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SEMICLASSICAL RESOLVENT ESTIMATES FOR THE MAGNETIC
SCHRODINGER OPERATOR

GEORGI VODEV

ABSTRACT. We obtain semiclassical resolvent estimates for the Schrodinger operator (ihV +
b)? 4+ V in R? d > 3, where 0 < h < 1 is a semiclassical parameter, V and b are real-
valued electric and magnetic potentials independent of h. If V € L®(R%), b € L (R%;R?),
divb € L>(R?) satisfy V(z) = O (|z|7"7°), b(z) = O (Jz|7'7°), divb(z) = O (Jz| '), e > 0,
for |z| > 1, we prove that the norm of the weighted resolvent is bounded by exp (Ch™*log(h™")),
C > 0. We get better resolvent bounds for electric potentials which are Hélder with respect to
the radial variable and magnetic potentials which are Holder with respect to the space variable.
For long-range electric potentials which are Lipschitz with respect to the radial variable and
long-range magnetic potentials which are Lipschitz with respect to the space variable we obtain
a resolvent bound of the form exp (Ch™'), C > 0.

Key words: Schrodinger operator, magnetic potentials, resolvent estimates.

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper we are going to study the resolvent of the Schrodinger operator
P(h) = (ihV + b(z))?> + V(z) in RYd>3,

where 0 < h < 1 is a semiclassical parameter, V is the gradient, V € L>®(R%R) and b =
(b1,...,bq) € L*=® (Rd; Rd) are electric and magnetic potentials, respectively. We are interested in
bounding the quantity
g5 (hye) :=log [|(|z[ + 1)"*(P(h) — E £ ie) " (J2[ + 1) || 1o, 12

from above by an explicit function of h, independent of e. Here L? := L?(R%), 0 < ¢ < 1,
s > 1/2 is independent of h and E > 0 is a fixed energy level independent of h. Our goal is
to obtain the best possible upper bounds for g;t(h, ¢) for potentials which are Lipschitz, Holder
or just L®. There have been recently many papers studying this problem when b = 0. To our
best knoweledge, no such results exist for non-trivial magnetic potentials when d > 2 and it
seems that this paper is the first one where upper bounds for g;t are proved in this case. When
d =1 and b not identically zero, semiclassical resolvent bounds have been recently proved in [9]
for a very large class of electric and magnetic potentials. Note also that sharp high-frequency
resolvent bounds for the operator P(1) with L* potentials are proved in [11] when d > 2 and in
[16] when d > 3. In [7] exponential high-frequency resolvent bounds for the operator P(1) with
smooth potentials on non-compact Riemannian manifolds have been recently proved, extending
the results in [1].

We will be looking for bounding g for the largest possible class of electric and magnetic
potentials that our method allows to cover. To describe it we introduce the polar coordinates r =
|z|, w = x/|z|. We suppose that V =V + Vg, b = b" +b°, where V7, b" (resp. Vg, b") are long-
range (resp. short-range) electric and magnetic potentials satisfying the following conditions.
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2 G. VODEV

We suppose that Vj, satisfies
(1.1) Vi (rw) < p(r),

where p > 0 is a decreasing function such that p(r) — 0 as r — oo. We also suppose that V7 (rw)
is Lipschitz with respect to the radial variable r and its first derivative satisfies the bound

(1.2) O Vi (rw) < C(r+1)717°.

Hereafter C > 0 and 0 < p < 1 will denote positive constants that may change from line to
line. The short-range part Vg € L>(R?) is supposed to satisfy

(1.3) [Vs(rw)| < C(r+1)7177.

The long-range part b € L>® (Rd; Rd) is supposed to be Lipschitz with respect to r and satisfies
(1.4) |OFbL (rw)| < C(r+1)7*F, k=0,1.

The short-range part b° € L>(R% RY) satisfies

(1.5) 0% (rw)| < C(r+1)7177.

Finally, we suppose that divb® € L°(R?) exists and satisfies

(1.6) |div b° (rw)| < C(r + 1)7177.

This condition is fulfilled if each bjs is Lipschitz with respect to the variable x; and 0y, bjs(m) =
O (|z|~177) for |z| > 1.

Throughout this paper, given two vectors a,b € R%, a - b will denote the scalar product. Our
first result is the following

Theorem 1.1. In addition to the above conditions we assume either the condition

(1.7) lw - bl (rw)| < C(r41)7177,

or that the function w - b"(rw) is Lipschitz in w and satisfies

(1.8) 0 (w - b (rw)| < C, |8 = 1,

Then, there exist constants C' > 0, 0 < hg < 1, independent of h and €, such that the bound
(1.9) gE(h,e) < Ch~2log(h™1)

holds for all 0 < h < hy. If Vg = 0 and b° = 0, under the condition (1.8), we have the better
bound

(1.10) gE(h,e) < Ch™L.

The condition (1.8) is fulfilled if the function z - b*(z) is Lipschitz in z. Note that the bound
(1.10) is proved in [9] when d = 1, while for d > 3 it seems to be new. Proving (1.10) when
d = 2 in the presence of a magnetic potential remains an open problem. When b = 0, however,
the bound (1.10) is well-known. Indeed, it was proved in [2] when d > 3 for potentials satisfying
(1.1) with p(r) = C(r + 1)7”, and extended to the general case in [5] and [18]. When d = 2 the
bound (1.10) is proved in [13] for potentials V € C*(R?) satisfying (1.1) with p(r) = C(r +1)=*
as well as the condition
(1.11) IVV(2)] < C(lz| + 1)71 7.

