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Interplay of swine acute diarrhoea syndrome 
coronavirus and the host intrinsic and innate 
immunity
Fei Zhao1†, Xiao Cong2†, Xiaobo Huang1, Yi Zheng1, Qin Zhao1, Yiping Wen1, Rui Wu1, Senyan Du1, Sanjie Cao1*, 
Feng Cong2* and Yiping Wang1,3*   

Abstract 

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly 
emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell 
tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its 
ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic 
and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive 
immunity. To date, there are no vaccines and drugs approved to prevent or treat SADS-CoV infection. Understanding 
of the mutual relationship between SADS-CoV infection and host immunity is crucial for the development of novel 
vaccines and drugs against SADS-CoV. Here, we review recent advancements in our understanding of the interplay 
between SADS-CoV infection and the host intrinsic and innate immunity. The extensive and in-depth investigation 
on their interactive relationship will contribute to the identification of new targets for developing intervention 
strategies to control SADS-CoV infection.
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1 Introduction
Coronaviruses are a large group of enveloped positive‑
sense single‑stranded RNA viruses that belong to the 
subfamily Coronavirinae, family Coronaviridae, and 
order Nidovirales [1]. Based on the genetic properties, 
the Coronavirinae family is categorized into four genera: 
Alphacoronavirus, Betacoronavirus, Gammacoronavirus, 
and Deltacoronavirus [1]. Coronavirus infection can 
cause mild to severe respiratory and digestive tract 
diseases in a wide range of wild and domesticated birds 
and mammals, including humans, posing a huge threat 
to animal and human health [1]. Currently, the known 
swine enteropathogenic coronaviruses that cause 
diarrhea in pigs include transmissible gastroenteritis 
virus (TGEV), porcine epidemic diarrhea virus (PEDV), 
swine acute diarrhea syndrome coronavirus (SADS‑
CoV), and porcine deltacoronavirus (PDCoV) [2]. Among 
them, TGEV, PEDV, and SADS‑CoV belong to the 
Alphacoronavirus genus, while PDCoV is a member in 
the Deltacoronavirus genus [3].

SADS‑CoV, also known as porcine enteric 
alphacoronavirus (PEAV) and swine enteric 
alphacoronavirus (SeACoV), is a newly emerged swine 
enteric coronavirus that was first discovered in 2017 in 
the Guangdong Province, China [4–6]. SADS‑CoV is a 
novel HKU2‑related coronavirus that spills over from 
bat to cause severe diseases in domestic animals [4–6]. 
SADS‑CoV causes severe vomiting, watery diarrhoea, 
dehydration, and high mortality rates in newborn 
piglets, leading to enormous economic losses in the pig 
industry [4–6]. Fortunately, in addition to Guangdong 
[4–8], SADS‑CoV has been reported to cause sporadic 
outbreaks only in four other Provinces in China so far, 
including Fujian, Jiangxi, Guangxi, and Henan [9–12].

The RNA genome of SADS‑CoV is approximately 
27 kilobases long, which contains a 5′‑untranslated 
region (UTR), open reading frame 1a (ORF1a), ORF1b, 
spike protein (S), ORF3/NS3a, envelope protein (E), 
membrane protein (M), nucleocapsid protein (N), NS7a, 
NS7b, and 3′‑UTR [12, 13]. Within the 5′ two thirds of 
the genome, ORF1a and ORF1b encode polyprotein 1a 
(pp1a) and pp1b, respectively, which are cleaved by two 
virus‑encoded proteases, papain‑like protease 2 (PLP2) 
and 3 chymotrypsin‑like protease (3CLPro), to generate 
16 nonstructural proteins (NSP1‑16) involved in viral 
replication and transcription [12, 13]. PLP2 and 3CLPro 

are encoded by NSP3 and NSP5 genes, respectively. The 
remaining 3′ one third of the genome expresses four 
structural proteins (S, E, M and N) and three accessory 
proteins (ORF3/NS3a, NS7a, and NS7b) [12, 13]. The S 
protein consists of the S1 and S2 subunits, which mediate 
receptor binding and membrane fusion, respectively, 
to promote viral entry [14–16]. The E and M proteins 
are main components of viral envelop essential for viral 
assembly and release, and N protein typically participates 
in virion packaging by binding to viral genomic RNA 
[12, 13]. However, the functions of the three accessory 
proteins are largely unknown.

