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Abstract

Accurate sensor calibration is crucial for autonomous
systems, yet its uncertainty quantification remains under-
explored. We present the first approach to integrate un-
certainty awareness into online extrinsic calibration, com-
bining Monte Carlo Dropout with Conformal Prediction
to generate prediction intervals with a guaranteed level
of coverage. Our method proposes a framework to en-
hance existing calibration models with uncertainty quan-
tification, compatible with various network architectures.
Validated on KITTI (RGB Camera-LiDAR) and DSEC
(Event Camera-LiDAR) datasets, we demonstrate effective-
ness across different visual sensor types, measuring perfor-
mance with adapted metrics to evaluate the efficiency and
reliability of the intervals. By providing calibration pa-
rameters with quantifiable confidence measures, we offer
insights into the reliability of calibration estimates, which
can greatly improve the robustness of sensor fusion in dy-
namic environments and usefully serve the Computer Vision
community.

1. Introduction

In the dynamic field of autonomous systems, extrinsic
calibration, which determines the spatial relationships be-
tween sensors, is essential for effective data fusion from
multiple sensors. The calibration quality can thus directly
impact subsequent tasks such as object detection or segmen-
tation. In real-world scenarios, even slight calibration errors
can significantly impact the safety and performance of au-
tonomous vehicles and robots [5].

Traditional calibration methods, relying on manual pro-
cedures or controlled environments, are increasingly inad-
equate for the demands of modern autonomous systems.
These approaches, while precise in controlled settings, do
not allow for on-the-fly calibration, and thus to maintain a
correct calibration in operation. This limitation has created

a pressing need for robust techniques capable of real-time
online calibration in natural environments.

Recent years have seen significant advancements in the
state of the art for online calibration, particularly with the
integration of deep learning-based methods. Models such
as those proposed in [6, 7, 18, 26, 33, 37, 44] have demon-
strated remarkable improvements in calibration efficiency
and accuracy. However, the quantification of uncertainty in
the calibration process is yet to be studied. Quantifying the
reliability of calibration estimates is essential in ensuring a
consistent calibration quality.

In this context, we focus on model uncertainty (epistemic
uncertainty), which reflects the confidence of the model in
its predictions. Unlike data uncertainty (aleatoric uncer-
tainty), which is inherent and irreducible, model uncertainty
can be mitigated with more data or improved models [20].
This focus is crucial for calibration tasks, where the reli-
ability of the model’s predictions directly impacts system
performance and safety.

To address this challenge, we propose an approach that
integrates Monte Carlo Dropout (MCD) [11] with Confor-
mal Prediction (CP) [42]. Our method generates predic-
tion intervals with statistically guaranteed coverage—the
probability that the true outcome falls within the predicted
interval—enabling robust quantification of calibration pa-
rameter uncertainty in dynamic environments. To the best
of our knowledge, this work pioneers the study of uncer-
tainty in online extrinsic calibration and introduces the first
CP-based framework for providing statistically guaranteed
intervals in this context. Our key contributions are:

• A Conformal Prediction [42] framework tailored for
online extrinsic calibration, providing reliable and sta-
tistically sound uncertainty estimates.

• A deep learning-based approach that seamlessly in-
tegrates Monte Carlo Dropout [11] for model uncer-
tainty estimation with Conformal Prediction [42], en-
abling uncertainty quantification in dynamic environ-
ments.



• A comprehensive validation on real-world benchmark
datasets with different sensor modalities (KITTI [14]
for RGB-LiDAR and DSEC [13] for Event Camera-
LiDAR calibration), demonstrating the generaliza-
tion and effectiveness of uncertainty-aware calibration
across different sensor types.

2. Related Work
We would like to draw the attention of the reader on the

two different uses of the word calibration in this work. Sen-
sor calibration, or extrinsic calibration, refers to the spatial
transformation between sensors. Conversely, uncertainty
calibration refers to a process part of the CP method and
described in Section 3.2.1.

