
HAL Id: hal-04881750
https://hal.science/hal-04881750v2

Preprint submitted on 16 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Extended Survey and a Comparison Framework for
Dataflow Models of Computation and Communication

Guillaume Roumage, Selma Azaiez, Cyril Faure, Stéphane Louise

To cite this version:
Guillaume Roumage, Selma Azaiez, Cyril Faure, Stéphane Louise. An Extended Survey and a Com-
parison Framework for Dataflow Models of Computation and Communication. 2025. �hal-04881750v2�

https://hal.science/hal-04881750v2
https://hal.archives-ouvertes.fr


An Extended Survey and a Comparison Framework

for Dataflow Models of Computation and

Communication

Guillaume Roumage†, Selma Azaiez‡, Cyril Faure‡, Stéphane Louise‡
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Abstract—Dataflow Model of Computation and Communica-
tions (DF MoCCs) is a formalism used to specify the behavior of
Cyber-Physical Systems (CPSs). DF MoCCs are widely used in
the design of CPSs, as they provide a high-level of abstraction to
specify the system’s behavior. DF MoCCs rules give semantics to
a dataflow specification of a CPS, and static analysis algorithms
rely on these semantics to guarantee safety properties of the
dataflow specification, such as bounded memory usage and
deadlock freeness. A wide range of DF MoCCs exists, each with
its own characteristics and static analyses. This paper presents a
survey of those DF MoCCs and a classification in eight categories.
In addition, DF MoCCs are characterized by a comprehensive list
of features and static analyses, which reflect their expressiveness
and analyzability. Based on this characterization, a framework
is proposed to compare the expressiveness and the analyzability
of DF MoCCs quantitatively.

Index Terms—Dataflow Model, Survey, Classification, Com-
parative Study

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are reactive systems that

detect environmental shifts through sensors, process this infor-

mation using computational processes, and then use the output

to control actuators. CPSs range from digital signal processing

systems to embedded/cloud infrastructures, soft/hard real-time

systems, and even a mix of all the above. These complex

systems must operate reliably without threatening their inter-

nal processes. For example, a failure of the actuator in an

autonomous car can lead to catastrophic consequences such

as a car crash or a pedestrian accident.

Researchers and engineers seek to understand the behavior

of these CPSs and ensure their safety. They develop methods

to do so, such as Model of Computation and Communications

(MoCCs). A MoCC specifies rules that govern the execution

of the system’s specification and the communication between

its components. Engineers and researchers often use sketches

to conceptualize and illustrate systems and ideas in the early

stages of development [1]. Block diagrams are a popular

informal model for high-level specifications of these sys-

tems. A block diagram consists of boxes representing system

components and arrows representing the relationship between

components. A key advantage of this representation is that

it can be fine-grained (e.g., one block specifies a processor

instruction) or coarse-grained (e.g., one block is a function

or even an aggregation of functions). The first mathematically

grounded MoCC based on graphs was independently created

by Kahn [2] and Dennis [3], laying the foundations of the

DF MoCC family.

Since the seminal work of Lee and Messerschmitt [4], the

DF MoCCs family has expanded significantly, now numbering

nearly 50 DF MoCC today. Each DF MoCC is a trade-off

between its expressiveness -referring to the variety of systems

it can specify- and its analyzability, which pertains to the static

analyses it can perform. Examples of such static analyses

include memory-boundedness, deadlock-freeness, feasibility

and schedulability tests.

A framework for comparing DF MoCCs has been proposed

in [5]. The fundamental difference between our work and

theirs is that in [5], a denotational semantics is provided.

Actors, channels, and tokens are described in terms of math-

ematics objects. Our approach has operational semantics, i.e.,

we described the computation capabilities rather than mapping

them to a mathematical object. The work of [6] is quite similar

but more focused on parametric DF MoCCs.

1) Contributions: The contribution of this paper is an

extension of the DF MoCCs survey of [7]. The classification

categories have been refined, and the features and static

analyses have been updated. As DF MoCCs are a trade-off

between their expressiveness and their analyzability, this paper

proposes a methodology based on system designer needs to

compute the expressiveness and the analyzability score. These

scores are two numerical values to evaluate the expressiveness

and the analyzability of a DF MoCC.

2) Paper organization: This paper starts by presenting sim-

ilarities between all DF MoCCs in section II. In section III and

section IV, the features and static analyses of our framework

are presented, respectively. Some insights about the Turing

completeness of DF MoCC are given in section V, and

section VI presents our classification and its eight categories. A

protocol to compute the expressiveness and analyzability score

of a DF MoCC is presented in section VII. Finally, section VIII

concludes the paper.

II. DATAFLOW PRINCIPLES

Although each DF MoCC defines its own semantics for

specifying and analyzing CPSs, they share the same back-



ground. They are mainly based on the concept of Dataflow

Graph (DFG).

Definition 1 (Dataflow Graph). A DFG is a directed graph

G = (V,E) that specifies a system where vertices represent

actors of the system, and edges represent communication

channels between actors. A DFG specifies a system, and the

semantics of this DFG is given by the DF MoCC used. We

also say that a DFG is an instance or a specification of a

DF MoCC.

An actor is a computational unit that both produces and

consumes data every time it is executed, i.e., every time it

executes a job. The atomic amount of data exchanged is known

as a token. Usually, tokens within channels are produced and

consumed with a First-In First-Out (FIFO) policy, meaning

they are consumed in the order in which they are produced.

The internal behavior of an actor may only be partially known

by systems designers, and sometimes, it is not at all. Hence,

actors lie between “white boxes” and “black boxes”. The

minimum amount of information system designers need is only

the number of tokens produced and consumed by an actor each

time it is executed.

Definition 2 (Channel). A channel is formally defined as a

tuple ci = (vj , vk, nij , nik, [ci]) where vj is the producer actor,

vk is the consumer actor, nij is the production rate, i.e., the

number of tokens produced by vj on ci each time it executes

a job, nik is the consumption rate, i.e., the number of tokens

consumed by vk on ci each time it executes a job, and [ci] is

the initial tokens of ci.

DF MoCCs can be classified into functional deterministic

and non-functional deterministic ones. A DF MoCC has a

functional determinism if the output of the actors of the DFG

solely depends on their inputs, independently from external

factors such as time or randomness. The temporal determinism

of a DF MoCC asserts that the execution windows of the actors

are fixed and do not vary from one execution to another. In this

paper, we will focus on functional determinism; in this paper,

a deterministic DF MoCC is a DF MoCC with a functional

determinism.

Although both functional deterministic and non-functional

deterministic DF MoCCs have static analysis algorithms, the

former ones are more accurate. A static analysis permits the

prediction of some facets of the runtime behavior of a CPS at

compile-time. Those static analyses often rely on the topology

of the CPS’s specification and the communication pattern

among actors. Both of these information are stored in the

topology matrix.

Definition 3 (Topology matrix). The topology matrix of a

DFG G = (V,E) is denoted GΓ = (γij). The range rate

(e.g, N∗,N,Q∗) of γij depends on which DF MoCC defines

the semantics of the DFG. In any case, γij is the consump-

tion/production rate of the actor vj from/to the channel ci. If

vj consumes/produces, γij is negative/positive.

Definition 4 (Actor). An actor is formally defined as a tuple

vi = (Ii, Oi) where Ii ⊆ E is the set of input channels of vi
and Oi ⊆ E is the set of output channels of vi. Note that Ii
and Oi may be empty. If Ii is empty, vi is a source actor or a

sensor, and if Oi is empty, vi is a sink actor or an actuator.

Unless stated otherwise, an actor can execute if and only

if the number of tokens in its input channels is greater than

the consumption rate of the channel. Whenever an actor

executes, it writes/reads an amount of token equal to the

production/consumption rate of the channel. Write operations

are non-blocking, i.e., an actor can produce tokens whenever

it executes, and read operations are blocking, i.e., an actor

consumes tokens only if it executes and if there are enough

tokens in the input channels.

Definition 5 (Iteration). An iteration of a DFG is a partially

ordered collection of actors’ executions that keeps the token

distribution of the DFG unchanged.