SADS‐CoV is capable of infecting a large variety of 
cell lines from humans and animals, including swine, 
chickens, monkeys, cats, dogs, mice, rats, hamsters, 
mink, and bats [17–20]. Although SADS‑CoV has not 
been reported to infect humans, its broad host tropism 
implicates that SADS‐CoV holds a high risk of cross‑
species transmission and poses a potential threat to 
public health [21]. To gain entry into the cells, SADS‐
CoV is first attached to heparan sulfate and sialic acid 
on the target cell surfaces [16], then utilizes the S1 
subunit of S protein to bind cellular receptors and the 
S2 subunit to trigger membrane fusion. While N‑linked 
glycosylation of host cells plays an important role in 
SADS‑CoV attachment [22], the specific N‑linked 
glycoproteins mediating this process remain unknown. 
SADS‐CoV entry requires cleavage of S protein by diverse 
host proteases, including furin, cathepsin L, cathepsin 
B, transmembrane protease serine 2 (TMPRSS2), 
TMPRSS4, and TMPRSS13 [14–16, 22, 23]. Furthermore, 
bile acids, a common type of microbial metabolites, 
were identified to enhance SADS‑CoV entry in porcine 
intestinal enteroids through caveolae‑mediated 
endocytosis [24]. However, SADS‐CoV does not use 
the known coronavirus functional receptors, including 
angiotensin converting enzyme 2 (ACE2), dipeptidyl 
peptidase 4 (DPP4), and aminopeptidase N (APN), for 
cellular entry [6, 17, 18]. Though the precise mechanisms 
of SADS‑CoV entry remain elusive, the recent generation 
of recombinant vesicular stomatitis virus with its G 
protein replaced by SADS‑CoV S protein and green 
fluorescent protein‑labelled recombinant SADS‑CoV 
will provide a valuable platform for accelerating the 
identification of the functional receptors for SADS‑CoV 
entry [15, 16].

To date, no vaccines and drugs are commercially 
available to defend SADS‑CoV infection. Understanding 
the interplay between SADS‑CoV and host antiviral 
immunity is critical for expediting the research and 
development of vaccines and drugs against SADS‑CoV 
infection. Therefore, this review summarizes recent 
advancements in our understanding of the interplay of 
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SADS‑CoV and the host intrinsic and innate immunity, 
providing new insight into the complex relationship 
between SADS‑CoV and intracellular antiviral immunity.

2  Intrinsic versus innate immunity
Upon virus infection, intracellular antiviral immunity 
serves as the first line of host defense against invading 
viruses before the onset of adaptive immunity. Based 
on the requirements for the interferon (IFN) system, 
host intracellular antiviral immunity can be divided 
into two major arms: (1) intrinsic immunity (also 
known as cell‑intrinsic or cell‑autonomous immunity) 
and (2) innate immunity [25–30]. Intrinsic immunity 
refers to an IFN‑independent antiviral response con‑
ferred by constitutively expressed cellular proteins that 
are known as intrinsic host restriction factors or intrin‑
sic host antiviral factors (Figure 1). While these factors 
are typically preexistent in certain cell types, they can 
be further induced by viral infection. The host restric‑
tion factors restrain viral replication immediately and 
directly after infection, often prior to the beginning of 
the IFN response. However, these factors can also be 
upregulated by IFN, which can remarkably enhance 

their antiviral activities to better inhibit viral replica‑
tion. In the past decades, numerous cellular proteins 
have been identified as the host restriction factors, 
including interferon‑induced transmembrane (IFITM) 
proteins [31–35], cholesterol 25‑hydroxylase (CH25H) 
[36–38], interferon‑inducible IFI16 protein [39–41], 
optineurin (OPTN) [42], and transmembrane protein 
53 (TMEM53) [43], that are able to target different 
stages of viral life cycle for viral inhibition.

In contrast, innate immunity represents an IFN‑
dependent antiviral response mediated by cellular 
receptors that are known as pattern recognition receptors 
(PRR) (Figure 1). The well characterized mammalian PRR 
include toll‑like receptors (TLR), retinoic acid‑inducible 
gene I (RIG‑I)‑like receptors (RLR), the nucleotide‑
binding oligomerization domain (NOD)‑like receptors 
(NLR), and the cytosolic DNA sensor stimulator of 
interferon genes (STING) [44]. Following the recognition 
of pathogen‑associated molecular patterns (PAMP) 
of viruses (such as viral nucleic acids) by host PRR, the 
associated cellular signalling pathways are activated. 
Taking RLR signalling pathway for example, the sensors 
RIG‑I and melanoma differentiation‑associated protein 