2.1. Extrinsic Calibration for Multi-Sensor Systems

Extrinsic calibration, the process of estimating spa-
tial relationships between heterogeneous sensors, is cru-
cial for accurate data fusion in autonomous driving and
robotics [30]. Traditional methods often relied on manual
procedures or controlled environments [45], which proved
impractical for dynamic, real-world scenarios. This limi-
tation has driven research towards automated, robust, and
online calibration techniques.

Early work in automated calibration saw significant ad-
vancements. [31] introduced an automatic extrinsic calibra-
tion method for LiDAR-camera systems using mutual in-
formation maximization. [15] proposed a single-shot ap-
proach for camera and range sensor calibration, leveraging
checkerboards for feature extraction.

Lead by the seminal work of Schneider et al. [35], recent
years have witnessed significant advancements with the ap-
parition of deep learning-based calibration techniques [6,
7, 18, 26, 33, 37, 44], demonstrating the potential of end-to-
end learning in handling complex spatial relationships be-
tween sensors in uncontrolled environments. While these
methods have improved calibration accuracy, they do not
explore uncertainty quantification. Our work addresses this
gap by proposing a framework to provide uncertainty esti-
mates and safe intervals for existing calibration models. We
demonstrate our approach using slightly modified versions
of state-of-the-art lightweight models UniCal [6] and MuLi-
Ev [7] as case studies. This framework aims to enhance the
reliability and interpretability of extrinsic calibration in dy-
namic, real-world scenarios.

2.2. Uncertainty Quantification in Computer Vision

Uncertainty quantification has become indispensable in
computer vision, particularly for safety-critical applica-
tions [1, 20]. Modern deep learning models contend with
both aleatoric (data-inherent) and epistemic (model-related)
uncertainties [20]. Recent advancements have yielded di-
verse techniques to address these challenges.

Bayesian Neural Networks (BNNs) provide a principled
approach by approximating posterior distributions over net-
work weights [27]. To mitigate their computational com-
plexity, methods like Monte Carlo Dropout have emerged,
interpreting dropout as a Bayesian approximation during in-
ference [11]. This enables efficient uncertainty estimation
in large-scale vision applications with minimal architectural
modifications.

Ensemble methods, such as Deep Ensembles [23], ag-
gregate predictions from multiple independently trained
models, effectively capturing model uncertainty while en-
hancing predictive performance. In medical imaging, the
Probabilistic U-Net [22] combines U-Net architecture with
a conditional variational autoencoder to generate multiple
plausible segmentations, addressing inherent ambiguities.

Prior Networks [29] explicitly model distributional un-
certainty, crucial for distinguishing various uncertainty
types, including out-of-distribution samples.

These methods have demonstrated efficacy across vari-
ous computer vision tasks, including object detection [17],
semantic segmentation [19], and depth estimation [20].
In autonomous driving, uncertainty estimates help iden-
tify low-confidence situations, potentially triggering safety
interventions [10]. However, challenges remain, includ-
ing computational overhead and distributional assumptions,
presenting opportunities for future research in efficient and
scalable uncertainty quantification for real-world vision
systems.

2.3. Conformal Prediction (CP)

CP has emerged as a powerful framework for uncertainty
quantification, offering distribution-free guarantees for pre-
diction intervals [2, 42]. It has a low computational cost at
runtime, and works with minimal assumptions (mostly ex-
changeability). Unlike traditional methods that rely on spe-
cific distributional assumptions, CP provides valid predic-
tion sets under the minimal assumption of exchangeability,
making it widely applicable across various domains [36].

The core principle of CP lies in its ability to construct
prediction intervals that contain the true outcome with a
user-specified probability, regardless of the underlying data
distribution [40, 43]. This is achieved through a non-
conformity measure, which quantifies the dissimilarity be-
tween a new example and a set of previously observed ex-
amples [40]. The resulting prediction intervals adapt to the
complexity of the data, offering tighter bounds in regions
of high confidence and wider intervals where uncertainty is
greater [3].

