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SEMICLASSICAL RESOLVENT ESTIMATES FOR THE MAGNETIC

SCHRÖDINGER OPERATOR

GEORGI VODEV

Abstract. We obtain semiclassical resolvent estimates for the Schrödinger operator (ih∇ +
b)2 + V in R

d, d ≥ 3, where 0 < h ≪ 1 is a semiclassical parameter, V and b are real-
valued electric and magnetic potentials independent of h. If V ∈ L

∞(Rd), b ∈ L
∞(Rd;Rd),

div b ∈ L
∞(Rd) satisfy V (x) = O

(

|x|−1−ǫ
)

, b(x) = O
(

|x|−1−ǫ
)

, div b(x) = O
(

|x|−1−ǫ
)

, ǫ > 0,

for |x| ≫ 1, we prove that the norm of the weighted resolvent is bounded by exp
(

Ch
−2 log(h−1)

)

,
C > 0. We get better resolvent bounds for electric potentials which are Hölder with respect to
the radial variable and magnetic potentials which are Hölder with respect to the space variable.
For long-range electric potentials which are Lipschitz with respect to the radial variable and
long-range magnetic potentials which are Lipschitz with respect to the space variable we obtain
a resolvent bound of the form exp

(

Ch
−1

)

, C > 0.

Key words: Schrödinger operator, magnetic potentials, resolvent estimates.

1. Introduction and statement of results

In this paper we are going to study the resolvent of the Schrödinger operator

P (h) = (ih∇ + b(x))2 + V (x) in R
d, d ≥ 3,

where 0 < h ≪ 1 is a semiclassical parameter, ∇ is the gradient, V ∈ L∞(Rd;R) and b =
(b1, ..., bd) ∈ L∞(Rd;Rd) are electric and magnetic potentials, respectively. We are interested in
bounding the quantity

g±s (h, ε) := log
∥∥(|x|+ 1)−s(P (h)− E ± iε)−1(|x|+ 1)−s

∥∥
L2→L2

from above by an explicit function of h, independent of ε. Here L2 := L2(Rd), 0 < ε < 1,
s > 1/2 is independent of h and E > 0 is a fixed energy level independent of h. Our goal is
to obtain the best possible upper bounds for g±s (h, ε) for potentials which are Lipschitz, Hölder
or just L∞. There have been recently many papers studying this problem when b ≡ 0. To our
best knoweledge, no such results exist for non-trivial magnetic potentials when d ≥ 2 and it
seems that this paper is the first one where upper bounds for g±s are proved in this case. When
d = 1 and b not identically zero, semiclassical resolvent bounds have been recently proved in [9]
for a very large class of electric and magnetic potentials. Note also that sharp high-frequency
resolvent bounds for the operator P (1) with L∞ potentials are proved in [11] when d ≥ 2 and in
[16] when d ≥ 3. In [7] exponential high-frequency resolvent bounds for the operator P (1) with
smooth potentials on non-compact Riemannian manifolds have been recently proved, extending
the results in [1].

We will be looking for bounding g±s for the largest possible class of electric and magnetic
potentials that our method allows to cover. To describe it we introduce the polar coordinates r =
|x|, w = x/|x|. We suppose that V = VL+VS, b = bL+ bS, where VL, b

L (resp. VS , b
S) are long-

range (resp. short-range) electric and magnetic potentials satisfying the following conditions.
1



2 G. VODEV

We suppose that VL satisfies

(1.1) VL(rw) ≤ p(r),

where p > 0 is a decreasing function such that p(r) → 0 as r → ∞. We also suppose that VL(rw)
is Lipschitz with respect to the radial variable r and its first derivative satisfies the bound

(1.2) ∂rVL(rw) ≤ C(r + 1)−1−ρ.

Hereafter C > 0 and 0 < ρ ≪ 1 will denote positive constants that may change from line to
line. The short-range part VS ∈ L∞(Rd) is supposed to satisfy

(1.3) |VS(rw)| ≤ C(r + 1)−1−ρ.

The long-range part bL ∈ L∞(Rd;Rd) is supposed to be Lipschitz with respect to r and satisfies

(1.4) |∂kr b
L(rw)| ≤ C(r + 1)−k−ρ, k = 0, 1.

The short-range part bS ∈ L∞(Rd;Rd) satisfies

(1.5) |bS(rw)| ≤ C(r + 1)−1−ρ.

Finally, we suppose that div bS ∈ L∞(Rd) exists and satisfies

(1.6) |div bS(rw)| ≤ C(r + 1)−1−ρ.