III. CHARACTERIZATION OF THE EXPRESSIVENESS OF DF

MOCCS

Each DF MoCC can specify different characteristics of

CPSs, which is closely tied to the attainable model fidelity

of a DF MoCC. Depending on the CPS being specified, not

all DF MoCCs are suitable. We defined those characteristics

as features, which we will detail in the following sections.

We conducted a survey to identify the most important

features. As a result, some features are shared among multiple

DF MoCCs, while others are unique to a specific DF MoCC.

Features are classified into three categories based on how

they manifest in the DF MoCC. The first category (cf. sec-

tion III-A) presents 18 features that are either present-or-

absent, e.g., the possibility of specifying frequency constraint.

The second category (cf. section III-B) involves evaluating

the range of the production and consumption rates, and the

third category (cf. section III-C) involves assessing the rate

and topology updates of the DF MoCC. Last but not least,

features are not independent; those dependencies are detailed

in section III-D.

A. Comprehensive List of Present-or-Absent Features

There are 18 present-or-absent features for DF MoCCs. The

following sections will detail those features in a lexicographic

order and briefly explain each feature.

1) Blocking Factor (BF): Actors can consume and produce

any multiple of their consumption and production rates. That

multiple is called the blocking factor.

2) Consumption Threshold (CT): The number of tokens in

a channel must exceed a threshold for an actor to consume

them. The consumption threshold is usually different from the

consumption rate.

3) Global State (GS): A key-value structure is shared

among actors.

4) Hierarchy (Hi): Compositionality can be achieved by

associating a subgraph to an actor.

5) Initial and Steady Phases (IniSteP): Actors can have

initial phases followed by cyclic ones (cf. the Phase feature

below).



6) Initial Tokens (IT): Tokens can be stored in channels’

buffer before the start of the execution of the system.

7) Initialization and Discard of Initial Tokens (IniDisIT):

An explicit mechanism initializes and discards initial tokens

at the start and the end of each iteration of the DFG.

8) Multi-Dimensional FIFO (MDF): Instead of being a

single queue, channels’ buffer can be described as multi-

dimensional lattices.

9) Meta-Model (MM): Enhance the expressiveness of a

non-meta-model DF MoCC with additional rules.

10) Out-of-Order Consumption (OOC): Out-of-order con-

sumption of tokens is allowed, i.e., the FIFO policy is not

enforced.

11) Parameters (Pa): Production and consumption rates are

not necessarily fixed scalars.

12) Phases (Ph): Production and consumption rates vary

from one job to another.

13) Rate as Interval (RaI): Production and consumption

rates are given as intervals.

14) Execution Time (ET): Actors can have a non-null

execution time.

15) Frequency (Freq): Actors can have a frequency con-

straint.

16) Delay (Del): Actors can have a delay constraint, i.e.,

the time of their first execution is postponed for a given amount

of time.

17) Production and Consumption Instants (PCI): Specify

the time instants when tokens can be produced and consumed.

18) Sliding Window (SW): Tokens can be consumed with

sliding windows through the channels’ buffer.

B. Range Rate

The definition of the topology matrix states that the produc-

tion and consumption range rates depend on the underlying

DF MoCC. The range rate is the set of values the production

and consumption rates can take. It ranges from the simplest,

which is the singleton {1}, to more complex domains such

as Q∗. The former is less expressive as it implies that the

production and consumption rates are fixed at 1. The latter is

more expressive as it allows the specification of any positive

rational number, i.e., an actor produces and consumes a

fractional number of tokens. The range rate is an element

within the following set: {{1},N∗,N,Q∗,Ω}. The semantics

of the Ω will be detailed later. Intuitively, it means that “any

type of object can be produced and consumed”.

C. Rate and Topology Updates

The rate and topology updates are measured in two dimen-

sions: the instants at which they can change (the when) and

the type of the procedure to define new rates (the how). Rate

updates may induce topology updates. For instance, setting a

rate to zero means that no tokens are produced or consumed.

Therefore, the associated channel is no longer used if that rate

is zero, and the topology is updated.

First, the when. Rate and topology updates can change

between iterations or within iterations of the DFG. When it

occurs between iterations, it implies a static behavior of the

DFG during an iteration, but it is more restrictive and less

expressive as an update within iterations. Second, the how.

New rate values can be determined either at compile-time or

at runtime. If the set of possible values for rates is fixed at

compile-time, the DFG is said to be statically-oriented. If this

set varies at runtime, the DFG is runtime-oriented.

These two dimensions can be combined: the when is either

between or within iterations, and the how is either statically-

oriented or runtime-oriented. Thus, the rate and topology up-

dates can be classified into four categories: Between Iteration

Runtime Oriented (BIRO), Between Iteration Statically Ori-

ented (BISO), Within Iteration Runtime Oriented (WIRO), and

Within Iteration Statically Oriented (WISO). A combination of

these behaviors is possible if, for instance, some range rates are

fixed at compile-time, and others are determined at runtime.

D. Dependencies between Features

The expressiveness of DF MoCCs has been classified into

the range rate feature, the rate and topology updates feature,

and 18 present-or-absent features, namely Blocking Factor

(BF), Consumption Threshold (CT), Global State (GS), Hier-

archy (Hi), Initial and Steady Phases (IniSteP), Initial Tokens

(IT), Initial and Discard of Initial Tokens (IniDisIT), Multi-

Dimensional FIFO (MDF), Meta-Model (MM), Out-of-Order

Consumption (OOC), Parameters (Pa), Phase (Ph), Rate as

Interval (RaI), Execution Time (ET), Frequency (Freq), Delay

(Del), Production and Consumption Instants (PCI), Sliding

Windows (SWi).

Those features are not independent. Those dependencies are

presented under the form “Feature i1 + . . . + Feature in →
Feature j1 + . . . + Feature jn” such that if there is the set of

features of the left-hand side, then the set of features of the

right-hand side is also present.

• IniDisIT → IT: The presence of a mechanism to explicitly

handle the initialization and discard of initial tokens

necessarily implies the presence of initial tokens.

• range rate = Q∗ → Ph: The semantics of a rational

rate p/q is that an actor produces and consumes p tokens

over q consecutive executions, so the number of tokens

produced and consumed may vary from one execution to

another.

IV. CHARACTERIZATION OF THE ANALYZABILITY OF DF

MOCCS

A. Comprehensive List of Static Analyses

There are 11 static analyses that can be performed on a

DFG. The following sections will detail those static analyses

in a lexicographic order and provide a brief explanation of

each static analysis.

1) Consistency (Co): The existence of an execution in

bounded memory is decidable at compile-time.

2) Decidability (Dec): The feasibility of an execution is

provable at compile-time.



3) Functional Determinism (FuncDet): The same sequence

of outputs is produced in response to a given sequence of

inputs. In other words, outputs do not depend on external

factors such as time or randomness.

4) Execution Windows (ExecWin): The execution window

of the actors can be computed at compile-time.

5) Latency (La): The latency of an execution can be

computed at compile-time.

6) Liveness (Li): The existence of a deadlock-free execu-

tion is decidable at compile-time.

7) Memory (Me): The memory footprint of an execution

can be computed at compile-time.

8) Quasi-staticically Schedulable (QSc): A quasi-static

schedule can be derived at compile-time.

9) Statically Schedulable (StaSch): A static schedule can

be derived at compile-time. Usually, there is no limit on the

number of cores executing the system. While common in the

context of DF MoCCs, this assumption is not so often found

in other communities.

10) Strong Consistency (SCo): The boundedness of all

executions is decidable at compile-time.

11) Throughput (Th): The throughput of an execution can

be computed at compile-time.

B. Dependencies between Static Analyses

The analyzability of DF MoCCs has been classified into 11

properties: Consistency (Co), Decidability (Dec), Functional

Determinism (FuncDet), Execution Windows (ExecWin), La-

tency (La), Liveness (Li), Memory (Me), Quasi-Static Sched-

ule (QSc), Statically Schedulable (StaSch), Strong Consistency

(SCo), and Throughput (Th).

Those properties are not independent. Those dependencies

are presented under the form “Prop i1 + . . . + Prop in → Prop

j1 + . . . + Prop jn” such that if there is the set of properties of

the left-hand side, then the set of properties of the right-hand

side is also present.