Several variants of CP have been developed to enhance
its efficiency and applicability. Inductive Conformal Predic-
tion [32] simplifies the original framework by keeping out
an uncertainty calibration set on which are computed non-
conformity scores, reducing computational complexity for
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Figure 1. Overview of the uncertainty-aware calibration pipeline.
(Left) The deep learning Calibration Network estimates parame-
ters from sensor data. (Center) MCD is applied to generate mul-
tiple predictions, producing a mean estimate ŷmean (the prediction)
and a standard deviation σ (measuring the uncertainty). (Right)
The CP method is beforehand calibrated on a separate uncertainty
calibration set, then can be used to estimate intervals with a 1− α
coverage.

large datasets. Split Conformal Prediction [24] further re-
fines this approach, providing a simple yet powerful method
for constructing prediction intervals in regression tasks.

Recent advancements have focused on integrating CP
with modern machine learning techniques. Conformalized
Quantile Regression [34] combines CP with quantile regres-
sion, yielding more efficient prediction intervals. The Jack-
knife+ method [4] offers a computationally efficient alterna-
tive that produces asymptotically valid prediction intervals
under weaker assumptions.

The distribution-free nature of CP has led to its suc-
cessful application in various fields, including computer vi-
sion [3], medical diagnosis [25], and time series forecast-
ing [39]. In computer vision, CP has been used to pro-
vide uncertainty estimates for image-to-image regression
tasks [3], demonstrating its potential for enhancing the reli-
ability of deep learning models.

To date, the application of CP in the field of sensor cali-
bration remains unexplored. Our work aims to integrate CP
with deep learning models to develop a novel framework
for online extrinsic calibration with reliable uncertainty es-
timates.

3. Method

This section introduces our uncertainty-aware online ex-
trinsic calibration approach, which is built to be used on
top of a deep learning extrinsic calibration model. In this
work, we conduct experiments using models based on [6,7].
Figure 1 illustrates our proposed calibration pipeline. We
focus on quantifying model uncertainty (epistemic) rather
than data uncertainty (aleatoric) for two key reasons: (1)
model uncertainty is reducible through improved modeling
and additional data, critical for enhancing calibration reli-
ability, and (2) in our context, it is mostly linked to small
variations in time synchronization, with an impact much
smaller than that of the error due to the model quality. Our

approach generates prediction intervals for calibration pa-
rameters with coverage guarantees, ensuring reliable cali-
bration in dynamic environments.

In real-world application, the extrinsic calibration pa-
rameters would then be updated in real-time using the mean
prediction from MCD, and the uncertainty estimate and
width interval from CP would be used to adjust the robust-
ness of the system. If the uncertainty exceeds a certain
threshold, the system could trigger a recalibration process
or adjust the confidence in sensor fusion tasks.

The following subsections detail our uncertainty estima-
tion techniques and the application of CP.

3.1. Dropout as a Bayesian Approximation

Bayesian Neural Networks [27] are good at estimat-
ing model uncertainty, but are often too computationally
heavy for real-time applications. We thus employ a lighter
method, Monte Carlo Dropout (MCD), leveraging its in-
terpretation as an approximate Bayesian inference method
[11]. By applying dropout during both training and infer-
ence, we sample from the approximate posterior distribu-
tion of the network’s weights, enabling uncertainty estima-
tion in our calibration predictions.

Given a neural network f(x; θ) with weights θ, MCD
generates N stochastic forward passes, each with a different
dropout mask:

ŷi = f(x; θi), i = 1, . . . , N (1)

where θi is the randomly masked weights. The mean
prediction and model uncertainty are then estimated as:

ŷmean =
1

N

N∑
i=1

ŷi, σ =

√√√√ 1

N

N∑
i=1

(ŷi − ŷmean)2 (2)

To optimize MCD for real-time online calibration, where
we process single data points sequentially, we could imple-
ment a parallel execution strategy, which consists in repli-
cating the input N times and treat it as a N -size batch, then
perform N forward passes simultaneously with different
dropout masks {θi}. This approach would reduce compu-
tational overhead, making it suitable for real-time applica-
tions without compromising uncertainty estimation quality.