Figure 1 Intrinsic versus innate immunity. During Intrinsic immunity, the constitutively expressed host restriction factors exert antiviral activities 
in different stages of viral life cycle. In contrast, invading viral DNA or RNA are recognized by specific host PRR (such as TLR7, RIG-I, and MDA5) 
during innate immunity that signal to induce IFN secretion, which further triggers the expression of numerous ISG to restrict viral replication.  Figure 
created with BioRender.
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5 (MDA5) are activated by viral RNA, then interact 
with the caspase activation and recruitment domain 
(CARD) on mitochondrial antiviral signalling protein 
(MAVS), which acts as the critical adaptor protein to 
mediate downstream signal transduction [45, 46]. MAVS 
relays the signal to TANK‑binding kinase 1 (TBK1) and 
inhibitor of nuclear factor kappa B (IκB) kinase‑ε (IKKε) 
through tumour necrosis factor (TNF) receptor‑activated 
factor 3 (TRAF3), which causes activation of the 
transcription factors (TF) including interferon regulatory 
factor (IRF3), IRF7, and nuclear factor kappa B (NF‑
κB) [45, 46]. Activated TF are then transported into the 
nucleus where they trigger transcription of the genes 
encoding IFN and proinflammatory cytokines [45, 46].

The IFN are classified into three different families: type 
I IFN (IFNα, IFNβ, IFNε, IFNτ, IFNκ, IFNω, IFNδ, and 
IFNζ), type II IFN (IFNγ), and type III IFN (IFNλ1, INFλ2, 
IFNλ3, and IFNλ4) [26, 47]. All three types of IFN have 
an inherent ability to induce the expression of IFN‑stim‑
ulated genes (ISG) in an autocrine and paracrine man‑
ner, which can create an antiviral cellular environment to 
restrict viral replication [26, 47]. The type I and type II IFN 
receptors, the heterodimeric IFNα receptor 1/2 (IFNAR1/
IFNAR2) and IFNγ receptor 1/2 (IFNGR1/IFNGR2) com‑
plexes, respectively, are ubiquitously expressed almost in 
all cell types, while the expression of type III IFN recep‑
tors, the heterodimeric IFNλ receptor 1/IL10 receptor 2 
(IFNLR1/IL10R2) complex, is restricted in the epithelial 
cells of mucosal surfaces [48]. After binding to their cog‑
nate receptors, type I and type III IFN activate the Janus 
kinase (JAK)‑signal transducer and activator of transcrip‑
tion (STAT) signalling pathway to generate the heterotri‑
meric transcription factor complex interferon‑stimulated 
gene factor 3 (ISGF3), which is composed of phospho‑
rylated STAT1/STAT2 heterodimers and IRF9 [47, 49]. 
Likewise, type II IFN also activate the JAK‑STAT path‑
way, leading to the formation of so‑called IFNγ‑activated 
factor (GAF), which consists of phosphorylated STAT1 
homodimers [47]. Activated ISGF3 and GAF are subse‑
quently transported to the nucleus where they induce the 
expression of hundreds of ISG by binding their promoter 
elements, IFN‑stimulated response elements (ISRE) and 
gamma‑activated sequences (GAS), respectively [47].

3  Intrinsic immunity to SADS‑CoV
3.1  CH25H
CH25H is a member in the redox enzyme family that 
is primarily located in the endoplasmic reticulum (ER) 
and Golgi apparatus. CH25H catalyses the oxidation of 
cholesterol to 25‑hydroxycholesterol (25HC), which is a 
type of endogenous hydroxysterol that acts in cholesterol 
homeostasis [26, 50]. When the levels of cellular 
cholesterol are increased, 25HC reduces its accumulation 

by suppressing the activities of sterol regulatory element‑
binding protein (SREBP), which induces the expression 
of genes associated with cholesterol biosynthesis [51]. 
Furthermore, 25HC promotes cholesterol trafficking 
into the ER [26]. Therefore, CH25H and its enzymatic 
product 25HC are generally thought to play essential 
roles in maintaining cholesterol homeostasis. However, 
25HC can also participate in multiple important cellular 
processes, including lipid metabolism, antivirus process, 
inflammatory response, and cell survival [52].

CH25H is an IFN‑induced enzyme that is generally 
upregulated in response to viral infection. It has recently 
been demonstrated that CH25H has a broad antivi‑
ral activity against numerous viruses through various 
mechanisms, such as inhibition of virus‑cell fusion and 
regulation of membrane cholesterol [26]. SADS‑CoV 
infection upregulates CH25H expression not only in 
porcine intestinal epithelial cells IPI‑2I and Vero E6 cells 
in vitro, but also in the ileal tissues of piglets in vivo [38]. 
Treatment of IPI‑2I cells with IFNα markedly increases 
CH25H expression, indicating that porcine CH25H is 
an ISG [38]. Consistent with the findings for other swine 
enteric coronaviruses PEDV, TGEV, and PDCoV [53, 54], 
CH25H and 25HC also inhibit SADS‑CoV entry into the 
cells [38]. Mechanistically, both CH25H and 25HC block 
S protein‑mediated membrane fusion, thus suppressing 
SADS‑CoV replication (Figure 2).