• StaSch → Dec + Co + Li and QSc → Dec + Co + Li: The

derivation of a static/quasi-static schedule at compile-time

implies that the feasibility is provable, so there exists at

least one deadlock-free execution in bounded memory.

• Dec → Co + Li: The feasibility of a system implies that

at least one deadlock-free execution exists in bounded

memory.

• SCo → Co: The guarantee of memory boundedness of

all executions necessarily implies the existence of at least

one memory-bounded execution.

• Li → Co + Dec: The liveness of a dataflow specification

implies that there exist a deadlock-free execution, so it

implies also the consistency and the feasibility of the

specification.

• Th → ET and La → ET: Throughput and latency evaluate

quantitatively some performance of the system over time,

so those two properties imply that actors have execution

times.

• ExecWin → ET: The computation of execution window

length requires the execution time of actors.

• Me → StaSch and Me → QSc: A memory footprint

computation needs to know how the channel buffers are

used, which implies knowing a static schedule or a quasi-

static schedule.

V. CHARACTERIZATION OF THE TURING-COMPLETENESS

Some DF MoCCs are shown to be Turing complete [8],

i.e., they can simulate a Turing machine. In particular, the

halting problem is undecidable for Turing machines. Thus, it

is impossible to determine if an execution of an instance of

a Turing-complete DF MoCC will stop or not. Consequently,

static analyses such as consistency or liveness are generally

undecidable for Turing-complete DF MoCCs. However, some

Turing-complete DF MoCCs propose restrictions and condi-

tions on their instances to determine safety properties. These

will be detailed for DF MoCCs involved.

VI. THE CLASSIFICATION

We propose a new classification of DF MoCCs that is

different from the traditional static, reconfigurable, and dy-

namic DF MoCCs. We propose to classify DF MoCCs for

CPSs design and verification into eight categories as follows:

Synchronous Dataflow and Related DF MoCCs (table I),

Phased-based DF MoCCs (table II), Timed-based DF MoCCs

(table III), Boolean-based DF MoCCs (table IV), Scenario-

based DF MoCCs (table V), Meta-Models DF MoCCs (ta-

ble VI), DF MoCCs with Enable and Invoke Capabilities

(table VII) and Process network-based DF MoCCs (table VIII).

A. Synchronous Dataflow and Related DF MoCCs

This category includes DF MoCCs which are very similar to

the Synchronous Dataflow (SDF). Those similar DF MoCCs

can differ from SDF by the range rate, the rate and topology

updates, or even have parametric rates. For each DF MoCC

of this category, we will detail the differences with SDF.

1) SDF: The roots of DF MoCC can be traced back to

their earliest form in [3]. However, the analyzability of this

model was limited. SDF [4] has paved the way for the current

dataflow paradigm. An SDF specification is a DFG where the

production and consumption rates of the channels belong to

N∗. SDF has consistency and liveness checking algorithms,

and a static schedule can be derived [9] while optimizing

the memory footprint [10]. Reference [11] extends the usual

consistency property to the strong consistency property, i.e.,

deciding whether all executions are bounded. SDF has been

extensively researched for its ability to specify various applica-

tions, and many works have delved into the memory footprint

minimization problem. For instance, a shared buffer memory

model is examined in [12], and a buffer merging technique is

proposed in [13]. While the memory footprint minimization

problem is NP-complete [14], an exact method to solve this

problem is proposed in [15] with model-checking. Another

approach presented in [16] involves arithmetic manipulations

between production and consumption rates and the number

of initial tokens to provide the minimum required buffer size,

yielding a deadlock-free execution.



2) HSDF: The rates’ values of an SDF specification can

be restricted to {1} to yield an Homogeneous Synchronous

Dataflow (HSDF) specification [4]. The static analysis algo-

rithms of SDF also apply to HSDF.

3) SSDF: Scalable Synchronous Dataflow (SSDF) [17]

aims to improve the implementation efficiency of SDF spec-

ifications. It introduces the concept of the blocking factor,

allowing actors to produce and consume a positive multiple

of their consumption and production rates at each execution.

This reduces context-switch overhead by performing multiple

computations at once. The value of blocking factors is defined

at compile-time and cannot be modified at runtime. A detailed

investigation into scheduling strategies to maximize through-

put and optimize memory footprint has been conducted [18],

[19].

4) BDDF: Bounded Dynamic Dataflow (BDDF) [20] ex-

tends SSDF by introducing dynamic and upper-bounded ports

for a set of actors, allowing their rates to change at runtime

up to a maximum value. This addresses some limitations of

SSDF, such as the possibility of adjusting consumption or

production rates to zero for an uncertain number of executions.

The value of dynamic ports depends only on current and pre-

vious values token values. Therefore, BDDF is deterministic.

BDDF includes topology updates, with a Finite State Machine

(FSM) used to specify topology configuration, where each

state defines a set of connected actors. Note that actors with

an SSDF semantics can coexist within a BDDF specification.

In addition, given that dynamic ports are upper-bounded, a

consistency analysis similar to SDF [9] can be performed.

5) CG: Computation Graphs (CGs) [21] are more general

than SDF. In a CG, each channel is also associated with a con-

sumption threshold. Thus, an actor can execute if the number

of tokens in its input channel exceeds both the consumption

rate and the threshold. The authors of [21] studied safety prop-

erties different than the usual ones, including the determinacy,

i.e., the fact that any execution leads to the same result, and the

termination, i.e., the fact that any execution terminates. This

latter is quite different from the liveness, which asserts that

a system can actually have a non-terminating execution. As

the termination property is outside the scope of our interest,

we do not consider it. Reference [14, Section 4.7] provides

a condition to generate a static schedule of a CG. The main

idea is to find a schedule of a semantically equivalent SDF

specification.

6) SPDF: Schedulable Parametric Dataflow (SPDF) [22]

is an extended version of SDF that incorporates a set of

parameters within the range of N∗ and defined at compile-

time. These parameters are communicated through a dedicated

network integrated at the top of an SPDF specification and are

subject to change within an iteration. SPDF is associated with

static analysis algorithms to check consistency and liveness,

and a quasi-static schedule can be derived.

7) MDSDF: Multi-Dimensional Synchronous Dataflow

(MDSDF) [23] extends SDF by defining the number of to-

kens produced and consumed as multi-dimensional lattices.

MDSDF is suitable for modeling signal processing applica-

tions, such as image processing. Although tokens are multi-

dimensional, we consider that the range rate is N∗ as each

dimension is given as a positive integer. A schedule of an

MDSDF specification can be determined at compile-time [24].

Reference [25] provides the initial version of MDSDF, where

tokens have a rectangular shape, and [23] goes one step further

by considering an arbitrary lattice shape. The token shape is

essential as it impacts how actors should read and write them.

8) WSDF: Windowed Synchronous Dataflow (WSDF) [26]

extends MDSDF by allowing tokens to be consumed with slid-

ing windows. A token is consumed with a specific sampling

pattern through a predefined window. A schedule of a WSDF

specification can be derived at compile-time.

9) IBSDF: Interface-Based Synchronous Dataflow (IB-

SDF) [27] is a hierarchical extension of SDF. An IBSDF

specification is an SDF specification with a source and sink

node surrounding it. They both behave as an interface to the

environment, which eases the hierarchical construction of an

IBSDF specification. Each level of the hierarchy is statically

analyzable.

10) RDF: Reconfigurable Dataflow (RDF) [28] extends

SDF by incorporating a controller that dictates how and when

an SDF specification may be reconfigured. Graph rewrite

rules are enforced when particular runtime criteria are met,

such as throughput/buffer occupancy dropping/above a given

threshold. RDF ensures the consistency and liveness of the

original SDF specification and all potential transformations.

All possible reconfigurations of an RDF specification do not

have to be explicitly stated at design time, and their number

can be arbitrarily large or even unbounded.

11) CV-SDF: Computer Vision-Synchronous Dataflow

(CV-SDF) [29] extends SDF to simplify the modeling and

analysis of computer vision applications. According to the

authors, computer vision systems usually have specific re-

quirements when they execute, such as processing frames into

chunks, accessing the neighborhood of a pixel, or accessing the

previous frame. They propose a new buffer structure (which

no longer acts as a FIFO) along with a special consumption

rate format that allows the modeling of those requirements. A

schedule, as well as the memory usage, can be computed at

compile-time.