3.2. Building Intervals with Conformal Prediction

To complement MCD and provide a guarantee on the
prediction intervals, we integrate CP. CP is a distribution-
free technique which, given a desired maximal error rate
α defining a coverage level 1 − α, produces a prediction
interval that is guaranteed to contain the true calibration pa-
rameters with at least a 1− α probability.

Our method is particularly inspired by the implementa-
tion in [3], which provides a framework for generating CP
intervals from a scalar uncertainty measure.



3.2.1 Nonconformity Measure and Calibration

Our CP method integrates uncertainty estimation with rig-
orous statistical guarantees [2]. We define a nonconformity
measure that quantifies the discrepancy between predictions
and ground truth, accounting for model uncertainty [36].

Given an uncertainty calibration set {(ytrue
k , ŷk, σ̂k)}mk=1,

where m is the number of samples, ŷk is the predicted cal-
ibration parameter, ytrue

k is the ground truth, and σ̂k is the
estimated uncertainty from MCD, we compute the noncon-
formity score sk for each sample:

sk =
|ŷk − ytrue

k |
σ̂k

(3)

This score, inspired by the Mahalanobis distance [28],
normalizes the prediction error by the estimated uncer-
tainty, allowing for adaptive confidence intervals that ac-
count for varying levels of uncertainty across different pre-
dictions [34].

The uncertainty calibration phase involves computing
these scores for the entire calibration set, resulting in
{s1, s2, . . . , sm}. This set forms the basis for determining
the appropriate quantile used in constructing prediction in-
tervals, ensuring that our method maintains the desired cov-
erage level across diverse scenarios [24, 42].

3.2.2 Quantile Determination

To ensure that the prediction intervals have the desired
coverage level 1 − α, we compute a quantile Q1−α from
the nonconformity scores obtained in the calibration phase.
Specifically, the quantile Q1−α is determined by sorting the
nonconformity scores in ascending order s(1) ≤ s(2) ≤
· · · ≤ s(m) and selecting the (m+ 1)(1− α)-th score:

Q1−α = s(⌈(m+1)·(1−α)⌉) (4)

where ⌈·⌉ denotes the ceiling function. This selection en-
sures that the proportion of nonconformity scores less than
or equal to Q1−α is at least 1 − α, providing the desired
coverage.

3.2.3 Prediction Interval Computation

Finally, for a new test input, we use the quantile Q1−α to
compute the prediction interval for the extrinsic calibration
parameter. Given a new prediction ŷ and its associated un-
certainty σ̂, the prediction interval is calculated as:

Prediction Interval = [ŷ −Q1−α · σ̂, ŷ +Q1−α · σ̂] (5)

This interval provides a guarantee that the true calibration
parameter will fall within the prediction interval with at
least probability 1− α.

By following these steps, our method leverages both the
predictive power of deep learning models and the robustness
of CP to provide uncertainty-aware extrinsic calibration in-
tervals that are reliable in dynamic environments.

3.3. Implementation Details

Our calibration uncertainty framework is demonstrated
on existing deep learning-based calibration models [6, 7],
which serve as the backbone for extrinsic calibration. The
implementation of MCD requires minimal modifications to
the original architecture, and CP can be treated as a post-
processing step. Training and inference are conducted us-
ing PyTorch, and the models are evaluated on real-world
datasets. The models were trained from scratch using
NVIDIA V100 GPUs. To facilitate the implementation of
our CP method, we utilize the Fortuna [8] framework. A
separate uncertainty calibration set is used to establish the
nonconformity thresholds, ensuring that the prediction in-
tervals are valid across diverse scenarios. In line with what
is done in [6, 7], we introduce artificial decalibrations on
the input during the training and testing. As we are mostly
interested in the range of small decalibrations most often
encountered in real-world scenarios, and requiring the best
accuracy, with ±1◦ and ±10cm on all axes.