This condition is fulfilled if each bSj is Lipschitz with respect to the variable xj and ∂xjb
S
j (x) =

O
(
|x|−1−ρ

)
for |x| ≫ 1.

Throughout this paper, given two vectors a, b ∈ R
d, a · b will denote the scalar product. Our

first result is the following

Theorem 1.1. In addition to the above conditions we assume either the condition

(1.7) |w · bL(rw)| ≤ C(r + 1)−1−ρ,

or that the function w · bL(rw) is Lipschitz in w and satisfies

(1.8) |∂βw(w · bL(rw))| ≤ C, |β| = 1.

Then, there exist constants C > 0, 0 < h0 ≪ 1, independent of h and ε, such that the bound

(1.9) g±s (h, ε) ≤ Ch−2 log(h−1)

holds for all 0 < h ≤ h0. If VS ≡ 0 and bS ≡ 0, under the condition (1.8), we have the better
bound

(1.10) g±s (h, ε) ≤ Ch−1.

The condition (1.8) is fulfilled if the function x · bL(x) is Lipschitz in x. Note that the bound
(1.10) is proved in [9] when d = 1, while for d ≥ 3 it seems to be new. Proving (1.10) when
d = 2 in the presence of a magnetic potential remains an open problem. When b ≡ 0, however,
the bound (1.10) is well-known. Indeed, it was proved in [2] when d ≥ 3 for potentials satisfying
(1.1) with p(r) = C(r + 1)−ρ, and extended to the general case in [5] and [18]. When d = 2 the
bound (1.10) is proved in [13] for potentials V ∈ C1(R2) satisfying (1.1) with p(r) = C(r+1)−ρ

as well as the condition

(1.11) |∇V (x)| ≤ C(|x|+ 1)−1−ρ.

The bound (1.10) has been recently proved in [12] for long-range Lipschitz potentials having
singularities at the origin in all dimensions d ≥ 2. When d = 1 the bound (1.10) is proved in [4]
for potentials V ∈ L1(R) and in [9] for more general measure potentials. It turns out that (1.10)
also holds for V ∈ L∞(Rd), d ≥ 2, provided V is compactly supported and depends only on the
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radial variable r. Indeed, this is proved in [3] when d ≥ 2. A simpler proof of this result is given
in [21] when d ≥ 3. Without a radial symmetry or some regularity of the potential, however,
the bound (1.10) seems to fail even for compactly supported potentials. Indeed, for potentials
V ∈ L∞ satisfying

(1.12) |V (x)| ≤ C(|x|+ 1)−δ

where δ > 1, the following bounds are known to hold:

(1.13) g±s (h, ε) ≤ Ch−4/3 log(h−1) if δ > 2,

(1.14) g±s (h, ε) ≤ Cǫh
− 2δ

2δ−1
−ǫ if 1 < δ ≤ 2,

for every 0 < ǫ ≪ 1. When d ≥ 3 the bound (1.13) is proved in [6] and in [17] if δ > 3.
Previously, (1.13) was proved for compactly supported L∞ potentials in [8] and [14]. The bound
(1.13) is extended in [19] to more general Riemannian manifolds. The bounds (1.13) and (1.14)
have been recently proved in [15] when d ≥ 2 for potentials V = VL + VS with VL satisfying
(1.1) and (1.2), and VS satisfying (1.12). In fact, the conditions on the behavior of VL and VS
at infinity in this paper are a little bit more general than this. Moreover, the potential in [15] is
allowed to have singularities at the origin. It turns out that (1.13) and (1.14) can be improved
for potentials V ∈ L∞ depending only on r. Indeed, for radial potentials satisfying (1.12) it is
shown in [20] and [21] that when d ≥ 3 we have the bounds

(1.15) g±s (h, ε) ≤ Ch−
δ

δ−1 if δ > 4,

(1.16) g±s (h, ε) ≤ Ch−4/3 if 2 < δ ≤ 4,

(1.17) g±s (h, ε) ≤ Ch−
2δ

2δ−1
(
log(h−1)

) δ+1
2δ−1 if 1 < δ ≤ 2.

It turns out that the above bounds can be improved if some small regularity of the potential is
assumed. To desribe these results, given 0 < α ≤ 1 and k > 0, we introduce the space Cα

k (R
+)

of all Hölder functions a such that

sup
r′≥0: 0<|r−r′|≤1

|a(r)− a(r′)|

|r − r′|α
≤ C(r + 1)−k, ∀r ∈ R+.