12) SPBDF: Synchronous PiggyBacked Dataflow

(SPBDF) [30] extends SDF by providing a global state.

Two types of actors are introduced to handle the update

values inside the global state; the first creates the update

request, and the second updates the global state. The second

actor is the only one who can write in the global state.

Other actors are allowed to read the global state when they

execute. The authors of [30] provide necessary and sufficient

conditions for the consistency of the global state by proving

that the global state is written only once per iteration. A static

schedule is derivable based on the scheduling techniques

of SDF, and the memory footprint of the global state is

computable.

13) HDF: Heterochronous Dataflow (HDF) [31] studied

the combination between FSMs and DFGs. This approach



allows the refinement of an actor of a DFG into an FSM

and conversely. The questions of consistency and liveness

are decidable, but it is usually impractical to compute static

schedules.

B. Phased-based DF MoCCs

This category includes DF MoCCs which have the phase

feature. This means that the number of tokens produced and

consumed by an actor can vary from one job to another.

Depending on the DF MoCC, the pattern of production and

consumption can be cyclic or not and defined at compile-time

or at runtime.

1) CSDF: The actors of a Cyclo-Static Dataflow

(CSDF) [32] specification have cyclic execution function,

production, and consumption rates which are established at

compile-time. The production and consumption rates change

periodically according to the defined cycle. The rates take their

values in N, so some channels may be periodically disabled

when the rate is 0. The conversion from a CSDF specifi-

cation to an HSDF specification [32] provides consistency

and liveness checking, and reference [33] provides sufficient

conditions to ensure the liveness without transformation into

an HSDF specification. Schedules can be derived at compile-

time [34], [35].

2) CDDF: Cyclo Dynamic Dataflow (CDDF) [36] is a

dynamic version of CSDF. The execution function, token

ratios, and execution sequence length can vary at runtime.

A control token is read at each actor execution to determine

its behavior. Restrictions are imposed on using the control

token to enhance the analyzability. These restrictions permit

to derive conditions about the strong consistency of a CDDF

specification and its schedulability. These restrictions also

ensure the functional determinism of CDDF.

3) PCG: Phased Computation Graphs (PCGs) [37] extends

CSDF and CGs with both consumption thresholds and ini-

tialization phases. The rates of PCGs are divided into initial

and steady phases. The initial sequence is performed at the

beginning of the execution, and the steady sequence, which is

cyclic, takes over for the rest of the execution. The authors

of [37] demonstrate conditions for consistency and liveness

checkings and a lower bound for memory footprint.

4) FRDF: Fractional Rate Dataflow (FRDF) [38] is the

first DF MoCC with fractional rates. A fractional rate p/q
guarantees that p tokens are produced/consumed every q exe-

cutions. Consequently, some executions may produce/consume

multiple tokens while some may not produce/consume any.

The execution instances at which production and consumption

occur are not fixed, e.g., for any three consecutive executions

of an actor with a production rate of 1/3, only one execution

produces a token, and it may be the first or the second or the

third, and this pattern may vary at runtime. Therefore, rates

and topology updates are classified as WIRO. We will see

that another DF MoCC called POLYGRAPH [39], which also

has fractional rates, overcomes this limitation by using initial

tokens. Interestingly, initial tokens are not part of FRDF. Noth-

ing prevents the token’s production and consumption pattern

of a fractional rate to depend on external factors. Thus, FRDF

is non-deterministic. However, as a coarse-grained production

and consumption pattern is guaranteed at compile-time by the

fractional rates, a static schedule can be derived, and memory

footprint minimization also follows.

C. Timed-based DF MoCCs

This category includes DF MoCCs where the concept of

time is present. This can be the specification of execution time,

a frequency execution, or even a delay.

1) tSDF: Timed Synchronous Dataflow (tSDF) [40] is an

extension of SDF with a function that maps each actor to

their execution time. Such a function permits the extension of

static analysis algorithms of SDF to throughput and latency

analyses. For instance, a trade-off between buffer requirements

and throughput constraints is explored in [41], and a linear

programming formulation is proposed in [42] to compute

the buffer size with optimal throughput, i.e., the maximum

throughput without storage constraints. In reference [40]

and [43], the authors propose a state-space traversal to find

the minimum latency and maximum throughput of an SDF

specification, respectively.

2) tCSDF: Timed Cyclo-Static Dataflow (tCSDF) [44] ex-

tends CSDF with a function that maps each actor’s phase

with a non-null execution time. Such a function permits the

extension of static analysis of CSDF to throughput and latency

analyses. Various studies have been conducted on the trade-

off between throughput and memory footprint. The authors

of [44] propose a heuristic algorithm to perform this trade-

off, and reference [45] proposes a design-space exploration of

the Pareto points in the throughput/buffer size space. Mixed

Integer Linear Programming (MILP) and Min-Max Linear

Programming (MMLP) minimized buffer size under through-

put constraints in [46] and [47], respectively. Throughput

evaluation has also been studied using [48]. Static schedules

are also derived in reference [35] while optimizing memory

footprint [47].

3) CSDFa: Cyclo-Static Dataflow with auto-concurrency

(CSDFa) [49] extends CSDF by providing a mechanism to

handle out-of-order token consumption. Mechanisms such as

circular buffers or predefined buffers’ access patterns limit

the overhead induced by simultaneous executions of an actor.

The authors explored the trade-off between the maximum

concurrent executions and the memory footprint, throughput,

and latency. CSDFa extends CSDF, so the static analysis

algorithms of CSDFa apply to CSDF specification. However,

it is unclear if the static analyses of CSDF, such as memory

and static schedule, can be applied to an CSDFa specification.

4) TPDF: Transaction Parameterized Dataflow

(TPDF) [50] extends CSDF. Rates can be parametric

and updated between iterations. TPDF also introduces three

types of actors: select-duplicate, transaction, and clock

actors. Select-duplicate replicates its single entry into any

combinations of its outputs, transaction is the symmetric

process, and clock actor sends a control token periodically to

another actor. This control token defines the execution mode



TABLE I
FEATURES AND STATIC ANALYSES OF SYNCHRONOUS DATAFLOW AND RELATED DF MOCCS.

DF MoCC
Rate

updates

Topology

updates

Range

rate
Features Static analyses

Turing

complete

SDF [4] never never N∗ IT

Co [4], [9]–[11];
Dec [9], [10]; FuncDet [4];

Li [4], [9]–[11], [16];
Me [10], [12], [13], [15], [16];

SCo [11];
StaSch [9], [10]

◦

HSDF [4] never never {1} IT

Co [4], [9]–[11];
Dec [9], [10]; FuncDet [4];

Li [4], [9]–[11], [16];
Me [10], [12], [13], [15], [16];

SCo [11];
StaSch [9], [10]

◦

SSDF [17] never never N∗
BF
IT

Co [17], [18]; Dec [17], [18];
FuncDet [17]; Li [17], [18];

Me [17]–[19];
StaSch [17]–[19]

◦

BDDF [20]
never1+
WIRO

never1+
WIRO

N
BF1

IT

Co [20]; Dec1[17], [18];

FuncDet [20]; Me1[17]–[19];

StaSch1[17], [18]

◦

CG [21] never never N∗
CT
IT

Co [14]; Dec [14];
FuncDet [21]; Li [14];

StaSch [14]
◦

SPDF [22] WISO never N∗
IT
Pa

Co [22]; Dec [22];
FuncDet [22]; Li [22];

QSc [22]
◦

MDSDF [23] never never N∗
IT

MDF

Co [23], [24]; Dec [23], [24];
FuncDet [23], [24]; Li [23], [24];

StaSch [23], [24]
◦

WSDF [26] never never N∗

IT
MDF
SWi

Co [26]; Dec [26];
FuncDet [26]; Li [26];

StaSch [26]
◦

IBSDF [27] never never N∗
Hi
IT

Co [27]; Dec [27];
FuncDet [27]; Li [27];

StaSch [27]
◦

RDF [28] BIRO BIRO N∗ IT
Co [28]; Dec [28];

FuncDet [28]; Li [28]
◦

CV-SDF [29] never never N∗ IT

Co [29]; Dec [29];
FuncDet [29]; Li [29];
Me [29]; StaSch [29]

◦

SPBDF [30] never never N∗
GS
IT

Co [30]; Dec [30];
FuncDet [30]; Li [30];
Me [30]; StaSch [30]

◦

HDF [31] BISO never N∗
Hi
IT

Co [31]; Dec [31];
FuncDet [31]; Li [31]

◦

1 only for the “SSDF actors”
Rate and topology updates acronyms: BISO: Between Iteration Statically Oriented, BIRO: Between Iteration
Runtime Oriented WISO: Within Iteration Statically Oriented, WIRO: Within Iteration Runtime Oriented
Features acronyms: GS: Global State, Hi: Hierarchy, IT: Initial Tokens, MDF: Multi-Dimensional FIFO, SWi:
Sliding Windows
Analyzability acronyms: Co: Consistency, Dec: Decidability, FuncDet: Functional Determinism, Li: Liveness, Me:
Memory, SCo: Strong Consistency, StaSch: Statically Schedulable



TABLE II
FEATURES AND STATIC ANALYSES OF PHASED-BASED DF MOCCS.