The bound (1.10) has been recently proved in [12] for long-range Lipschitz potentials having
singularities at the origin in all dimensions d > 2. When d = 1 the bound (1.10) is proved in [4]

for potentials V' € L'(R) and in [9] for more general measure potentials. It turns out that (1.10)
also holds for V € L*(R?), d > 2, provided V is compactly supported and depends only on the
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radial variable r. Indeed, this is proved in [3] when d > 2. A simpler proof of this result is given
in [21] when d > 3. Without a radial symmetry or some regularity of the potential, however,
the bound (1.10) seems to fail even for compactly supported potentials. Indeed, for potentials
V € L™ satisfying

(1.12) V(@) < Ol +1)7°

where 0 > 1, the following bounds are known to hold:

(1.13) gE(he) < Ch*3log(h™") if §>2,
(1.14) gE(he) S Chm B¢ if 1<§<2,

for every 0 < € < 1. When d > 3 the bound (1.13) is proved in [6] and in [17] if § > 3.
Previously, (1.13) was proved for compactly supported L* potentials in [8] and [14]. The bound
(1.13) is extended in [19] to more general Riemannian manifolds. The bounds (1.13) and (1.14)
have been recently proved in [15] when d > 2 for potentials V' = V + Vg with Vj, satisfying
(1.1) and (1.2), and Vg satisfying (1.12). In fact, the conditions on the behavior of Vi, and Vg
at infinity in this paper are a little bit more general than this. Moreover, the potential in [15] is
allowed to have singularities at the origin. It turns out that (1.13) and (1.14) can be improved
for potentials V' € L* depending only on 7. Indeed, for radial potentials satisfying (1.12) it is
shown in [20] and [21] that when d > 3 we have the bounds

(1.15) gE(he) SCRTFT if 6> 4,
(1.16) g (h,e) <Ch™3 if 2<6<4,
+ — —1)) 5T
(1.17) g5 (hye) < Ch (log(h™1)) if 1<o6<2.

It turns out that the above bounds can be improved if some small regularity of the potential is
assumed. To desribe these results, given 0 < o < 1 and k£ > 0, we introduce the space Cjf(R™)
of all Holder functions a such that

p— / -
sup M <C(r+1)7% vreRF
7 >0: 0<|r—7|<1 r—1r'|
We suppose that the function V (r,w) := V(rw) satisfies the condition
(1.18) V(,w)€Cq ,RY), 0<a<l,

uniformly in w € S?1. For potentials V satisfying (1.1) and (1.18) and d > 3 the following
bound is known to hold:

(1.19) g (h,e) < Ch= 4@+ 10g(h™1).

The bound (1.19) is proved in [6] and in [18] if p = 1. It has been extended in [18] to the case
d = 2 as well as to exterior domains for potentials which are Holder with respect to the space
variable x. The bound (1.19) is improved in [20] for radial potentials satisfying (1.1) and (1.18)
with p =0 to

(1.20) gF(h,e) < Ch~/(e+3),

The proof of the above bounds is based on global Carleman estimates with suitable phase and
weight functions. In order that the Carleman estimates work the phase and weight functions
must satisfy some conditions. Therefore, the task consists of constructing explicitly these func-
tions in such a way that we get the best possible bound for g. In fact, there are many ways to
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do so and the class the potential belongs to is determined by the way we do it. This explains
why in the papers mentioned above the same bound is proved for different classes of potentials.

To prove Theorem 1.1 we follow the same strategy as in the case b = 0. The Carleman
estimates for the magnetic Schrodinger operator, however, are much more difficult to handle
with. The main difference is that conjugating this operator with e®/", ¢ > 0 being a phase
function depending only on r, makes appear a complex-valued effective potential of the form
(see Section 3)

=2 (r)w - b(rw),

where ¢’ > 0 denotes the first derivative of ¢. This term is not easy to handle with even in the
case when b = 0. One way to treat it is to consider it as a short-range potential and to add
it to Vg. To do so, however, we need the condition (1.7). It allows us to make the Carleman
estimates work. However, this approach does not lead to better bounds than what we have in
(1.9). Therefore, we propose another way that requires the condition (1.8). This approach allows
us to improve the bound (1.9) if bg = 0 or bg is Holder. To be more precise, given 0 < o < 1
and k£ > 0, we introduce the space C’g(Rd) of all Holder functions a such that

_ /
sup M <CO(lz]+1)7%, vzeR?
z'€R4: 0<|z—2'|<1 ‘.%' -z ’

Note that the case o = 1 corresponds to the Lipschitz functions. We suppose that

(1.21) Vs(-,w) € C§‘+p(W), 0<a<l, p>0,
uniformly in w, and
(1.22) b € Cfly, RERY), 0<a/ <1, p1>0.

We have the following

Theorem 1.2. Assume that Vy, satisfies (1.1), (1.2), b" satisfies (1.4), (1.8), Vs satisfies (1.21)
and (1.1) with possibly a new decreasing function p tending to zero, b° satisfies (1.6), (1.22).
We also suppose that b* and bS satisfy

(1.23) " (rw)| + [b° (rw)| < C(r +1)772,
with some pa > 0 such that p; + p2 > 3/2. Then we have the bound
(1.24) gE(h,e) < Ch " log(h™1),

where

4 2
n=maxq——, —— 5.
a+3 o +1
When o < % the bound (1.24) also holds for L* potentials Vg. More precisely, we have the
following

Theorem 1.3. Assume that Vi, satisfies (1.1), (1.2), b" satisfies (1.4), (1.8), b° satisfies (1.6),
(1.22) and (1.23), Vs satisfies

(1.25) Vs(rw)| < C(r+1)7°,

with 6 > 1. Then we have the bounds
/ 1 1
(1.26) g5 (h,e) < Ch=? @ Dlog(h™) if §> 17—, o' <z,
—«

51
(1.27) g (hye) < Chmm17¢ if of > —— 1<d<2,
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for every 0 < e < 1 independent of h.