3.2  TMEM53
TMEM53 is a nuclear envelope transmembrane protein 
that is localized in the outer membrane of the nucleus 
[55, 56]. The biological function of TMEM53 is largely 
unknown. The findings from limited studies reveal that 
TMEM53 regulates cell cycle in a tissue‑ and cell type‑
dependent manner and its deficiency is associated with 
sclerosing bone disorder [57, 58]. The antiviral activity 
of TMEM53 was first identified through a large‑scale 
human cDNA library screening for potential host 
restriction factors against SADS‑CoV [43]. Mechanistic 
study unveils that TMEM53 interacts with SADS‑CoV 
NSP12 protein to disrupt NSP8‑NSP12 interaction, 
which interferes with the formation of viral RNA‑
dependent RNA polymerase (RdRp) complex (Figure 2), 
thus inhibiting RdRp activity and viral RNA synthesis 
[43]. Notably, TMEM53 displays broad antiviral 
activities against multiple closely related bat HKU2‑
related coronaviruses with zoonotic potential [43]. 
These important findings suggest that TMEM53 may 
serve as a promising therapeutic target against SADS‑
CoV and HKU2‑related coronavirus infection [43]. 
Because TMEM53 is a newly identified host restriction 
factor, the information on its antiviral activity and the 
underlying mechanisms is still very rare. It is therefore 
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warranted to determine whether TMEM53 restrains the 
replication of other viruses, especially other swine enteric 
coronaviruses.

3.3  HDAC6
Histone deacetylase 6 (HDAC6) is a unique cytoplasmic 
deacetylase that participates in a variety of cellular pro‑
cesses by deacetylating nonhistone substrates [59, 60]. 
Apart from its deacetylase activity, HDAC6 also includes 
a zinc‑finger ubiquitin binding domain that modulates 
a wide range of physiological processes by interacting 
with proteins followed by induction of their degradations 
through the ubiquitin–proteasome system [59, 60]. As a 
result, HDAC6 plays pivotal roles in multiple pathologi‑
cal processes, including neurodegenerative diseases, can‑
cers, and viral infections [59, 60]. Indeed, HDAC6 has 
been demonstrated to exert antiviral activities against 
numerous viruses, including swine enteric coronaviruses 
[61–63]. HDAC6 significantly restricts the replication of 
all four swine enteric coronaviruses SADS‑CoV, PEDV, 
TGEV, and PDCoV [62, 63]. While the specific mecha‑
nism by which HDAC6 inhibits the replication of SADS‑
CoV, PEDV, and TGEV remains unidentified, the research 

on PDCoV reveals that HDAC6 interacts with PDCoV 
NSP8 and induces its degradation through the deacetyla‑
tion at the lysine 46 (K46) and the ubiquitination at K58, 
thus restricting viral replication [62]. However, PDCoV 
NSP5 is able to cleave HDAC6 at glutamine 519 (Q519), 
which leads to a loss in its ability to degrade NSP8, to 
dampen its antiviral effect [63]. Interestingly, the NSP5 
orthologs from SADS‑CoV, PEDV, and TGEV also tar‑
get HDAC6 at residue Q519 for cleavage, demonstrating 
that swine enteric coronaviruses share common strategy 
of NSP5‑mediated cleavage to antagonize the antiviral 
activity of HDAC6 [63]. Future work will be needed to 
define whether HDAC6 also targets NSP8 orthologs from 
SADS‑CoV, PEDV, and TGEV for proteasomal degrada‑
tion to restrain viral replication (Figure 2).

4  Innate immunity to SADS‑CoV
4.1  Type I and type III IFN inhibit SADS‑CoV
Type I and type III IFN are the most critical effector 
molecules in the host antiviral innate immunity. 
Although SADS‑CoV infection fails to induce IFNβ 
and IFNλ production robustly [64, 65], pretreatment 
of cells with IFNα, IFNδ8, and IFNλ3 can effectively 

Figure 2 Intrinsic host restriction factors against SADS‑CoV. The identified host restriction factors CH25H, TMEM53, and HDAC6 target different 
stages of SADS-CoV life cycle to inhibit viral replication: CH25H blocks S protein-mediated membrane fusion, TMEM53 disrupts the formation of viral 
RdRp complex, and HDAC6 might induce NSP8 degradation.  Figure created with BioRender.
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inhibit SADS‑CoV replication [66–68]. Interestingly, 
IFNα‑mediated inhibition of SADS‑CoV replication 
is dependent on the expression of the host factor 
tet methylcytosine dioxygenase 2 (TET2) [66]. 
TET2 protein is well‑known for its catalytic 
activity in the conversion of methylcytosine to 
5‑hydroxymethylcytosine, and plays important roles 
in DNA repair, innate immunity, and inflammation 
[69, 70]. Knockout of TET2 compromises the antiviral 
effects of IFNα on SADS‑CoV replication, which is 
correlated with the significant downregulation of key 
ISG including IFITM1 and IFITM3 [66]. TET2 was 

previously demonstrated to regulate IFITM3 promoter 
demethylation to promote IFITM3 expression 
[71]. However, it remains unknown whether TET2 
facilitates type I IFN‑mediated inhibition of SADS‑
CoV replication by regulating IFITM3 expression.