DF MoCC
Rate

updates

Topology

updates

Range

rate
Features Static analyses

Turing

complete

CSDF [32] WISO WISO N
IT
Ph

Co [32]; Dec [34], [35];
FuncDet [32]; Li [32], [33];

StaSch [34], [35]
◦

CDDF [36] WIRO WIRO N
IT
Ph

Co [36]; Dec [36];
FuncDet [36]; SCo [36]

◦

PCG [37] never never N
IniSteP

IT
Ph

Co [37]; Dec [37];
FuncDet [37]; Li [37];

Me [37]
◦

FRDF [38] WIRO WIRO Q∗ Ph

Co [38]; Dec [38];
Li [38]; Me [38];

StaSch [38]
◦

Rate and topology updates acronyms: WISO: Within Iteration Statically Oriented, WIRO: Within Iteration
Runtime Oriented
Features acronyms: : , IniSteP: Initial and Steady Phases, IT: Initial Tokens, Ph: Phase
Analyzability acronyms: Co: Consistency, Dec: Decidability, FuncDet: Functional Determinism, Li:
Liveness, Me: Memory, SCo: Strong Consistency, StaSch: Statically Schedulable

of the actor that consumes that control token, e.g., waiting

for all input data to be available before execution or selecting

the data with the highest priority. Under some restrictions,

two different execution modes can be used within the same

iteration of a TPDF specification, thus allowing topology

and some rate updates within iterations. TPDF provides

consistency and liveness checking, as well as a scheduling

strategy.

5) PolyGraph: POLYGRAPH [51] enhances the semantics

of rational rates of FRDF. A rate of p/q means p tokens are

produced/consumed every q executions. An actor’s execution

increases/decreases by p
q

the fractional number of tokens in the

channels involved. In contrast with FRDF, initials tokens are

used to derive a unique execution sequence from a rational

rate. An actor may also have a frequency constraint and a

delay. Thus, it must execute at that frequency, and its first

execution occurs after the delay. A POLYGRAPH specification

is statically analyzable in terms of consistency and liveness.

Reference [52] also provides execution windows derivation

and a schedulability test.

6) Dynamic PolyGraph: Reference [53] presents a dynamic

extension of POLYGRAPH. Actors of dynamic POLYGRAPH

label tokens with an execution mode. The execution mode

an actor consumes defines how those tokens are processed.

A peculiarity of dynamic POLYGRAPH is that tokens can

be produced with empty content, i.e., they do not carry any

meaningful data. Actors consuming such tokens consider that

the corresponding input channel is (virtually) disabled. An

implicit assumption is that channels must always be active

to transit tokens, even if those tokens have empty content.

Nevertheless, dynamic POLYGRAPH is statically analyzable

in terms of its consistency and liveness.

7) ppSDF: Partially Periodic Synchronous Dataflow

(ppSDF) [54] extends SDF by allowing a subset of actors to

have a frequency constraint but not a phase as in POLYGRAPH.

The authors give some conditions to assert the schedulability

of a ppSDF specification.

8) VSDF: Synchronous Dataflow for VLSI (VSDF) [55]

extends SDF for specifying Very Large Scale Integration

(VLSI) systems. The authors augment the consistency anal-

ysis of SDF by including temporal constraints. This analysis

includes equations to formalize that tokens produced on a

channel at a given time instant are also consumed at this

same time instant. Therefore, not only the number of tokens

produced and consumed on each channel must be equal, but

also the time at which the tokens are produced and consumed

must be equal. It is more accurate to specify the timing

constraints on production and consumption instant instead of

on actors. Indeed, when timing constraints are specified on the

actor, the production and consumption instant are within the

frequency interval but have no fixed value.

9) HSDFa: Homogeneous Synchronous Dataflow with

auto-concurrency (HSDFa) [56] extends HSDF by determining

the consumption order of tokens with static indices indepen-

dently of the production order. The token produced by the

(n + 1)-th job may precede the token produced by the n-

th job in the buffer’s channel if the n-th job finishes before

the (n + 1)-th job. The authors of [56] propose a method

to compute the end-to-end latency of HSDFa specifications.

To that end, assigning an execution time is essential. They

suggest deriving a timed automaton [57] semantically equiv-

alent to an HSDFa specification and using a model-checker

like UPPAAL [58] to compute the exact end-to-end latency

of the initial HSDFa specification. In addition, as HSDFa is a

restriction of CSDFa [49], it inherits its analyzability.

10) ILDF: Interval-rate Locally-static Dataflow

(ILDF) [59] extends SDF by permitting consumption

and production rates to be within a finite natural integers

interval. The actual rates are determined just before the

start of the execution and remain fixed. A schedule and the



worst-case memory footprint can be derived at compile-time.

In addition, if the actors’ Best-Case Execution Time (BCET)

and Worst-Case Execution Time (WCET) are known, the

schedule’s best-case and worst-case time performance can be

computed. Determining the fixed rate before the execution

depends on external conditions, e.g., the size of the data to

be processed. Therefore, ILDF is not deterministic.

11) VRDF: Variable Rate Dataflow (VRDF) [60] is a para-

metric extension of SDF that imposes constraints on parameter

usage. For instance, a parameter is used by at most two actors,

namely the modifier and user. This means that a parameter

can be set at each execution of the modifier, even within an

iteration of a VRDF specification. The process of determining

the new parameter values is not explicitly defined, and it could

result from non-determinism procedures. We also assume that

the assignment parameter process does not depend on runtime

conditions. In a VRDF specification, two actors using the same

parameter must have the same entry in the repetition vector.

These and other restrictions allow the authors to prove the

strong consistency of a VRDF specification. They propose

another static analysis to determine the parameters assignation

that guarantees the fulfillment of a throughput constraint of

a VRDF specification, as well as the associated memory

footprint.

12) VPDF: Variable-rate Phased Dataflow (VPDF) [61]

extends VRDF. Besides structural constraints similar to the

one of VRDF, actors of a VPDF specification have two

parameters for each phase: the number of repetitions and the

rate of that phase.

13) RMDF: Real-time Mode-aware Dataflow (RMDF) [64]

builds upon POLYGRAPH by enabling the specification and

analysis of CPSs with both timing constraints on some actors

and a mode-dependent execution, i.e., an execution with

conditional execution branches. An RMDF specification is

statically analyzable regarding its consistency and liveness,

and the execution window length can be derived to facilitate

a feasibility test [64].

D. Boolean-based DF MoCCs

This category includes DF MoCCs where parameters taking

their value between 0 and 1 are used to control actors’

execution. Those values determine either how actors consume

or produce tokens or determine the topology of the DFG.

1) BDF: Boolean-controlled Dataflow (BDF) [65] is one

of the first DF MoCC focusing on topological updates.

The production/consumption rates of specific actors called

switch/select are either 0 or 1, and control tokens consumed by

those actors determine which port is used. The control tokens

enforce a data-dependency behavior. BDF is Turing complete,

and this latter result is often used to demonstrate the Turing

completeness of other DF MoCCs. The extension of static

analyses of SDF to BDF is discussed in [65].