Most probably, the conditions in Theorems 1.1, 1.2 and 1.3 are not optimal, but they allow
us to make a simple choice of the phase and weight functions, and hence to keep the proof of the
Carleman estimates relatively short and simple. However, the bounds (1.9), (1.24) and (1.26)
seem to be sharp even for compactly supported potentials, unless one assumes a radial symmetry
of the potentials. Indeed, when b = 0 and V radial, it is shown in [20] that the logarithmic term
in (1.9), (1.24), (1.26) and the A~ term in (1.27) can be removed. Probably this is still the case
for non-trivial radial magnetic and electric potentials.

The paper is organized as follows. In Section 2 we construct the phase and weight functions
needed for the proof of the Carleman estimates. In Section 3 we prove Carleman estimates for
the magnetic Schrédinger operator under the conditions of Theorem 1.1 needed for the proof of
the bound (1.9). In Section 4 we improve the Carleman estimates when Vg = 0 and b° = 0,
which leads to the bound (1.10). In Section 5 we adapt the Carleman estimates to Holder
potentials Vg and b°, which leads to the bound (1.24). In Section 6 we adapt the Carleman
estimates to L™ potentials Vg and Holder potentials b°, which leads to the bounds (1.26) and
(1.27). Finally, in Section 7 we show that the Carleman estimates imply the resolvent ones.

2. CONSTRUCTION OF THE PHASE AND WEIGHT FUNCTIONS

We first construct the weight function u as follows:

r2 4 for 0<r <1,
p(r) =9 r2+r>"* for 1<r<a,
(a® + a2_£)(1 +(a+ 1)t — (r 4172 for r>a,
where a > 1 is either independent of h or it is of the form a = h™", m > 0. The parameters ¢

and s are independent of h such that 0 < ¢ < 1, 1/2 < s < 1. Clearly, the first derivative of p
is given by

2r +1 for 0<r <1,
W(r)y=1< 2r+(2—0)r-t for 1<r<a,
(2s — D)(a® +a*> Y (r+1)"% for r>a.
We have the following

Lemma 2.1. We have the identity

2.1 2 u(r) — i (r) =
21 plr) = () r'=t for 1<r<a.

{1 for 0<r<1,

For all v > a, we have the lower bound

(2.2) 2r u(r) — i (r) > a®*(r+ 1)L
For allr # 1, r # a, we have
(2.3) W)= (r+1)7%,

:u'(r)j j— s
(2.4) OE a2 (r + 1),

for every j > 1.
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Proof. The identity (2.1) is obvious, while (2.2) follows from the inequalities
2 Lu(r) > 2(a + @ (r + 1)L, () < (25— 1)@ +a> ) + 1)
It is also clear that the inequality (2.3) holds as long as a® > (2s — 1)~!. The bound (2.4) with
j = 1 is obvious, while for j > 1 it follows from the fact that u(r) < a?. O

We will now construct a phase function ¢ € C*(]0, +00)) such that ¢(0) = 0 and ¥(r) > 0
for r > 0. We define the first derivative of ¥ by

cy for 0<r <1,
1//(7") = r*1(1 + rfz)*1/2(1 —(r+1)7") for 1<r<a,
Ky(r+1)7t* for r>a,

where 0 < v,k < 1 are independent of h to be fixed later on, and
¢, =221 -2, Ky=a Ya+1)"""A+aH 20 - (a+1)7") =0 ("),

are chosen in such a way that the function 1)’ is Lipschitz. It is easy to check that the first
derivative of 1)’ satisfies

0 for 0<r<1,
P'(r) =< O@r?) for 1<r<a,
O(a®r=27%) for r > a.
Lemma 2.2. For all r > 0 we have the bound
(2.5) P(r) < loga.
Proof. We have

maxs = [ W+ [ s [T v

1 a [e%¢)
< Cu/ dr+/ r_ldr+Ka/ (r+1)_1_"‘dr = cy+loga+m_1(a+1)_"‘Ka.
0 1 a

The next lemma will play a crucial role in the proof of the Carleman estimates.

Lemma 2.3. For 0 <r < a, r # 1, we have the inequality

(2.6) (m®) (r) > Cy(r + 1)1,
with some constant C, > 0. For all r > a we have the inequality
(2.7) (1) (r) 2 =Crua™ 224 (),

with some constant 5,@ > 0.
Proof. For 0 < r < 1 we have
(1) (r) = e (2r + 1),
which clearly implies (2.6) in this case. For 1 < r < a we have
(16) () = (1= 0+ ) PY =201 = (4 1))+ 177 2 201 =2+ 1)
For r > a, in view of (2.4) with j = 1, we have

(1) (r) = W™ 4+ 2/ > =2(r + 1) /¥4
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> _CGZH(T + 1)—3—25-{—25 > —Ca_3+257
as desired. 0

3. CARLEMAN ESTIMATES IN THE GENERAL CASE

Let p and v be the functions introduced in the previous section and set ¢ = 7, where
T = 19h™!, 70 > 1 being a parameter independent of h to be chosen later on. In what follows
we set D, = ih0d,. In this section we will prove the following