4.2  Evasion of type I IFN‑mediated antiviral immunity 
by SADS‑CoV

Viruses have acquired numerous armaments to dampen 
host antiviral innate immunity during coevolution with 
their hosts. Thus, it is not surprising that SADS‑CoV 
encodes multiple viral proteins, including N protein, 

Figure 3 Inhibition of type I IFN response by SADS‑CoV. SADS-CoV N protein inhibits IFNβ production by (1) inducing RIG-I degradation 
through ubiquitin proteasome pathway, (2) disrupting TRAF3-TBK1 interaction through interaction with TBK1 and IKKε, (3) interfering with TRIM25 
oligomerization and TRIM25-RIG-I interaction through interaction with TRIM25. SADS-CoV NSP1 inhibits IFNβ and ISG production by (1) 
inhibiting TBK1 phosphorylation, (2) inducing CBP degradation through the proteasome-dependent pathway, (3) triggering JAK1 degradation 
through the ubiquitin proteasome pathway, (4) suppressing STAT1 acetylation and dephosphorylation, blocking its nuclear export. SADS-CoV NSP5 
inhibits IFNβ production by cleaving DCP1A through its protease activity.  Figure created with BioRender.
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NSP1, and NSP5, to inhibit type I IFN response in order 
to evade host antiviral innate immunity and favor its rep‑
lication (Figure 3).

N proteins of swine enteric coronaviruses, includ‑
ing PEDV and PDCoV, have previously been demon‑
strated as the potent type I IFN antagonists that inhibit 
type I IFN production via distinct mechanisms [72, 73]. 
Consistent with this, SADS‑CoV N protein was recently 
shown to suppress type I IFN production as well [74–76]. 
Mechanistically, SADS‑CoV N protein employs multiple 
strategies to restrict type I IFN response [74–76]. First, 
SADS‑CoV N protein interacts with RIG‑I in an RNA‑
independent manner and induces its K27‑, K48‑ and 
K63‑linked ubiquitination, which leads to proteasome‑
dependent degradation of RIG‑I and subsequent repres‑
sion of Sendai virus (SeV)‑triggered IFNβ production 
[74]. Second, SADS‑CoV N protein interacts with TBK1 
and IKKε, which disrupts the interaction between TRAF3 
and TBK1, resulting in the reduction of SeV‑mediated 
TBK1 activation and subsequent IFNβ production [75]. 
Lastly, SADS‑CoV N protein interacts with the coiled‑
coil dimerization (CCD) domain of tripartite motif‑con‑
taining protein 25 (TRIM25), which inhibits TRIM25 
oligomerization and interferes with the interaction of 
TRIM25 and RIG‑I, causing the suppression of TRIM25‑
mediated enhancement of RIG‑I signalling and SeV‑
induced IFNβ production [76]. TRIM25 is an important 
host E3 ubiquitin ligase that regulates antiviral immunity 
by inducing RIG‑I oligomerization through nondegrada‑
tive K63‑linked polyubiquitin to enhance RIG‑I signal‑
ling [77]. Interestingly, TRIM25 can enhance the antiviral 
activity of zinc‑finger antiviral protein (ZAP) by mediat‑
ing both K48‑ and K63‑linked polyubiquitination of ZAP 
[78, 79]. Furthermore, TRIM25 has been demonstrated to 
interact with influenza virus ribonucleoproteins to inhibit 
the initiation of RNA chain elongation, thus restricting 
viral replication [80]. However, the specific mechanism 
of TRIM25‑mediated inhibition of SADS‑CoV replication 
remains unknown.

The NSP1 proteins from swine enteric alphacorona‑
viruses, including TGEV, PEDV, and SADS‑CoV, have 
a shared function in the inhibition of type I IFN signal‑
ing [81]. SADS‑CoV NSP1 inhibits TBK1 phosphoryla‑
tion by disrupting the interaction between TBK1 and 
the Ub protein, and specifically induces the degradation 
of CREB‐binding protein (CBP) through the proteas‑
ome‑dependent pathway, thus preventing the formation 
of IFN transcriptional enhancer and suppressing IFNβ 
production [82]. Intriguingly, SADS‑CoV NSP1 induces 
K11‑ and K48‑linked JAK1 polyubiquitination and trig‑
gers JAK1 degradation through the ubiquitin protea‑
some pathway [83]. Moreover, SADS‑CoV NSP1 inhibits 
STAT1 acetylation and dephosphorylation by inducing 

CBP degradation, which blocks STAT1 export from the 
nucleus to the cytoplasm and restricts ISG expression 
[83]. These findings reveal two novel mechanisms by 
which SADS‑CoV NSP1 restrains both the RLR signalling 
pathway and the JAK‑STAT signalling pathway to evade 
type I IFN‑mediated antiviral innate immunity.