2) IDF: Integer-controlled Dataflow (IDF) [65] is a gener-

alization of BDF where control tokens are any integer. Thus,

the switch and select actors become case and end-case actors.

Some static analysis algorithms of BDF can be extended to

IDF.

3) BPDF: Boolean Parametric Dataflow (BPDF) [66] com-

bines two parameters: integer parameters express dynamic

rates and 2-values parameters (i.e., “boolean parameters”)

on the channels. Those latter dynamically (des)activate the

channels, possibly within iterations of a BPDF specification.

In order to preserve the consistency and liveness analysis,

boolean parameters are allowed to change at some well-defined

points in the executions. An approach to schedule a BPDF

specification is also proposed. There is no restriction on how

the value of boolean parameters is chosen, so BPDF is not

deterministic.

E. Scenario-based DF MoCCs

This category includes DF MoCCs where the execution

of the actors is driven by scenarios. All DF MoCCs of this

category are derived from or an extension of Scenario-Aware

Dataflow (SADF).

1) SADF: A system specified with SADF [67] has a set

of scenarios. Besides assigning values to parametric rates, a

scenario determines the execution times of the actors of an

SADF specification. Execution times are chosen from discrete

and finite-support probability distributions, which is a key

difference from Exponentially timed Scenario-Aware Dataflow

(eSADF), which will be described further in the paper. De-

tectors are a special type of SADF actors that model the

control part of the system by dynamically detecting scenarios.

The choice of the scenario may be non-deterministic. An

SADF specification switches arbitrarily between scenarios -

even within an iteration of the SADF specification. In such

cases, there are subscenarios within a scenario. Consequently,

a subscenario change in the middle of an iteration may lead

to meaningless behavior, and the authors of [67] have defined

the strong consistency property of an SADF specification,

which ensures each detector executes only once per scenario.

Besides a strong consistency analysis, a liveness checking and

quantitative evaluation of memory footprint, throughput, and

latency have been conducted [68].

2) FSM-SADF: Finite State Machine-based Scenario-

Aware Dataflow (FSM-SADF) [69] is a restriction of SADF.

As in an SADF specification, the dynamic behavior of a system

is also viewed as an evolving sequence of static behaviors

specified with an SDF specification. However, scenarios can

change only between iterations of an SDF specification of

the respective scenario and there are no subscenarios. A non-

deterministic FSM specifies the order in which the scenarios

occur and the rates of the current scenario. Techniques to

compute worst-case throughput and latency are discussed

in [70]. An exact computation is provided in [71], while

a trade-off between buffer size and throughput is explored

in [72]. An FSM-SADF specification is an SADF specification

that is strongly consistent. In contrast with SADF, where

actors’ execution times follow a probability law, the execution

times of actors in FSM-SADF are fixed.



TABLE III
FEATURES AND STATIC ANALYSES OF TIMED-BASED DF MOCCS.

DF MoCC
Rate

updates

Topology

updates

Range

rate
Features Static analyses

Turing

complete

tSDF [40] never never N∗
ET
IT

Co [40], [42]; Dec [40], [42];
FuncDet [32]; La [40];

Li [40], [42]; Me [41], [42];
StaSch [40], [42];

Th [41]–[43]

◦

tCSDF [44] WISO WISO N

ET
IT
Ph

Co [35], [47]; Dec [44];
FuncDet [44]; Li [35], [47];

Me [44]–[47];
StaSch [35], [47], [48];

Th [44]–[48]

◦

CSDFa [49] WISO WISO N

ET
IT

OOC
Ph

Co [32]; Dec [49];
FuncDet [49]; La [49];

Li [32]; Me [49];
Th [49]

◦

TPDF [50]
WISO +
WIRO

WISO +
WIRO

N

ET
Freq
IT
Pa
Ph

Co [50]; Dec [50];
FuncDet [50]; Li [50];
StaSch [50]; Th [63]

◦

POLYGRAPH [39] WISO WISO Q∗

Del
ET

Freq
IT
Ph

Co [39]; Dec [52];
FuncDet [39]; ExecWin [52], [62];

Li [39]; StaSch [52]
◦

Dynamic
POLYGRAPH [53]

WISO WISO Q∗

Del
Freq
IT
Ph

Co [53]; Dec [53];
FuncDet [53]; Li [53]

◦

ppSDF [54] never never N∗

ET
Freq
IT

Co [54]; Dec [54];
FuncDet [54]; Li [54];

StaSch [54]
◦

VSDF [55] never never N∗
IT

PCI
Co [55]; Dec [55];

FuncDet [55]; Li [55]
◦

HSDFa [56] never never {1}
ET
IT

OOC

Co [49]; Dec [56];
FuncDet [56]; La [49];

Li [56]
◦

ILDF [59] never never N∗

ET
IT
RaI

Co [59]; Dec [59];
FuncDet [59]; Me [59];

La [59]; Li [59];
StaSch [59]

◦

VRDF [60] WISO WISO N

ET
IT
Pa

Co [60]; SCo [60];
Th [60]; Me [60]

◦

VPDF [61] BISO BISO N

ET
IT
Pa
Ph

Co [61]; SCo [61];
Th [61]; Me [61]

◦

RMDF [64]
WISO +
WIRO

WISO +
WIRO

Q∗

Del
ET

Freq
IT
Pa
Ph

Co [64]; Dec [64];
ExecWin [64];

FuncDet [64]; Li [64]
◦

Rate and topology updates acronym: BISO: Between Iteration Statically Oriented, WISO: Within Iteration Statically
Oriented, WIRO: Within Iteration Runtime Oriented
Features acronyms: Del: Delay, ET: Execution Time, Freq: Frequency, IT: Initial Tokens, OOC: Out-of-Order
Consumption, Pa: Parameters, PCI: Production and Consumption Instants, Ph: Phase, RaI: Rate as Interval
Analyzability acronyms: Co: Consistency, Dec: Decidability, FuncDet: Functional Determinism, La: Latency, Li:
Liveness, StaSch: Statically Schedulable, SCo: Strong Consistency



TABLE IV
FEATURES AND STATIC ANALYSES OF BOOLEAN-BASED DF MOCCS.

DF MoCC
Rate

updates

Topology

updates

Range

rate
Features Static analyses

Turing

complete

BDF [65] WISO WISO N IT N/A1 •

IDF [65] WISO WISO N IT N/A1 •

BPDF [66] WISO WISO N
IT
Pa

Co [66]; Dec [66];
Li [66]; StaSch [66]

◦

1 a subclass of BDF and IDF models are analyzable
Rate and topology updates acronyms: WISO: Within Iteration Statically Oriented
Features acronyms: IT: Initial Tokens, Pa: Parameters
Analyzability acronyms: Co: Consistency, Dec: Decidability, Li: Liveness, StaSch: Statically
Schedulable

3) FSM-PSADF: Finite State Machine-based Parameter-

ized Scenario-Aware Dataflow (FSM-PSADF) [73] enhances

FSM-SADF by using parameters to improve the compactness.

The scenario and its parameter configuration are both non-

deterministically chosen at the end of an iteration. Refer-

ence [73] developed a state-space analysis to derive throughput

and latency.

4) eSADF: eSADF [74] is a variant of SADF where neg-

ative exponential distributions govern the execution times of

actors. This assumption permits the use of Markov Automatas

(MAs) [75] to capture the semantics of eSADF. Analysis

techniques of MA [76] yield a quantitative evaluation of

memory footprint, throughput, or latency. Other metrics, such

as the probability distribution of tokens in a channel, can also

be computed. We assume that the authors of [74] consider only

consistent and live eSADF specifications. The consistency and

liveness can be checked using the same techniques as SADF

since those do not depend on the execution time of the actors.

5) xSADF: Flexible Scenario-Aware Dataflow

(xSADF) [77] extends both SADF and eSADF. Besides

supporting actors’ execution times that follow arbitrary

probability distributions, xSADF endows actors with an

additional cost function, e.g., energy usage, to have a finer

analysis of the system’s performance. Another extension

is the process of selecting the scenario. In SADF and

eSADF, scenarios follow a probabilistic distribution known

at compile-time. xSADF relaxes this assumption and allows

this choice to depend on external factors and possibly depend

on runtime condition. This is why we consider that the rate

and update topology of xSADF is WIRO instead of WISO as

for SADF and eSADF.