Theorem 3.1. Under the conditions of Theorem 1.1, there are constants C' > 0 and 0 < hg < 1
such that for all 0 < h < hg, 0 < e <1, s > 1/2, and for all functions f € H*(R?) satisfying

(|z| + 1)*(P(h) — E +ie)f € L*(RY)
we have the estimate

(] +1)7*e?/" fl| 2 < Cah™Y||(ja] + 1)°e?/*(P(h) — E £ ie) f| 2

(3.1) +Ca (th™e) " |e?/ fl 12 + Ca (r h 1) 2 ||/ "D, f | 2.
Proof. Clearly, it suffices to prove (3.1) for 0 < s —1/2 < 1 as this would imply (3.1) for all

s > 1/2. So, in what follows s will be as in Section 2 with additional restrictions made later on.
We write the operator P(h) in the form
P(h) = —h2A 4+ ihb" -V +ihV - b* 4 2ihb® -V + Vi + Vs,
where _
Vi = [b"* + Vi,
Vg = ihdivb® + 2b° - b" + |b%)? + V5.
Note that our conditions guarantee that
Vs(@)| S (2l + )77, 0, Vi(w) S (2] + 1) 7.

Moreover, V7, satisfies (1.1) with a new decreasing function p.

We will write P(h) in the polar coordinates (r,w) € R* x ¥ r = |2|, w = x/|z|. Recall
that L2(R?) = L2(R* x S r4=ldrdw). In what follows in this section we denote by | - || and
(-,-) the norm and the scalar product in L?*(S%"!). We will make use of the identity

(3.2) pA=D2Ap=@=0/2 — 92 4 72N, — (d — 1)(d — 3)(2r) 2
where A,, denotes the negative Laplace-Beltrami operator on S%~!. We also have
(3.3) r(d_l)/Zaxjr_(d_l)/Z = w;0, + 1 qi(w, D)

where g; is a first-order differential operator on S%1 which is antisymmetric with respect to the
scalar product in L*(S%1). Clearly, we have the estimates

(3-4) laj(w, du)oll S I(=Au) 2ol + [lo]] - for all v e H'(S').

Set A = —h?A,, D, = ihd, and Q; = ihqj(w,dy). Then the operator @; is symmetric with
respect to the scalar product in L?(S%"1). Moreover, (3.4) implies the estimates

(3.5) 1Qjvll < [AY2v]| + hljv|| for all v e HY(ST).
Set u(r,w) = r@=1/2e#/h f(ry) and
P(h) = r@D/2(P(h) — E)r~(d=D/2,
Po(h) = e?/"P(h)e /M.
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We now define the function o as follows. We put o =0 if (1.7) holds and we put

ijbL (rw)

if (1.8) holds. Using (3.2) and (3.3) we can write the operator P(h) in the coordinates (r,w) as
follows

P(h) =D +r2A — B+ h2(d—1)(d — 3)(2r) "2+ Vi, + Vs

d d d d
ST (0FQ; + Qu0F) + 23" wiby D+ 20 LS8 Qs +in Y w6, (bF)
j=1 j=1 =1

j=1
if (1.7) holds, and

d
P(h) = (Dp+0) +r2A = E+ b3 (d—1)(d—3)(2r) 2+ VL + Vs —0? — 20 > _w;b]
j=1

d
_HIilZ(bJLQj—FQj —i-QijbS D, +0) +2r~ IZbSQ],
j=1

if (1.8) holds. Since the function ¢ depends only on the variable r, in the first case we get

Py(h) =D +r2A— E+h*(d—1)(d—3)(2r) % — 22'90’1) + W+ Ws
d

+22wa D, +r*12 (bFQ; + Q;bF) +2flzb5Qj,

where B
Wi =V — 2,
» d d
Ws = Vi + he" — 20" > wibj +ih Y w;on(bF).
j=1 j=1

In the second case we get

Py(h) = (Dy +0)?> + 7 2A— E+h*(d—1)(d—3)(2r) % - 2igo/(D +0)+ Wi+ Wg

d d
42> wibd (Dy + o) + 171> (bEQ; + Q;bF) + 217 1ZbSQ],
j=1 j=1

where

For r > 0, r # 1, r # a, introduce the function
F(r)y=—{(r2A+h*d—1)(d - 3)(27“)*2 — E+ Wp)u(r, ), u(r,-))

HI(Dr + o)ulr, ) |* _1ZRG (b5 Qju(r, ), u(r,)) -

Observe now that in the first case we have

h d
HD ul|* = Im (DZu, Dyu) = Im (P, (h)u, Dyu)
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~Im {(r?A + h*(d — 1)(d — 3)(2r)"* — E+ Wi + Wg)u, Dyu)

d
+290/||D7’u||2 -2 Z Im (w;b;Dyu, Dyu)
=1

d d
- Z Im <7‘71(be]- + ij]L)u, Dru> -2 Z Im <T71beju, Dru> ,
j=1 j=1
while in the second case we have

g d% |(Dr + o)ull* =T (D + 0)*u, (Dr + 0)u) = Tm (Py(h)u, (D, + 0)u)

—Im <(7‘_2A + h*(d—1)(d - 3)(2r)"2 — E4+ W, + Ws)u, (D, + 0)u>

d
+2¢|[(Dy + o)l = 2 Tm (w;b5 (D + o)u, (D + 0)u)
j=1

d
- Z m <7°*1(be]~ + ij]L)u, (Dy + 0)u)
=1

d
-2 Zlm <r_1beju, (Dy +o)u).
7j=1

On the other hand, we have the identities
Im (wjbjDru, Dru> = O,

d
Re% <beju, u> = Re <8r(bf)qu, u>
—hm (b Q; + Q;b} )u, Dru)

in the first case, and
Im <wjbf(Dr + o)u, (D, + o)u) =0,

d
Re% <bjLqu, u> = Re <(9r(bjL)qu, u>
—h~m <(b]LQ] + ij]L)u, (Dy + o)u) — Re <bfu, q;, ou)
in the second case. Using the above identities we find that in both cases the first derivative of
F' is given by
2, _
F'(r) = = (r*(A+ (h/2)*(d = 1)(d = 3))u, u) — W [[u]
d d d