Coronavirus NSP5, also called 3C‑like protease, is not 
only capable of cleaving viral polypeptides to facilitate 
viral replication, but also cutting immune‑related mole‑
cules to evade host antiviral immunity. Specifically, SADS‑
CoV NSP5 has been demonstrated to target and cleave 
mRNA‑decapping enzyme 1a (DCP1A) to antagonize 
the type I IFN signaling pathway [84]. DCP1A is well‑rec‑
ognized for its central role in removing the 5′‑methyl‑
guanosine cap from eukaryotic mRNA, and has recently 
been identified as an antiviral ISG against several viruses 
[85–87]. SADS‑CoV NSP5 cleaves DCP1A via its protease 
activity, which is dependent on the critical amino acid 
residues of histidine at 41 and cystine at 144, to inhibit 
IRF3 and NF‑κB signalling pathways, thus decreasing 
the expression of IFNβ and proinflammatory cytokines 
[84]. Interestingly, A DCP1A variant with a mutation in 
glutamine at 343 is resistant to NSP5‑mediated cleavage, 
which displays a stronger inhibitory effect on SADS‑CoV 
replication than wild‑type protein [84]. Notably, the NSP5 
proteins from different coronaviruses, including SADS‑
CoV, PDCoV, SARS‑CoV, SARS‑CoV‑2, and MERS‑CoV, 
exhibit similar cleavage activities on DCP1A in infected 
cells, implicating that NSP5‑mediated DCP1A cleavage 
might be a conserved mechanism by which coronaviruses 
avoid host antiviral innate immune responses [84, 86].

4.3  Evasion of type III IFN‑mediated antiviral Immunity 
by SADS‑CoV

In contrast to the ubiquitous expression of type I IFN 
receptors, type III IFN receptors are restricted to the 
mucosal epithelium [88]. Consistent with this, intesti‑
nal epithelial cells have recently been shown to express 
extremely low levels of type I IFN receptors, but pro‑
duce high levels of type III IFN, thereby triggering robust 
type III IFN‑mediated antiviral immune response against 
enteric viruses [89]. Therefore, type III IFN‑mediated 
antiviral immunity serves as the primary defence strategy 
against viruses that replicate in intestinal epithelial cells. 
Nevertheless, enteric viruses have evolved to employ 
multiple strategies to evade type III IFN‑mediated anti‑
viral immune response. In the case of SADS‑CoV, it 
employs two viral proteins, NSP1 and NS7a, to inhibit 
the type III IFN response to promote viral replication 
[65, 67]. SADS‑CoV NSP1 prevents poly(I:C)‑induced 
nuclear translocation of IRF1 and induces its degrada‑
tion through the ubiquitin–proteasome pathway, thus 
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reducing IFNλ expression (Figure  4). However, SADS‑
CoV NSP1 does not directly interact with IRF1, implicat‑
ing that it might recruit specific host E3 ubiquitin ligase 
to degrade IRF1. Additionally, SADS‑CoV NS7a interacts 
with apoptosis‑inducing factor mitochondria associated 
1 (AIFM1) to activate caspase‑3, which cleaves IRF3, 
thereby inhibiting IFNλ production (Figure 4).

5  SADS‑CoV manipulation of autophagy 
for replication

Autophagy is an evolutionarily conserved catabolic 
cellular process by which the cellular components 
including aggregated proteins and damaged organelles 
are transported to the lysosome for degradation [90, 

91]. It is a highly orchestrated cellular process that is 
tightly regulated by more than 30 autophagy‑related 
genes (ATG) and encompasses four sequential steps: 
autophagy initiation, elongation and closure of the 
autophagic membrane, fusion of autophagosome 
with lysosome, and autophagosome degradation [90, 
91]. Under various physiological and pathological 
conditions including cell development and 
differentiation, starvation, hypoxia, and virus infection, 
the highly conserved protein kinase mammalian target 
of rapamycin (mTOR) is inhibited, and autophagy 
is thus induced to maintain cellular homeostasis 
[90, 91]. Inhibition of mTOR signalling allows the 
formation of the Unc‑51 like autophagy activating 