F. Meta-Models DF MoCCs

This category includes DF MoCCs which can be applied on

the top of another DF MoCC to extend its expressiveness.

1) PSDF: Parameterized Synchronous Dataflow

(PSDF) [79] is a parametric meta-model applied to SDF.

An actor of a PSDF specification is either primitive or

hierarchical. A primitive one is composed of three graphs:

the init, subinit and body graphs. The body graph models

the actor’s behavior, and the init and subinit ones handle

parameter reconfiguration. In order to maintain a valuable

level of predictability, some parameter updates are restricted

to occur at the boundaries of an iteration of the PSDF

specification. The init graph handles such parameter updates,

while the other is left to the subinit graph. An actor is

hierarchical if its body graph is itself a PSDF specification.

The authors of PSDF propose a quasi-static scheduling

technique for acyclic PSDFs specification.

2) PCSDF: The authors of PSDF [79] also apply their

method to CSDF and yield the Parameterized Cyclo-Static

Dataflow (PCSDF). The parameterization of PCSDF is less

expressive than VPDF: phases’ ratios and sequence execution

length are parameterized, while in VPDF, an additional pa-

rameter to each phase permits repetition a parametric number

of times.

3) HPDF: Homogeneous Parameterized Dataflow

(HPDF) [80] is a DF MoCC that refines a top-level

actor of the HPDF specification using any DF MoCC with a

well-defined notion of iteration, e.g., SDF, CSDF, or MDSDF.

However, from our understanding of HPDF, top-level actors

cannot be refined into a DF MoCC with timing constraints.

There can be initial tokens between two actors of an HPDF

specification. An HPDF specification executes in bounded

memory if its actors execute in bounded memory.

4) PIMM: Parameterized and Interfaced Meta-Model

(PIMM) [81] extends the semantics of any deterministic

DF MoCC. The PIMM model uses an interface-based hierar-

chy and a set of parameters. Applying PIMM to SDF yields the

Parameterized and Interfaced Synchronous Dataflow (PISDF),

which can be seen as an extension of IBSDF.

5) SAD: State-Aware Dataflow (SAD) [82] tackles the

memory persistence of initial tokens across the SAD’s model

iterations. SAD extends the semantics of the initial tokens

with an explicit initialization/discard at the start/end of each

iteration.

G. DF MoCCs with Enable and Invoke Capabilities

This category includes DF MoCCs where actors have two

capabilities: enable and invoke. The enable capability deter-

mines if an actor can execute in a given mode, while the invoke

capability performs the execution in that mode.



TABLE V
FEATURES AND STATIC ANALYSES OF SCENARIO-BASED DF MOCCS.

DF MoCC
Rate

updates

Topology

updates

Range

rate
Features Static analyses

Turing

complete

SADF [67] WISO WISO N

ET
IT
Pa

Co [67]; Dec [67];
La [68]; Li [67];

Me [68]; SCo [67];
Th [68], [78]

◦

FSM-SADF [69] BISO BISO N∗
ET
IT

Co [69]; Dec [69];
Me [72]; La [70];

Li [69]; Th [70]–[72]
◦

FSM-PSADF [73] BISO BISO N∗

ET
IT
Pa

Co [73]; Dec [73];
La [73]; Li [73];

QSc [73]; Th [73]
◦

eSADF [74] WISO WISO N

ET
IT
Pa

Co [67]; Dec [67];
La [74]; Li [67];

Me [74]; SCo [67];
Th [74]

◦

xSADF [77] WIRO WIRO N

ET
IT
Pa

La [77]; Me [77];
Th [77]

◦

Rate and topology updates acronyms: BISO: Between Iteration Statically Oriented, WISO: Within Iteration
Statically Oriented, WIRO: Within Iteration Runtime Oriented
Features acronyms: ET: Execution Time, IT: Initial Tokens, Pa: Parameters
Analyzability acronyms: Co: Consistency, Dec: Decidability, La: Latency, Li: Liveness, Me: Memory, SCo:
Strong Consistency, Th: Throughput

TABLE VI
FEATURES AND STATIC ANALYSES OF META-MODELS DF MOCCS.

DF MoCC
Rate

updates

Topology

updates

Range

rate
Features Static analyses

Turing

complete

PSDF [79] WISO never N∗

Hi
MM
Pa

Co1[79]; Li1[79];

QSc1[79]
N/A3

PCSDF [79] WISO never N

Hi
MM
Pa
Ph

Co2[79]; Li2[79];

QSc2[79]
N/A3

HPDF [80] BISO never N∗
MM
Pa

Co [80]; Li [80];
QSc [80]

N/A3

PIMM [81]
(PISDF)

WISO WISO N

Hi
MM
Pa

Co [81]; Li [81];
QSc [81]

N/A3

SAD [82] never never N∗
IniDisIT

MM
Same static analyzability as
the underlying DF MoCC

N/A3

1 for a subclass of PSDF specification
2 for a subclass of PCSDF specification
3 those models are meta-model so we don’t consider the turing-completeness

Rate and topology updates acronyms: BISO: Between Iteration Statically Oriented, WISO: Within Iteration
Statically Oriented
Features acronyms: Hi: Hierarchy, IniDisIT: Initial and Discard of Initial Tokens, MM: Meta-Model, Pa:
Parameters, Ph: Phase
Analyzability acronyms: Co: Consistency, Li: Liveness, QSc: Quasi-Static Schedule



1) EIDF: Enable-Invoke Dataflow (EIDF) [83] endows

actors with two capabilities and a set of modes. Each mode

defines a number of tokens to be produced and consumed. The

enable capability asserts if an actor can execute in a given

mode while the invoke capability performs the execution in

that mode. Besides the number of produced tokens, the invoke

capability returns the set of allowed modes for the subsequent

execution of the actor. This set can be empty or contain a

single or multiple elements. Especially, as multiple modes can

be allowed for the next execution, an actor’s behavior may

differ depending on the arrival times of the tokens, and EIDF

is non-deterministic.

2) CFDF: The invoke capability results in both the output

tokens and the set of enabled modes for the subsequent execu-

tions. The Core Functional Dataflow (CFDF) [83] behaves the

same as EIDF, except that the invoke capability returns a single

mode, which makes CFDF deterministic. As the enable and

invoke capabilities can be formulated to describe switch/select

actors of a BDF model, EIDF and CFDF are also Turing-

complete.

3) PSM-CFDF: Parameterized Set of Modes - Core Func-

tional Dataflow (PSM-CFDF) [84] is tailored for CFDF when

the number of modes grows significantly. Actors have a set

of parameters, and a configuration is an assignation to those

parameters. Modes with related functionalities are clustered

together and denoted as Parameterized Set of Modes (PSM).

The active PSM and the active configuration uniquely deter-

mine the mode for the actor executions. There are multiple

next PSM that can be reached. As PSM-CFDF is not explicitly

stated as deterministic, we assume that PSM-CFDF is non-

deterministic.

4) CF-PSDF: Core Functional - Parameterized Syn-

chronous Dataflow (CF-PSDF) [85] is a mix between PSDF

and CFDF. A CF-PSDF actor has modes and three graphs:

the ctrl graph, the subctrl graph, and the body graph. The

ctrl and subctrl graphs have the same role as the init and

subinit graphs of PSDF. The ctrl graph decides the execution

mode and transmits the mode information to the ctrl graph of

subsequent CF-PSDF actors. Two distinct actors can control a

CF-PSDF actor. The first sends mode information to the ctrl

graph, and the second sends data to the body graph.

5) HCFDF: Hierarchical Core Functional Dataflow

(HCFDF) [86] specifies its actors as CFDF actors with a

set of nested DFGs. Let H be an HCFDF actor. The nested

DFGs match a subset of ports of H . An execution of H
might be an invocation of a subset of the nested graphs, given

that the dataflow interface defined by the mode is unchanged.

H. Process network-based DF MoCCs

This category includes dataflow formalism that generalizes

the concept of DF MoCCs. This generalization is referred to

as Dataflow Process Networks (DPNs).