+2r 72 Z Re <bJLqu, u> —2r ! Z Re <(9r(bf)qu, u> +2r7 1 Z Re <bjLu, [, 0]u>
j=1 j=1 j=1
+2hm (P, (h)u, (D, + o)u) + 41 ||(Dy + o')ul|? — 2h~'Im <Wsu, (D, + J)u> ,

where

_ d

Ws=Ws+2r ") 07Q;.

j=1
Thus we obtain the identity
(uF) = W' F + pF’
=@ =) (r A+ (R/2)*(d = 1)(d = 3))u, u)
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(Eu’—(MWL)’)HUH2 (u’+4h_1 'y + o)ull?

ZRe(b Qju, u 2r~ uZRe Q]u u>

+2r Z Re <b]Lu, [g;, o]u) — 2h~ ! pIm <W5u, (D, + U)u>

+2h tulm ((Py(h) £ ie)u, (D + o)u) F 2eh™ uRe (u, (D, + o)u).
In view of (3.5), we have the estimates
— 2 2
(3.6) Wsul|" < Byl + Ba 2822

where
Bl(r) _ (7”+ 1)—2—p + (7" + 1)—2—/)()0/2 +h2()0//2 —|—h27°_2(7'+ 1)—2—
By(r) = (r+1)72"

and
(b Qu,u)| S Balull || A2u] + nBljul?
(3.7) S (7' (rBs)® + hBy) [ul® + flwuﬁ
2
(3.8) (0, 65)Qsu,w)| S (43 (rB)? + hBy) ul® + 3 2 A2u]

where 7 and 79 are arbitrary positive functions of r to be fixed below and
Bs(r) = (r+1)"", By(r) = (r +1)"'Bs(r).

In view of (1.8), we also have

(3.9) |(bFu, [g5, 0lu)| < Bs|lull?,

where Bs(r) = Bs(r). Since 2r~ 'y — /> 0 and d > 3, by (3.6), (3), (3.8) and (3.9), we get the
inequality
(uF) > (2r = ) (r 2 Au, )
+(EW - (MWL)')HUH2 + (W +4h7 ) |[(Dr + U)UH2

]Z!(bLQ]uu | —2r” /‘Z‘@ bL )Qju, uy| — 2r~ ”ZKbL (4, 0]u)|

—3h 2P (' + 4h ' )t HWsuH - g(//+4h’ ¢ (D + o)ul?

3h_2,U,2 ' ,U’/ B
— [(Pe(R) % ie)ul® — S 1D + a)ul|? = eh™ pllu[|[(D; + o)ul|

—2|(

h—2 2

_ 3h™p . _
> Aflu® + Ag|lr~ A ?u? — TH(PgO(h) +ie)ul? — eh ™ pllulll|(Dy + o)ull,

where
Ai(r) = (@) + (B = Vi)' — Clr+ 1) P — Ch 2By (i + bt i)™
—C|(r*p)| (vy 1(rB3)* + hB3) — Cr ' (75 ' (rBs)* + hBy + Bs)
Asg(r) =2 =y — Ch™?Bop® (' + 1t~
—Cyl(r )| = Cyar ™l
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We now choose the functions y; and ~» so that

Ol | = Cror = (2= i)
Thus we conclude that the above inequality holds with
Ai(r) = (") + (B = V)i’ = Crt(r + 1) p = Ch72 By (' + h™ /) ™!
—C(rBs)*M; — ChB3M,,
245(r) = 2r ' — p' — Ch 2By (' + h™ ' )™,
with a new constant C' > 0, where
Mi(r) = =) (7 P+ o+ 1))

M(r) = (™ )| + (r(r + 1)) .
Now we will use Lemmas 2.1 and 2.3 to bound the functions A; and Ay from below. Observe
first that My (r) = Ma(r) =1 for r < 1. For 1 < r < a we have the bounds

Mi(r)  (r+ 1) My(r) S 1,
while for r > a we have the bounds
Mi(r) S (r+ 17220/ (r),  Ma(r) S (r+ 1) 72520/ (r),
Therefore, for 0 < r < 1 we have
Ai(r) > Ed'(r)+ Cor2 —Ch™ 2 —Ch7 ', C° >0,
Ay(r)y >27t —ch it
We take 7 = 1oh !, where 79 > 1 is independent of h. It is clear that if 7y is big enough we can
arrange that
Ai(r) > Ep/(r), As(r)>0, for 0<r<1.
For 1 < r < a we have r~u(r) < i/(r) and
(3.10) (rB3)?Mi(r) S (r+ 120/ (r) S (r + 1)1/ (r)
if £ < p. Hence N
Ay(r) > T2C,(r+ 1)V (B =V — C(r+1)7Py/
—Ch7 ' N+ 1) = Chr(r + 1)) = Ch7r(r + 1) 7177,
As(r) > o7ty =t — opT e,
Since V7, satisfies (1.1), there exists A\g > 1, independent of h and 79, such that