We suppose that the function V (r, w) := V (rw) satisfies the condition

(1.18) V (·, w) ∈ Cα
3+ρ(R

+), 0 < α < 1,

uniformly in w ∈ S
d−1. For potentials V satisfying (1.1) and (1.18) and d ≥ 3 the following

bound is known to hold:

(1.19) g±s (h, ε) ≤ Ch−4/(α+3) log(h−1).

The bound (1.19) is proved in [6] and in [18] if ρ = 1. It has been extended in [18] to the case
d = 2 as well as to exterior domains for potentials which are Hölder with respect to the space
variable x. The bound (1.19) is improved in [20] for radial potentials satisfying (1.1) and (1.18)
with ρ = 0 to

(1.20) g±s (h, ε) ≤ Ch−4/(α+3).

The proof of the above bounds is based on global Carleman estimates with suitable phase and
weight functions. In order that the Carleman estimates work the phase and weight functions
must satisfy some conditions. Therefore, the task consists of constructing explicitly these func-
tions in such a way that we get the best possible bound for g±s . In fact, there are many ways to
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do so and the class the potential belongs to is determined by the way we do it. This explains
why in the papers mentioned above the same bound is proved for different classes of potentials.

To prove Theorem 1.1 we follow the same strategy as in the case b ≡ 0. The Carleman
estimates for the magnetic Schrödinger operator, however, are much more difficult to handle
with. The main difference is that conjugating this operator with eϕ/h, ϕ > 0 being a phase
function depending only on r, makes appear a complex-valued effective potential of the form
(see Section 3)

−2iϕ′(r)w · b(rw),

where ϕ′ > 0 denotes the first derivative of ϕ. This term is not easy to handle with even in the
case when bS ≡ 0. One way to treat it is to consider it as a short-range potential and to add
it to VS . To do so, however, we need the condition (1.7). It allows us to make the Carleman
estimates work. However, this approach does not lead to better bounds than what we have in
(1.9). Therefore, we propose another way that requires the condition (1.8). This approach allows
us to improve the bound (1.9) if bS ≡ 0 or bS is Hölder. To be more precise, given 0 < α ≤ 1
and k > 0, we introduce the space Cα

k (R
d) of all Hölder functions a such that

sup
x′∈Rd: 0<|x−x′|≤1

|a(x)− a(x′)|

|x− x′|α
≤ C(|x|+ 1)−k, ∀x ∈ R

d.

Note that the case α = 1 corresponds to the Lipschitz functions. We suppose that

(1.21) VS(·, w) ∈ C
α
3+ρ(R

+), 0 < α ≤ 1, ρ > 0,

uniformly in w, and

(1.22) bS ∈ Cα′

3/2+ρ1
(Rd;Rd), 0 < α′ ≤ 1, ρ1 > 0.

We have the following

Theorem 1.2. Assume that VL satisfies (1.1), (1.2), bL satisfies (1.4), (1.8), VS satisfies (1.21)
and (1.1) with possibly a new decreasing function p tending to zero, bS satisfies (1.6), (1.22).
We also suppose that bL and bS satisfy

(1.23) |bL(rw)|+ |bS(rw)| ≤ C(r + 1)−ρ2 ,

with some ρ2 > 0 such that ρ1 + ρ2 > 3/2. Then we have the bound

(1.24) g±s (h, ε) ≤ Ch−n log(h−1),

where

n = max

{
4

α+ 3
,

2

α′ + 1

}
.

When α′ ≤ 1
2 the bound (1.24) also holds for L∞ potentials VS . More precisely, we have the

following

Theorem 1.3. Assume that VL satisfies (1.1), (1.2), bL satisfies (1.4), (1.8), bS satisfies (1.6),
(1.22) and (1.23), VS satisfies

(1.25) |VS(rw)| ≤ C(r + 1)−δ ,

with δ > 1. Then we have the bounds

(1.26) g±s (h, ε) ≤ Ch−2/(α′+1) log(h−1) if δ >
1

1− α′
, α′ ≤

1

2
,

(1.27) g±s (h, ε) ≤ Cǫh
− 2δ

2δ−1
−ǫ if α′ ≥

δ − 1

δ
, 1 < δ ≤ 2,
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for every 0 < ǫ≪ 1 independent of h.

Most probably, the conditions in Theorems 1.1, 1.2 and 1.3 are not optimal, but they allow
us to make a simple choice of the phase and weight functions, and hence to keep the proof of the
Carleman estimates relatively short and simple. However, the bounds (1.9), (1.24) and (1.26)
seem to be sharp even for compactly supported potentials, unless one assumes a radial symmetry
of the potentials. Indeed, when b ≡ 0 and V radial, it is shown in [20] that the logarithmic term
in (1.9), (1.24), (1.26) and the h−ǫ term in (1.27) can be removed. Probably this is still the case
for non-trivial radial magnetic and electric potentials.