Figure 4 Inhibition of type III IFN response by SADS‑CoV. SADS-CoV NSP1 inhibits IFNλ production by inducing IRF1 degradation 
through the ubiquitin–proteasome pathway. SADS-CoV NS7a inhibits IFNλ production by cleaving IRF3 through activation of caspase-3 
by interacting with AIFM1.  Figure created with BioRender.
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kinase 1 (ULK1)‑ATG13‑FAK family kinase‑interacting 
protein of 200  kDa (FIP200)‑ATG101 complex, which 
phosphorylates and activates the downstream Beclin1‑
ATG14L‑Vacuolar protein sorting 15 (VPS15)‑VPS34 
complex, leading to the formation of phagophore, an 
isolated double‑membraned vesicle that encapsulates 
cytosolic components inside itself [92, 93]. The 
elongation and closure step depends on the ATG16L1‑
ATG5‑ATG12 complex, which facilitates microtubule‑
associated proteins 1 light chain 3‑I (LC3‑I) lipidation 
on the phagophore membrane to form LC3‑II, 
resulting in the formation of autophagosome [92, 
93]. Subsequently, the pleckstrin homology domain‑
containing protein family member 1 (PLEKHM1) 
tethers autophagosomes by binding to LC3 with 
lysosomes by interacting with RAB7, and then the 
fusion between autophagosome and lysosome is 
triggered by the tail‑anchored SNAP receptor (SNARE) 
syntaxin 17 (STX17), which forms a structure termed 
autolysosome [92]. Finally, the contents within the 
autolysosomes are subjected to acidification, and then 
degraded by lysosomal hydrolases and recycled back to 
the cytosol [94].

Numerous studies have demonstrated autophagy as 
a critical branch of the host antiviral innate immunity, 
which is capable of degrading virions, viral proteins, 
or even host factors essential for viral replication, and 
cooperates with host PRR signalling to promote IFN 
production to inhibit viral replication [92, 95–99]. 
However, viruses have evolved to employ numerous 
strategies to evade autophagy or even harness autophagy 
for their benefits [100–105]. Similar to other swine 
enteric coronaviruses [106–108], the newly emerged 
SADS‑CoV is also a master that is very good at utilizing 
autophagy pathway to facilitate viral replication [109, 
110]. SADS‑CoV infection triggers autophagy not only in 
Vero E6 cells, swine testis (ST) cells, IPI‑2I, and porcine 
ileum epithelial cells IPI‑FX in vitro, but also in the ileal 
tissues of piglets in  vivo [109, 110]. Pharmacological 
induction of autophagy significantly promotes SADS‑
CoV replication, while pharmacological inhibition of 
autophagy or knockdown of autophagy‑related proteins 
compromises SADS‑CoV replication, demonstrating a 
proviral role for autophagy during SADS‑CoV infection 
[109, 110]. Mechanistically, SADS‑CoV could utilize 
two distinct means to induce autophagy to promote 
viral replication: (1) SADS‑CoV infection results in a 
reduction in the expression of the negative regulator of 
autophagy, integrin a3 (ITGA3), which inhibits AKT 
and mTOR phosphorylation, thus inducing autophagy; 
(2) SADS‑CoV infection produces viral membrane‑
associated PLP2 (PLP2‑TM) that interacts with glucose‑
regulated protein of 78 kDa (GRP78) to form a complex, 

which activates ER stress response and the inositol‑
requiring enzyme 1 (IRE1) signalling pathway, then the 
JNK‑Beclin 1 adaptors bridge the ER stress response 
and autophagy, demonstrating the critical role for IRE1‑
JNK‑Beclin 1 signalling pathway in SADS‑CoV‑induced 
autophagy. However, the specific molecular mechanisms 
by which (1) SADS‑CoV represses ITGA3 expression, (2) 
ITGA3 inhibits AKT phosphorylation, and (3) SADS‑
CoV interplays with the autophagy pathway warrant 
further investigations.

6  SADS‑CoV manipulation of apoptosis 
for replication

Cell death is a normal but critical physiological process 
in all living organisms by which senescent and damaged 
cells are removed to maintain cell homeostasis. Of 
the three most well understood cell death pathways 
(apoptosis, pyroptosis, and necroptosis), apoptosis 
was the first to be identified [111, 112]. Apoptosis is a 
conserved programmed cell death across the animal 
kingdom, which is induced by various physiological and 
pathological stimuli and characterized by decreased 
cell size, membrane blebbing, chromatin condensation, 
nuclear fragmentation, and the formation of apoptotic 
bodies [113, 114]. Apoptosis is initiated by two main 
pathways known as the intrinsic and extrinsic pathways. 
The intrinsic pathway is triggered by intracellular 
stressors including growth factors, nutrient deprivation, 
DNA damage, and ER stress, and is characterized 
by mitochondrial outer membrane permeabilization 
(MOMP) and the release of cytochrome c into the 
cytosol, which activates the cascade of caspase‑9 
signalling to induce cell death [113, 114]. In contrast, 
the extrinsic pathway is initiated by recognition of 
extracellular signals by death receptors including Fas 
receptor (FasR), TNF receptor 1 and 2 (TNFR1/2), and 
TRAIL receptors DR4 and DR5, which activates the 
cascade of caspase‑8 signalling to induce cell death [113, 
114].