4. Experiments

4.1. Datasets

We evaluate our uncertainty-aware online extrinsic cal-
ibration method on two datasets: KITTI [14], which pro-
vides synchronized RGB images and 64-channel LiDAR
data, and DSEC [13], which offers event camera data and
16-channel LiDAR. These datasets cover diverse sensor
modalities and conditions, enabling a robust assessment of
our approach.

For KITTI, we split the data into training (60%), valida-
tion (15%), calibration (15%), and testing (10%) sets. For
DSEC, we use 70% for training, 15% for validation, and
15% for calibration, with a separate test set. The calibra-
tion subsets are used to compute nonconformity scores for
the conformal prediction method, ensuring well-calibrated
uncertainty intervals.

4.2. Evaluation Metrics

To rigorously evaluate the performance of our method,
we employ a set of well-established metrics specifically tai-
lored for CP intervals. These metrics assess both the relia-
bility and efficiency of the prediction intervals generated by
our approach.



4.2.1 Prediction Interval Coverage Probability (PICP)

PICP is a widely used metric [21, 38], which quantifies the
proportion of true calibration parameters that fall within the
predicted intervals. PICP is crucial for assessing the relia-
bility of the prediction intervals, ensuring that the true val-
ues are captured within the intervals at the desired coverage
level. For our method, we calculate PICP as follows:

PICP =
1

m

m∑
k=1

I
(
yk ∈ [ŷlower

k , ŷupper
k ]

)
(6)

where yk represents the true calibration parameter, ŷlower
k

and ŷupper
k denote the lower and upper bounds of the pre-

dicted interval, and I(·) is the indicator function. A PICP
close to the desired coverage level (e.g. 90%) indicates that
the prediction intervals are reliable.

4.2.2 Mean Prediction Interval Width (MPIW)

MPIW [9] measures the average width of the prediction in-
tervals, providing insight into the trade-off between interval
width and coverage. It is defined as:

MPIW =
1

m

m∑
k=1

(ŷupper
k − ŷlower

k ) (7)

While narrower intervals are generally preferred, they
must still maintain the desired coverage as indicated by the
PICP. MPIW helps quantify this balance, with lower MPIW
values being more desirable provided that the PICP is main-
tained close to the target coverage level.

4.2.3 Interval Score (IS)

IS [16] provides a balanced evaluation by penalizing both
the width of the prediction intervals and any instances
where the intervals fail to cover the true value. IS is par-
ticularly useful for assessing the efficiency of the intervals,
as it encourages intervals that are both narrow and reliable.
The Interval Score for our method is computed as:

IS =
1

m

m∑
k=1

[
(ŷupper

k − ŷlower
k )

+
2

α
· (ŷlower

k − yk) · I(yk < ŷlower
k )

+
2

α
· (yk − ŷupper

k ) · I(yk > ŷupper
k )

] (8)

where α is the significance level (e.g. 0.1 for a 1 − α =
90% coverage interval). A lower IS indicates better overall
performance, reflecting more efficient and reliable intervals.
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Figure 2. Axes of rotation and translation of the spatial transfor-
mation in the LiDAR frame.

4.3. Results

Throughout this subsection, results are analyzed for each
axis in translation and in rotation. These axes are repre-
sented in Figure 2. As we pioneer the introduction of un-
certainty estimation and interval prediction for online ex-
trinsic calibration, we will mostly assess the quality of our
results in the absolute, and show that they provide added
value by providing uncertainty estimates of which we will
demonstrate the robustness.

4.3.1 Interval Quality Analysis

To evaluate our method, we analyze the prediction inter-
val quality across the KITTI and DSEC datasets. Table 1
shows results for three key metrics: Prediction Interval Cov-
erage Probability (PICP), Mean Prediction Interval Width
(MPIW), and Interval Score (IS) at different target cover-
age levels.