The paper is organized as follows. In Section 2 we construct the phase and weight functions
needed for the proof of the Carleman estimates. In Section 3 we prove Carleman estimates for
the magnetic Schrödinger operator under the conditions of Theorem 1.1 needed for the proof of
the bound (1.9). In Section 4 we improve the Carleman estimates when VS ≡ 0 and bS ≡ 0,
which leads to the bound (1.10). In Section 5 we adapt the Carleman estimates to Hölder
potentials VS and bS , which leads to the bound (1.24). In Section 6 we adapt the Carleman
estimates to L∞ potentials VS and Hölder potentials bS , which leads to the bounds (1.26) and
(1.27). Finally, in Section 7 we show that the Carleman estimates imply the resolvent ones.

2. Construction of the phase and weight functions

We first construct the weight function µ as follows:

µ(r) =





r2 + r for 0 ≤ r ≤ 1,

r2 + r2−ℓ for 1 ≤ r ≤ a,

(a2 + a2−ℓ)(1 + (a+ 1)−2s+1 − (r + 1)−2s+1) for r ≥ a,

where a ≫ 1 is either independent of h or it is of the form a = h−m, m > 0. The parameters ℓ
and s are independent of h such that 0 < ℓ ≪ 1, 1/2 < s < 1. Clearly, the first derivative of µ
is given by

µ′(r) =





2r + 1 for 0 ≤ r < 1,

2r + (2− ℓ)r1−ℓ for 1 < r < a,

(2s− 1)(a2 + a2−ℓ)(r + 1)−2s for r > a.

We have the following

Lemma 2.1. We have the identity

(2.1) 2r−1µ(r)− µ′(r) =

{
1 for 0 < r < 1,

ℓr1−ℓ for 1 < r < a.

For all r > a, we have the lower bound

(2.2) 2r−1µ(r)− µ′(r) ≥ a2(r + 1)−1.

For all r 6= 1, r 6= a, we have

(2.3) µ′(r) ≥ (r + 1)−2s,

(2.4)
µ(r)j

µ′(r)
. a2j−2(r + 1)2s,

for every j ≥ 1.
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Proof. The identity (2.1) is obvious, while (2.2) follows from the inequalities

2r−1µ(r) ≥ 2(a2 + a2−ℓ)(r + 1)−1, µ′(r) ≤ (2s− 1)(a2 + a2−ℓ)(r + 1)−1.

It is also clear that the inequality (2.3) holds as long as a2 ≥ (2s− 1)−1. The bound (2.4) with
j = 1 is obvious, while for j > 1 it follows from the fact that µ(r) . a2. ✷

We will now construct a phase function ψ ∈ C1([0,+∞)) such that ψ(0) = 0 and ψ(r) > 0
for r > 0. We define the first derivative of ψ by

ψ′(r) =





cν for 0 ≤ r ≤ 1,

r−1(1 + r−ℓ)−1/2(1− (r + 1)−ν) for 1 ≤ r ≤ a,

Ka(r + 1)−1−κ for r ≥ a,

where 0 < ν, κ≪ 1 are independent of h to be fixed later on, and

cν = 2−1/2(1− 2−ν), Ka = a−1(a+ 1)1+κ(1 + a−ℓ)−1/2(1− (a+ 1)−ν) = O (aκ) ,

are chosen in such a way that the function ψ′ is Lipschitz. It is easy to check that the first
derivative of ψ′ satisfies

ψ′′(r) =





0 for 0 ≤ r < 1,

O(r−2) for 1 < r < a,

O(aκr−2−κ) for r > a.

Lemma 2.2. For all r ≥ 0 we have the bound

(2.5) ψ(r) . log a.

Proof. We have

maxψ =

∫ 1

0
ψ′(r)dr +

∫ a

1
ψ′(r)dr +

∫ ∞

a
ψ′(r)dr

≤ cν

∫ 1

0
dr +

∫ a

1
r−1dr +Ka

∫ ∞

a
(r + 1)−1−κdr = cν + log a+ κ−1(a+ 1)−κKa.

✷

The next lemma will play a crucial role in the proof of the Carleman estimates.

Lemma 2.3. For 0 < r < a, r 6= 1, we have the inequality

(2.6)
(
µψ′2

)′
(r) ≥ Cν(r + 1)−1−ν ,

with some constant Cν > 0. For all r > a we have the inequality

(2.7)
(
µψ′2

)′
(r) ≥ −C̃κa

−3+2sµ′(r),

with some constant C̃κ > 0.