Accumulative evidence demonstrates that the PRR of 
the mammalian innate immune system can activate cell 
apoptotic pathway [115, 116], suggesting that apoptosis 
is an essential branch of host innate defence mechanisms 
against viral infections [117, 118]. However, numerous 
viruses have evolved to adopt diverse mechanisms to 
hijack the apoptosis pathway to facilitate viral replication 
[119–122]. Therefore, it is not surprising that, similar to 
other swine enteric coronaviruses [106–108, 119], the 
newly emerged SADS‑CoV is also capable of inducing 
apoptosis to favour viral fitness [67, 123]. SADS‑CoV 
infection induces apoptosis not only in Vero E6, IPI‑2I, 
IPI‑FX, and HeLa cells in vitro, but also in the ileal and 
jejunum tissues of piglets in  vivo [67, 123]. SADS‑CoV 
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infection activates the apoptosis initiator caspase‑8, 
which in turn cleaves the proapoptotic BH3‑interacting 
domain death agonist (Bid), cleaved Bid then activates 
caspase‑9, leading to the induction of apoptosis 
via both the intrinsic and extrinsic pathways [123]. 
Importantly, both caspase‑8 and caspase‑9 inhibitors 
severely block SADS‑CoV‑induced apoptosis, and thus 
repress viral replication [123]. Interestingly, activation 
of the extracellular signal‑regulated kinase 1/2 (ERK1/2) 
signalling pathway is required for SADS‑CoV‑induced 
apoptosis, and blocking this pathway significantly 
inhibits viral replication [124]. Moreover, SADS‑CoV 
NS7a has been demonstrated to activate AIFM1 and 
caspase‑3, which are transported into the nucleus to 
induce apoptosis, thereby promoting viral replication 
[67]. Remarkably, the caspase‑3 inhibitor Z‑DEVD‑
FMK significantly reduces SADS‑CoV replication in 
the intestinal tissues and elevates the survival rate of 
infected piglets, demonstrating apoptosis inhibitors as 
the promising therapeutic drugs for the prevention and 
control of SADS‑CoV infection [67].

7  Conclusions and future perspectives
SADS‑CoV is a newly emerged swine enteropathogenic 
coronavirus that infects a wide range of cells from human 
and diverse animals, holding potential cross‐species 
transmission risks. The intracellular antiviral immunity is 
the first line of the host defence system that combats viral 
infection in an IFN‑independent and ‑dependent fashion. 
Three host restriction factors, CH25H, TMEM53, and 
HDAC6, have been demonstrated to target different 
stages of viral life cycle to restrict SADS‑CoV replication 
(Figure 2). Moreover, both type I and type III IFN are able 
to potently restrain SADS‑CoV replication. However, 
SADS‑CoV has evolved to evade type I‑ and type III‑
mediated innate immune responses by encoding multiple 
viral proteins, including N protein, NSP1, NSP5, and 
NS7a (Figures 3 and 4). In addition, SADS‑CoV has the 
ability to hijack the autophagy and apoptosis pathways 
to favour its fitness. Altogether, the interplay between 
SADS‑CoV infection and the host intrinsic and innate 
immunity is a complex and competitive balance process.

Although much progress has been made to reveal the 
complicated relationship between SADS‑CoV and the 
host intracellular antiviral immunity in the last few years, 
it is still not well characterized and needs extensive inves‑
tigations in the future. As a major topic in future stud‑
ies, the information on cell‑intrinsic immunity is still 
very limited, which warrants in‑depth investigations. To 
date, there are only three host restriction factors iden‑
tified to restrain SADS‑CoV replication, much more 
remain to be discovered. While the mutual relation‑
ship between SADS‑CoV infection and type I and type 

III IFN‑mediated innate immunity has recently been 
revealed, the interplay of SADS‑CoV and type II IFN‑
mediated innate immunity remains to be clarified. Fur‑
thermore, little is known about the roles of the immune 
molecules downstream of the IFN signalling pathways, 
such as ISG, during SADS‑CoV replication. Additionally, 
whether other innate immune responses including DNA 
damage response, ER stress, stress granules, complement 
activation, and RNA interference are involved in immune 
control of SADS‑CoV infection is unknown and is thus 
worthy of future attention. Finally, in‑depth and intensive 
studies on host intrinsic and innate immune factors will 
undoubtedly promote the identification of new targets 
for the development of intervention strategies against 
SADS‑CoV infection.
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