(3.11) Vi(rw)+C(r+1)"? < E/4 for r> .
On the other hand, for » < Ay, we have
(3.12) Vi (r) + Cr + 1) (r) < (r + 1)717

Similarly, there exists A > 1, independent of h but depending on 7y, such that
Cro(r+1)2 < E/4 for 1> )\
and
Cro(r+1)724/(r) < (r4+1)717Y for 7 <A
Therefore, if we choose v < p, £ < p, taking 7y big enough and h small enough we can arrange

that
Ay(r) > 37 EY (r), As(r) >0, for 1<r<a.
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We now take 1/2 < s < (1+p)/2, 0 < k < 1+ p—2s. In view of (1.1) with Vz, for r > a we
have
Al (7") > 271EM/(70) o CM/(T) (T2a73+2s + a7p+2sfl 4 Th71a74+23) ’

As(r) > 27 a2 (r + 1)1 (1- Ch_lT_la_l) .
Taking a = h™" with m > 0 big enough and h small enough we can arrange that
Ay(r) > 37YEY (r), Ag(r) >0, for r>a.
By the above inequalities we obtain

E 3h2p?
313 r) = gl -

Integrating (3.13) with respect to r and using that

/ (WE) dr =0,
0

1Py () £ ie)ull® — en™" pllull |(Dr + o)ull.

we obtain the estimate

E [e’e] oo ,,2 [e’e]
(3.14) g/o ,u'Hu||2dT§3h2/O Z—H(P@(h)iie)uHer—i—ehl/o wllul[|[(Dy + o)ul|dr.

/

Using that u(r) < ¢(r)a?, where ((r) = r(r + 1)~1, together with (2.3) and (2.4) we get from
(3.14),

/ (r+1)2sHuH2dr§Ca2h2/ (r + 12| (P, (k) % ie)u2dr
0 0

(3.15) +C€h_1a2/0 (rllull? + 72 Dyal?) dr

with some constant C' > 0 independent of A and e. Since

Dyu = r@=V2e2/MD, f 4 (i) + (d — 1)(2r) ),

we have
2
(3.16) CIDpul? S |02 D, p ||+ 722
Clearly, the estimate (3.1) follows from (3) and (3.16). O

4. CARLEMAN ESTIMATES WHEN Vg =0 AND b° =0
In this section we will prove the following

Theorem 4.1. Under the conditions of Theorem 1.1 with (1.8), if Vs = 0 and b° = 0, the
estimate (3.1) holds true with new parameters a,7 > 1 independent of h.

Proof. We will make use of the Carleman estimates obtained in the previous section under
the condition (1.8), which in our case take a much simpler form. Indeed, Vs = 0, b° = 0 imply

that Vg = 0 and WS = hy". Hence By = h?¢" and B, = 0. The functions B3, By and Bs
remain unchanged. Therefore the functions A; and Ay take the form

Ai(r) = (&n) + (B = Vi)' = Cr i (r+1)"Pp
—Chrp(¥")* (')~ = C(rBs)?My — ChBsMa,
2A5(r) = 2r "ty — u’ > 0.
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For 0 <r < a, r # 1, in view of (3.10), (3.11) and (3.12), we have
Al(r) > P2C,(r+ 1)+ (E= Vi) — Cr +1)"Pu — Chr(r+1)"2 > Ei/ /3,
if 7 is taken big enough, independent of &, and A is taken small enough. For r > a we have
Ay(r) > 27 By — oy (Tza_3+28 + a_p+28_1) > Eu'/3,

if a is taken big enough, independent of h. Thus we conclude that the estimate (3) still holds in
this case with parameters a,7 > 1 independent of h. Clearly, this implies the theorem. O

5. CARLEMAN ESTIMATES FOR HOLDER POTENTIALS
In this section we will prove the following

Theorem 5.1. Under the conditions of Theorem 1.2, the estimate (3.1) holds true with new
parameters a = h™™ and T = Toh~ " with some positive constants m and .

Proof. Let ¢g € C5°(]0,1]), ¢g > 0, be a real-valued function independent of h such that
0
fooo oo(t)dt = 1. If Vg satisfies (1.21), we approximate it by the function

Vo, (r,w) = 011/ do((r' —1)/601) Vs (', w)dr' = / do(t)Vs(r + 01t,w)dt
0 0
where 0 < 07 < 1 is a parameter depending on h to be fixed later on. We have

|Vs(r,w) — Vo, (r,w)| < /000 do(t)|Vs(r + 01t,w) — Vs(r,w)|dt

(5.1) SO (r+ 1)—3—0/ %o (t)dt <09 (r+1)7377.
0

Since Vg satisfies (1.1), the above bound implies

(5:2) Vo, (r,w) < p(r) + O((r +1)7°77).

Clearly, Vp, is C! with respect to the variable r and its first derivative is given by

OV, (ryw) = —912/0 oo ((r' —1)/01)Vs(r', w)dr’

= —911/ oo(t)Vs(r + 01t,w)dt = —911/ oo(t) (Vs (r + 01, w) — Vs (r,w))dt
0 0
where we have used that fooo ¢y (t)dt = 0. Hence