Our method demonstrates consistent and reliable perfor-
mance, with PICP values closely matching target coverage
levels across both datasets. This robustness holds despite
the datasets’ diverse sensor modalities and environmental
conditions, highlighting the method’s effectiveness in main-
taining desired uncertainty bounds.

Analysis of IS and MPIW metrics reveals important in-
sights. For translational estimates, the Y-axis consistently
achieves the lowest MPIW and IS values, indicating precise
lateral translation estimates crucial for accurate lane-level
localization in autonomous driving.

Exceptional precision is observed in Roll and Yaw es-
timates, with the KITTI dataset showing 99% coverage
MPIWs of 0.26◦ and 0.29◦, and corresponding IS values
of 0.26◦ and 0.30◦. These narrow intervals suggest high
confidence and accuracy in rotational estimates.

However, Pitch estimation shows greater uncertainty
compared to other rotational parameters, with a 99% cov-
erage MPIW of 0.66◦ (IS: 0.67◦) in KITTI and 0.88◦ (IS:
0.89◦) in DSEC, indicating inherent challenges likely due
to sensor limitations (see Section 4.4.3).

Overall, these results demonstrate the method’s efficacy
in providing well-calibrated uncertainty estimates, balanc-
ing reliability and precision.



Dataset Metric
X (cm) Y (cm) Z (cm) Roll (◦) Pitch (◦) Yaw (◦)

Target Coverage Target Coverage Target Coverage Target Coverage Target Coverage Target Coverage
90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

KITTI [6, 14]
PICP (%) 89.4 95.3 98.8 88.7 94.3 98.9 89.2 94.0 98.6 89.3 93.7 99.0 90.5 94.5 99.3 88.8 94.9 98.6
MPIW ↓ 2.81 3.62 5.17 1.64 2.14 3.42 2.43 3.10 4.65 0.14 0.17 0.26 0.31 0.39 0.66 0.15 0.19 0.29
IS ↓ 3.56 3.96 5.27 2.17 2.46 3.55 3.35 3.63 4.86 0.17 0.19 0.26 0.37 0.42 0.67 0.19 0.21 0.30

DSEC [7, 13]

PICP (%) 88.2 94.5 99.0 90.1 94.6 98.8 90.2 95.5 98.9 92.0 95.3 98.9 90.7 95.8 99.2 90.4 94.2 98.8
MPIW ↓ 1.45 1.95 3.09 1.20 1.54 2.32 2.09 2.79 4.06 0.09 0.12 0.20 0.36 0.49 0.88 0.13 0.17 0.27
IS ↓ 1.83 2.12 3.13 1.45 1.66 2.34 2.09 3.01 4.11 0.12 0.13 0.20 0.47 0.55 0.89 0.16 0.19 0.27

Table 1. Evaluation metrics for our uncertainty-aware online extrinsic calibration method on KITTI [14] and DSEC [13] datasets. We
report Prediction Interval Coverage Probability (PICP), Mean Prediction Interval Width (MPIW), and Interval Score (IS) for different
target coverage levels across six degrees of freedom. Lower values of IS and MPIW indicate more precise and tighter prediction intervals.

Figure 3. LiDAR point cloud projections onto an image frame
from KITTI [14] under varying Pitch calibration. (Top) Ground
truth Pitch minus 0.25°. (Middle): Ground truth Pitch. (Bottom)
Ground truth Pitch plus 0.25°. This ±0.25° range represents an
extreme case of our 90% confidence interval for Pitch. The visual
differences in projections are minimal, demonstrating the high pre-
cision and practical robustness of our calibration method in chal-
lenging scenarios.

As seen in Figure 3, even on the Pitch axis, and in out-
lier cases where the predicted 90% interval is among the
widest predicted by our network, at 0.5° (i.e. ±0.25°), the
difference between lower and higher bounds of the interval
remains visually barely visible, as desired.