1) KPN: Actors are sometimes called Dataflow Process

(DP), and a network of DP is a DPN [88]. When a DP exe-

cutes, it consumes tokens from its input channels and produces

tokens on its output channels. A set of execution rules indicates

when the DP is enabled to execute. For instance, an actor of a

SDF specification is enabled when it has enough tokens in its

input channels, and an actor of an RMDF specification with a

frequency constraint is enabled when it has both enough tokens

in its input channels and when time is within its execution

windows. Dataflow specifications we have studied so far are

a particular type of Kahn Process Network (KPN) [2]. A

KPN is a collection of concurrent processes that communicate

with channels. In contrast with DP processes, KPN processes

cannot test for the presence or absence of tokens in a given

input channel. KPN processes are also continuous rather than

discrete: there is no well-defined notion of the quantity of

computation. Thus, input tokens are processed as soon as they

become available, and output tokens are processed as soon as

they are produced. A KPN is a deterministic system [2].

2) RPN: Reactive Process Networks (RPNs) [89] is an ex-

tension of KPNs where the set of active processes and channels

may change at runtime on receiving events, which introduced

non-determinism compared to KPNs. An RPN presents a

static interface to the outside world that receives events and

tokens. Events introduce non-functional determinism in the

model.

VII. EXPRESSIVENESS AND ANALYZABILITY HIERARCHY

A. Protocol for Creating Expressiveness and Analyzability

Hierarchy

The classification in the previous section can be used to

quantitatively compare the expressiveness and analyzability

of DF MoCCs. We call this the expressiveness hierarchy

and the analyzability hierarchy. The protocol to create those

hierarchies is the following, and they are also illustrated in

fig. 1:

1) Characterize each DF MoCC according to the features

described in section III and static analyzability described

in section IV; this has been done in this paper (cf. table I

to table VIII).

2) Assign a coefficient to each feature and static analysis

according to the designer’s need. Those coefficients aim

to increase or reduce the importance of features or static

analysis. For instance, coefficient 1 can be used for

needed features and static analysis, and 0 for unneeded

features.

3) Compute the expressiveness and analyzability score for

each DF MoCC by summing the normalized features’

score with the correct weighting, then sort DF MoCC

regarding their expressiveness and analyzability score.

• The score of boolean-valued features is 1 if the

feature is present and 0 otherwise.

• The score of range rate is 0 if it is {1}, 1 if N∗, 2

if N, 3 if Q∗, and 4 if Ω. The incrementation by 1

represents an increase in expressiveness.

• The rate and topology updates score is computed

in table IX. This score is the sum of the score of

the rate updates and the topology updates. Each

of them is evaluated as follows. If it is evaluated



TABLE VII
FEATURES AND STATIC ANALYSES OF DF MOCCS WITH ENABLE AND INVOKE CAPABILITIES.

DF MoCC
Rate

updates

Topology

updates

Range

rate
Features Static analyses

Turing

complete

EIDF [83] WISO WISO N N/A1 N/A •

CFDF [83] WISO WISO N N/A1 FuncDet [87] •

PSM-CFDF [84] WISO WISO N Pa N/A •

CF-PSDF [85] WISO WISO N
Hi
Pa

N/A •

HCFDF [86] WISO WISO N Hi N/A •

Rate and topology updates acronyms: WISO: Within Iteration Statically Oriented
Features acronyms: Hi: Hierarchy, Pa: Parameters
Analyzability acronyms: FuncDet: Functional Determinism

TABLE VIII
FEATURES AND STATIC ANALYSES OF PROCESS NETWORK-BASED DF MOCCS.

DF MoCC
Rate

updates

Topology

updates

Range

rate
Features Static Analyses

Turing

Complete

KPN [2] WISO WISO Ω1 N/A FuncDet [2] •

RPN [89] WISO WISO Ω1 Hi N/A •

1 any type of objects (pointers, integers, functions, etc); the choice of “omega” is inspired from
the probability theory where it represents the set of all possible outcomes
Rate and topology updates acronyms: WISO: Within Iteration Statically Oriented
Features acronyms: Hi: Hierarchy
Analyzability acronyms: FuncDet: Functional Determinism

as a single type, e.g., WISO for rate updates of

POLYGRAPH, the score is the intersection of the

type with itself on table IX, that is 6. Thus, the

score for rate updates for POLYGRAPH is 6. If it

is evaluated as two different types, e.g., WISO and

WIRO for RMDF, the score is the intersection of

the two types, that is 7. Thus, the score for rate

updates for RMDF is 7.

TABLE IX
EVALUATION OF RATES AND TOPOLOGY UPDATES.

never BISO BIRO WISO WIRO

never 0 1 2 3 4

BISO 1 2 3 4 5

BIRO 2 3 4 5 6

WISO 3 4 5 6 7

WIRO 4 5 6 7 8

B. Application of the Protocol

Let us assume that we are interested in specifying and

analyzing CPSs with relaxed real-time constraints and mode-

dependent execution. CPSs with relaxed real-time constraints

have real-time constraints on only a subset of their processes,

and CPSs with a mode-dependent execution have conditional

execution branches. Thus, we are interested in the Rate and

topology updates features to specify mode-dependent exe-

cutions of CPSs as much as possible. Regarding specifying

real-time constraints, we are interested in the features Delay,

Execution Time, and Frequency. In addition, the features

Domain rate, Phase and Initial Tokens are also interesting in

easing the specification of real-time components with different

frequencies.

Regarding the static analysis, let us assume that we want the

DF MoCC to be deterministic and to provide a consistency and

liveness analysis. The analysis of execution windows would

also be of high interest.

The fig. 2 shows the expressiveness and analyzability score

where we assign coefficient 1 for the features and static

analyses of interest (as defined in previous paragraphs) of

interest and coefficient 0 for the other. DF MoCCs shown

in fig. 2 are the non-Turing complete and non-meta-model

DF MoCC studied in this paper. We exclude Turing-complete

and meta-model DF MoCC from this analysis as the static

analysis of the former is limited, and the latter is not intended

to be used on its own. We can see in fig. 2 that POLYGRAPH,

Dynamic POLYGRAPH, TPDF and RMDF are the most suit-

able DF MoCC to specify and analyze CPSs with relaxed

real-time constraints and mode-dependent execution

C. Extending the Classification

New features, static analyses, and DF MoCCs can be

easily integrated into the classification system. A feature is

introduced by defining how it is evaluated and evaluating

each DF MoCC against this feature. A new static analysis
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Fig. 1. Visualization of the protocol to compute the expressiveness and analyzability hierarchy.
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Fig. 2. Expressiveness and analyzability score of DF MoCCs which are non-Turing complete and non-meta-model ones. The coefficient used to compute
scores is 1 for the useful features and 0 for the unneeded ones.



is incorporated by specifying what it evaluates and evaluating

each DF MoCC against this static analysis. A DF MoCC is

added by characterizing it with the existing features and static

analyses. Dependencies, whether among features or static

analyses, can be seamlessly integrated.

D. A Visualization Tool

To enhance the accessibility of our classifiation system,

we have developed an open-source visualization tool1. This

tool facilitates the comparative evaluation of DF MoCCs and

enable system designers and researchers to filter DF MoCCs

based on required features and static analyses. This contribu-

tion aims to support engineers and researchers in navigating

the broad ecosystem of DF MoCCs.

VIII. CONCLUSION

We have presented a survey and a comparison framework

for DF MoCCs found in the scientific literature. Our work

includes a comprehensive list of features and static analyses

designed to characterize the expressiveness and the analyzabil-

ity of each DF MoCC. Building on this characterization, we

proposed a protocol to assign expressiveness and analyzability

scores to each DF MoCC according to system designer needs.

The framework we proposed is easily extensible, allowing

for the incorporation of new features, static analyses, and

dataflow models. Our classification quantitatively supports a

widely accepted assertion in the DF MoCC community: there

is a trade-off between expressiveness and analyzability in

DF MoCCs. The framework we proposed can serve both as a

comparative tool and as a decision-making aid. We hope that

the DF MoCC community will participate in this effort by

providing feedback and by extending the classification system

through the GitHub repository of the paper2.
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