance on code smell detection remains limited, often under-
performing when compared to the expectations set by traditional ML models.
GPT-4, particularly with the use of few-shot prompting, outperformed other
models, demonstrating its capacity to closely follow task-specific instructions
and provide more reliable outputs. However, its overall performance still sug-
gests room for improvement in terms of precision and generalization.

LLaMA, particularly in its vanilla form, exhibited a tendency to generate
verbose, logically detailed responses that did not always align with the specific
task requirements. However, when augmented with few-shot prompting, LLaMA
demonstrated a significant improvement in adhering to the task schema and
providing more accurate classifications. The quantized 8-bit version of LLaMA
showed a slight degradation in performance, while still maintaining the advan-
tage of reduced memory usage and faster inference.

Despite these advancements, several challenges remain, particularly in ad-
dressing class imbalance, improving the detection of nuanced code smells and
enhancing severity classification. The models struggled with feature envy and
blob detection in particular, where F1 scores remained low even with prompt-
ing techniques. This highlights the complexity of detecting certain smells and
suggests that further fine-tuning and model-specific adaptations are required for
effective detection in real-world scenarios.
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