(5:3) 10 Va, (r,w)| S 077 (r + 1)3p/ tep(t)ldt < 071 (r + 1) 7270
0

Let ¢ € C3°(RY), ¢ > 0, be a real-valued function independent of h such that Jga #(x)dz = 1.
If b¥ satisfies (1.22), we approximate it by the function

boa(@) = 05 [ ol = a) /o))’ = [ oS+ Bag)ay

where 0 < 03 < 1 is a parameter depending on h to be fixed later on. We have

165(2) — bgy ()] < / S5 (2 + O2y) — b (2)|dy
Rd

(54) 08/ 1) [yl aldy 05 (1)
Rd
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By (1.23) and (5),
55) o) 5+ 1) 4 (o 1) Y2
If 8 is a multi-index such that || = 1, we have

b, (o) = =051 [ (@20)( — )00 @' = ~6" [ (0 0)wbS o+ Bun)i

05" [ 0]0)w)0% @ + buy) @)y,

Hence
by (a) < 05" [ 1OF WIS o+ 0an) — ¥ )y
(5.6) SO (1) / [yI* (95 &) (w)ldy < 031 (r+1)732 70,
R4
By (5) we deduce that
(5.7) 10,b9, (rw)| S 0317 (r + 1)1,
(5-8) 100 (w - b, (rw))| S 057 (r 4+ 1) 7270
It is also easy to see that (1.6) implies
(5.9) |div (55 (z) — b, (2))| S (r+ 1) 7.

We will make use of the Carleman estimates obtained in Section 3 under the condition (1.8)
with Vg, V7, b% and b” replaced by Vg — Vo,, Vo + Ve, b — b, and bl + bg, , respectively. Using
the above estimates one can easily check that our assumptions guarantee that the new functions

175, Vi, and o satisfy the bounds
Vsl < (07 +65") (r+ )™ + h(r + )71,

OT(YN/L - 02) < (’I“ + 1)717P + <91—1+a + 92—14-0/) (’I“ + 1)737p,

with some p > 0. Moreover, Vy, satisfies (1.1) with a new decreasing function p independent of

the parameters 61 and 3. Then the functions B; in this case become
Bu(r) = (63 + 03°") (r+ 1)707 4+ h2(r + 1)7270 4+ 2632 r 4 1)
—{—9%0/(7“—{— 1)—3—p80/2 + hQSDHZ,
Ba(r) = 05" (r + 1), By(r) = (r+1)77,
By(r) = (r+1)"'Bs(r) + 0517 (r 4 1)73/277,
Bs(r) = Bs(r) + 057 (r +1)7277.
For the new functions A; and Ay we obtain
A1) = W) + (B = Vi) — Cpr (4 1)
—C <M29;1+a +M2951+a/ +M1952+2a/> (r+ 1)—1—/)
—ChTh e (83 4+ 63) (1) () T = Orh T (1) T

—Chr ™ (r + 1) p(e) ™ = Chrpu(")* (@)™
—CO3* p?(rp) 2 (r +1)7P’ — C(rB3)* My — ChBsMs,



SEMICLASSICAL RESOLVENT ESTIMATES 15

2As(r) =2 — ' = CHT 103 (r 4+ 1) TP (y)
where the functions M7 and M5 are the same as in Section 3. Note that for 1 < r < a we have
p@) =00, w =0@r), p@")@)Tt =007, prre)T?=0().
Set
X1 = T7261—1+047 m = hfle?;e%a’ X2 = T7262—2+204 , Ny = hflelaga )

We take 0; = hRZ/G+) g, = pt/(+a") o+ — p=ntlywhere 1) > 1 is independent of h. It is
easy to check that with this choice we have the inequalities

—2 -3 —2 —1
X1<7° Mm<T1°, X275, Mm<T1 .

Therefore, we can make all these parameters small enough by taking 7y big enough. On the
other hand, if we choose v < p, £ < p and the above parameters are small enough, it is easy to
see that we have Ay > Eu’/3 and Ay > 0. Indeed, in view of (3.10), for r < a, r # 1, we have

Ai(r) > 7(C) = Clxa +m + x2 +m2))(r + 1)1
+(E = V) — Clr+1)""u' — C(hr + 03 )/
> 271220, (r+ 1)+ (B =V — Cr 4+ 1)"Pu — C(hr + 3%\,
Az(r) > Cy— Cne > 0.

Since n < 2, we can arrange C(h7 +63%") < F/4 by taking h small enough. Therefore, by (3.11)
and (3.12) we obtain the desired lower bound for A; in this case. For r > a the lower bounds
for A; and A, are obtained in the same way as in Section 3 taking a = h™"" with m > 0 big
enough. Thus we conclude that the estimate (3) still holds in this case with the new parameters
a, T, as desired. O

6. CARLEMAN ESTIMATES FOR L POTENTIALS Vg AND HOLDER POTENTIALS b°
In this section we will prove the following

Theorem 6.1. Under the conditions of Theorem 1.3, the estimate (3.1) holds true with new

_1-o! 1
parameters a = h™™, 7 = 1oh 1%’ if § > (1—d/)7, o/ <3 and T =h"51 ‘75, 0<e< 1

being arbitrary, independent of h, if o/ > 1 -1, 1 < § < 2, with some positive constants m
and 1.