4.3.2 Quality of the Uncertainty Calibration

To assess the calibration quality of our uncertainty es-
timates, we present calibration curves for both datasets
in Figures 4a and 4b. Both figures show the alignment of
observed and expected coverage probabilities with the di-
agonal, indicating well-calibrated uncertainties across dif-
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(b) DSEC [13]

Figure 4. Calibration curves for extrinsic parameters on the
KITTI [14] and DSEC [13] datasets, showing observed versus ex-
pected coverage for each degree of freedom. Better seen on screen.

ferent coverage levels. For KITTI (Figure Figure 4a), trans-
lational parameters (X, Y, Z) demonstrate excellent calibra-
tion, with slight deviations in some rotational parameters.
The DSEC results (Figure Figure 4b) exhibit a similar trend,
confirming consistency with the PICP values in Table 1.

4.3.3 Interval Visualization

To provide a more intuitive understanding of our method’s
performance, we present ordered interval plots for the
KITTI dataset in Figure 5. Those for DSEC can be found in
the supplementary materials. These plots offer a visual rep-
resentation of the prediction intervals and their relationship
to the ground truth values for each degree of freedom.

We observe that the prediction intervals consistently en-
velop the ground truth values. This visual confirmation
aligns with the PICP values reported in Table 1 close to
the target coverage. The intervals appear to widen at the ex-
tremes of the value range, indicating increased uncertainty
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Figure 5. Ordered prediction interval plots for the six degrees of freedom (in translation and rotation) on the KITTI [14] dataset. The
overlaid shaded regions represent the intervals corresponding to expected coverage levels of 90%, 95%, and 99%. The ground truth values
should fall within the respective intervals for at least the specified proportion of samples. The X-axis represents the ordered test samples
sorted by the ground truth values for each degree of freedom, while the Y-axis indicates the deviation from the ground truth. All curves are
smoothed using a moving average to enhance readability.

in these regions. This increased uncertainty is especially
visible on the Pitch interval curves, which are much wider.
This behavior demonstrates our method’s ability to adapt its
uncertainty estimates based on the difficulty of the calibra-
tion task in different scenarios.

4.4. Discussion and Ablation Studies

The results discussed above demonstrate the effective-
ness of our method across different datasets and sensor
modalities. It is important to mention that these results are
reached without deteriorating the original accuracy of the
calibration model. For example, we achieved on KITTI an
average rotation error of 0.04◦ and a translation error of
0.46 cm, comparable to [6] (rotation errors between 0.03◦

and 0.04◦, and translation errors from 0.33 cm to 0.89 cm).
To reflect on these results and their robustness, we con-
ducted ablations studies and discuss our method’s strengths
and weaknesses below.

4.4.1 Impact of Monte Carlo Dropout Parameters

We conducted an ablation study to investigate the effect of
varying the number of forward passes in MCD on uncer-
tainty estimation. Figure 6 illustrates the relationship be-
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Figure 6. Impact of the number of Monte Carlo Dropout forward
passes on the Interval Score (IS) averaged for translation parame-
ters and rotation parameters. Experiment realized on KITTI [14].

tween the number of forward passes and IS for both trans-
lation and rotation errors.

The results reveal a clear trend: as the number of forward
passes increases, IS decreases, indicating more precise un-
certainty estimates. This trend is particularly pronounced in
the range of 5 to 25 forward passes for both translation and
rotation errors. Beyond 25 passes, the rate of improvement



Target PICP (%)
(%) X Y Z Roll Pitch Yaw

90 77.3 90.3 76.9 79.69 85.0 80.6
95 82.3 92.0 81.1 83.85 88.9 85.8

Table 2. Results of the ablation study on KITTI [14] showing
the observed coverage (PICP) when using only MCD with a nor-
mal distribution assumption, instead of our proposed MCD+CP
method.

diminishes significantly, suggesting a point of diminishing
returns. For an optimal balance between computational ef-
ficiency and uncertainty estimation quality, we selected 25.

As demonstrated in [41], the optimal dropout rate for es-
timating epistemic uncertainty depends on the network ar-
chitecture and its size. Following the grid search approach
outlined in [11, 12], we tested rates between 0.05 and 0.5.
We found that the smallest rate yielding consistent results
was optimal, as increasing the rate degraded performance,
though with a lesser impact than the number of forward
passes. Consequently, a dropout rate of 0.25 was applied
to the backbone layers, while the best results were achieved
with 0.05 on KITTI and 0.10 on DSEC for the head.

4.4.2 Necessity of Applying Conformal Prediction

To evaluate the effectiveness of our CP approach, we per-
formed an ablation study on KITTI using MCD [11] alone,
with a normal distribution assumption for interval estima-
tion. In this setup, MCD was applied during inference by
performing multiple forward passes with dropout enabled.
The mean and standard deviation of these predictions were
then calculated to estimate quantiles under the normal dis-
tribution. This method differs from our primary approach,
where σ is directly incorporated into the CP framework.

As shown in Table 2, the MCD with a normal distribution
assumption consistently underestimates interval widths, re-
sulting in lower-than-expected coverage rates at both 90%
and 95% target levels. This underperformance likely arises
from the inadequacy of the normal distribution in capturing
true uncertainty and the inherent limitations of MCD in pro-
viding calibrated uncertainty estimates for this task. These
findings highlight the superiority of our CP-based method
for generating more accurate and reliable prediction inter-
vals in extrinsic calibration.

4.4.3 Impact of LiDAR Vertical Resolution

Our experiments reveal a significant pattern in the uncer-
tainty estimates, particularly for the Pitch angle. We ob-
serve consistently wider prediction intervals for Pitch com-
pared to Roll and Yaw, which we attribute to the inherent

limitations of LiDAR vertical resolution. This sparse ver-
tical sampling introduces challenges in precisely aligning
LiDAR and camera data along the vertical axis.

This phenomenon is especially pronounced in the DSEC
dataset, which utilizes a 16-channel LiDAR, offering sub-
stantially lower vertical resolution than the 64-channel Li-
DAR employed in KITTI. As evidenced in Table 1, the
MPIW for Pitch (up to 0.88°) in DSEC significantly exceeds
those for Roll (0.20°) and Yaw (0.27°). This underscores the
importance of comprehensive uncertainty quantification in
extrinsic calibration, especially when dealing with sensors
that have inherent resolution limitations.

4.4.4 Generalization and Practical Implications

While we observe slight variations in performance between
the KITTI and DSEC datasets, these differences are rela-
tively minor. Overall, our method demonstrates strong gen-
eralization capabilities.

The consistency of the uncertainty estimates demon-
strated in Section 4.3.2 and the tightness of the intervals
shown in Sections 4.3.1 and 4.3.3 are noteworthy. These
results suggest that our method provides reliable and ac-
tionable uncertainty estimates and prediction intervals for
autonomous driving systems. Its integration in calibration
systems could potentially improve safety and calibration-
related decision-making in real-world deployments. The
method’s ability to adapt to sensor limitations, such as poor
vertical resolution in LiDARs, makes it particularly valu-
able for robust calibration in diverse autonomous driving
scenarios.

5. Conclusion

We introduced a novel approach to online extrinsic cali-
bration that incorporates rigorous uncertainty quantification
through a combination of Monte Carlo Dropout (MCD) and
Conformal Prediction (CP). MCD captures model uncer-
tainty by providing a probabilistic measure of calibration
parameters, while CP offers prediction intervals with for-
mal guarantees, ensuring coverage of the true calibration
parameters with a user-specified probability 1− α.

Our method enhances existing calibration models by
adding the capacity to evaluate the uncertainty of its es-
timates and provide statistically-guaranteed intervals. The
results show that our approach maintains calibration accu-
racy while offering insights into the reliability of these esti-
mates, which is vital for robust sensor fusion in autonomous
systems.

Future work could explore the integration of this frame-
work in real-world systems and optimize the use of uncer-
tainty measures to ensure consistent calibration quality.
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