Proof. In this case we will make use of the Carleman estimates obtained in Section 3 under
the condition (1.8) with b° and b” replaced by b° — by, and b + by,, respectively. The functions

Vs and V7, remain unchanged. Then the new functions Vg, Vi, and o satisfy the bounds
|‘75| S (T + 1)_6 + 9(21//(7" + 1)_3_/) + h(?" + 1)—1—/)’
(Ve = 0®) S (r+ )71+ 0 e 1) 70

Moreover, Vy, satisfies (1.1) with a new decreasing function p independent of the parameter 6.
Then the functions B; in this case become

Bi(r) = (r+ 1) + 63 (r+ 1) + h2(r + )22 + h203%r 2 (r + 1) 757F
03 (r + 1) 7P + 12,
Bo(r) = 03 (r+ 1), By(r) = (r+1)7",
By(r) = (r+ 1) Bs(r) + 0,7 (r + 1)73/277,
Bs(r) = By(r) + 037 (r +1) 77,
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For the new functions A; and Ay we obtain
A1(r) = (WP p) + (B~ Vi)' — Cpr(r 4 1)
-C (M2951+a’ + M1952+2al) (’I" + 1)—1—p

R 1) P ) - Oh T B (1) ()
~Crh= 03 (r + )7y = Chr o+ 1) 72 P () = Chrp(e")(0) !
—COF WP (rp) (e + 1) 7P — C(rB3)* My — ChB3Ms,
2A5(r) = oy — - C’h_lT_lH%a/ (r+ 1)_3_p,u(1//)_1.
We have to show that the functions A; and As satisfy the same lower bounds as in the previous

section. It suffices to do so for r < a since for r > a the lower bounds for A; and Ay can be

obtained in the same way as in Section 3 taking a = h~™™ with m > 0 big enough. Set
X = h717_73’ X2 = 7_7292—24-20/’ Ny = h*lelega/.

1 l—«
We take 0y = h1i+e’ | 7 = h™ 1+’ 1, where 79 > 1 is independent of h. Then we have

—2 —1
X2:7—0 s ?’]2:’7'0 .

Consider first the case o/ = % and § > 2. Then

_ -3
X =Ty -

Choose v < min{p,2(6 —2)}. For r < a, r # 1, we have
Ai(r) 2 7%(Cy = Clx +x2 +m2)(r + 1)1
+(E = V) — Cr+1)"Pu — C(hr + 03 )/
> 271720, (r + 1)V H (B = Vi) — O(r + 1)7°p' — C(hr + 63 )4/,
As(r) = Cp— Cn2 > 0,

if 79 is taken big enough. In the same way as in the previous section one can conclude that
Ay > Ep/ /3, which leads to the desired estimate in this case.
Let now o < 1 and (1 —a/)™! <6 < 2. Let 1 < T < a be a parameter of the form

1

T = Ty(ht) 26-D,
where Ty > 1 is independent of i and 7y. For T' < r < a we have
ChilTil(T + 1)725M(1/}I)71 g hflel(r + 1)72‘”2//(7“) S TO_Z(H_QM/(?“) < 471EM/(74)’
provided Tj is taken big enough. On the other hand, for r < T, we have
ChilTil(T‘ + 1)725M(¢1)71 S hfl,rfl(r + 1)725+3
S X7_2(,r + 1)71711T4725+1/ S 557_2(,,“ + 1)71711’
where

» _2-5+v/2 Cl4v/2 25—1+4v/2 _25—617‘*1”/2
X = X(hT) —1 =} -1 T -1 <7 - ,

provided v is chosen small enough. Hence we can make X small enough by taking 7y big enough,
depending on 7. Thus we conclude that the above lower bound for A; holds with y replaced
by X and FE replaced by 3E /4, which again leads to the inequality Ay > Eu//3 in this case.
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1
Let now o >1—6"1 1 < § < 2. In this case we take 7 = h™ -1 7y, where 0 < € < 1 is
arbitrary, independent of h, and 79 > 1 is independent of h and e. Let 65 be as above. Clearly,

—1lzo L . . .
we have 7 > h 1+’ 13, which implies the inequalities
—2 -1
X2<Typ", M<TyHo.

Moreover, it is easy to see that the above bound of X still holds, provided v is chosen small
enough depending on e. Therefore, the inequality A; > Fyu'/3 holds in this case, too.
O

7. RESOLVENT ESTIMATES

In this section we will show that the Carleman estimates (3.1), proved under various condi-
tions, imply the resolvent bounds in Theorems 1.1, 1.2 and 1.3. These arguments are well-known
when b = 0, but the presence of a non-trivial magnetic potential does not change anything. The
key points are the symmetry of the operator P(h) on the Hilbert space L?(R?) and the fact that
the potentials are L°°. In what follows we will sketch the proof for the sake of completeness. It
follows from (3.1) and Lemma 2.2 that we have the estimate

(7.1 N2l + D)7 fllez < Nill(J2] + 1)°(P(h) = E i) fll 12 + Noe'? (I fll 2 + 7[RV £ 2)

where
Ny =ah™'exp (ChilTloga) . No=(hr)'2Ny,

with a constant C' > 0 independent of h and €. On the other hand, since the operator P(h) is
symmetric, we have

ellflze = £Im((P(h) — Exie)f, )2

< VAN (2] + 1) flI 2 + N3 (2] + 1)°(P(h) — B £ ie) f| 7
for every v > 0, which yields
(7.2)  Nog"?|fllp2 < Al(lal + 1) fllze + 77 N3l (2] + 1)°(P(h) — E £ ie) f|| 2.
We also have

Re ((P(h) = B +ie)f, f)r2 = [|ihV + b) |72 + Re ((V = E)f, f) 2

> [k £172 = ClIFIZa-

Thus we get
(7.3) 1RV fllrz S Iz + [[(P(h) — E £ ie) f] 12
Taking v small enough, independent of Ny and €, by (7.1), (7.2) and (7.3) we obtain the estimate
(7.4) (2] + 1)~ fllz S (N + N3)[I(|2] +1)*(P(h) — E +ie) || 12
It follows from (7.4) that the resolvent estimate

< Ny + hrN? < N

12~ ~

(7.5) (2] + 1) (P(h) — E +ig) ™ (Ja] + 1)),

holds for all 0 < h < 1. Clearly, (7.5) implies the desired bounds for g&.
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