Proof. For 0 < r < 1 we have
(
µψ′2

)′
(r) = c2ν(2r + 1),

which clearly implies (2.6) in this case. For 1 < r < a we have
(
µψ′2

)′
(r) = ((1 − (r + 1)−ν)2)′ = 2ν(1− (r + 1)−ν)(r + 1)−1−ν ≥ 2ν(1− 2−ν)(r + 1)−1−ν .

For r > a, in view of (2.4) with j = 1, we have
(
µψ′2

)′
(r) = µ′ψ′2 + 2µψ′ψ′′ ≥ −2(r + 1)2sµ′ψ′|ψ′′|
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≥ −Ca2κ(r + 1)−3−2κ+2s ≥ −Ca−3+2s,

as desired. ✷

3. Carleman estimates in the general case

Let µ and ψ be the functions introduced in the previous section and set ϕ = τψ, where
τ = τ0h

−1, τ0 ≫ 1 being a parameter independent of h to be chosen later on. In what follows
we set Dr = ih∂r. In this section we will prove the following

Theorem 3.1. Under the conditions of Theorem 1.1, there are constants C > 0 and 0 < h0 ≪ 1
such that for all 0 < h ≤ h0, 0 < ε ≤ 1, s > 1/2, and for all functions f ∈ H2(Rd) satisfying

(|x|+ 1)s(P (h) − E ± iε)f ∈ L2(Rd)

we have the estimate

‖(|x|+ 1)−seϕ/hf‖L2 ≤ Cah−1‖(|x|+ 1)seϕ/h(P (h) − E ± iε)f‖L2

(3.1) +Ca
(
τh−1ε

)1/2
‖eϕ/hf‖L2 + Ca

(
τ−1h−1ε

)1/2
‖eϕ/hDrf‖L2 .

Proof. Clearly, it suffices to prove (3.1) for 0 < s− 1/2 ≪ 1 as this would imply (3.1) for all
s > 1/2. So, in what follows s will be as in Section 2 with additional restrictions made later on.
We write the operator P (h) in the form

P (h) = −h2∆+ ihbL · ∇+ ih∇ · bL + 2ihbS · ∇+ ṼL + ṼS ,

where
ṼL = |bL|2 + VL,

ṼS = ihdiv bS + 2bS · bL + |bS |2 + VS.

Note that our conditions guarantee that

|ṼS(x)| . (|x|+ 1)−1−ρ, ∂rṼL(x) . (|x|+ 1)−1−ρ.

Moreover, ṼL satisfies (1.1) with a new decreasing function p.
We will write P (h) in the polar coordinates (r, w) ∈ R

+ × S
d−1, r = |x|, w = x/|x|. Recall

that L2(Rd) = L2(R+ × S
d−1, rd−1drdw). In what follows in this section we denote by ‖ · ‖ and

〈·, ·〉 the norm and the scalar product in L2(Sd−1). We will make use of the identity

(3.2) r(d−1)/2∆r−(d−1)/2 = ∂2r + r−2∆w − (d− 1)(d − 3)(2r)−2

where ∆w denotes the negative Laplace-Beltrami operator on S
d−1. We also have

(3.3) r(d−1)/2∂xjr
−(d−1)/2 = wj∂r + r−1qj(w, ∂w)

where qj is a first-order differential operator on S
d−1 which is antisymmetric with respect to the

scalar product in L2(Sd−1). Clearly, we have the estimates

(3.4) ‖qj(w, ∂w)v‖ . ‖(−∆w)
1/2v‖+ ‖v‖ for all v ∈ H1(Sd−1).

Set Λ = −h2∆w, Dr = ih∂r and Qj = ihqj(w, ∂w). Then the operator Qj is symmetric with

respect to the scalar product in L2(Sd−1). Moreover, (3.4) implies the estimates

(3.5) ‖Qjv‖ . ‖Λ1/2v‖+ h‖v‖ for all v ∈ H1(Sd−1).

Set u(r, w) = r(d−1)/2eϕ/hf(rw) and

P(h) = r(d−1)/2(P (h) − E)r−(d−1)/2,

Pϕ(h) = eϕ/hP(h)e−ϕ/h.
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We now define the function σ as follows. We put σ = 0 if (1.7) holds and we put

σ(r, w) =

d∑

j=1

wjb
L
j (rw)

if (1.8) holds. Using (3.2) and (3.3) we can write the operator P(h) in the coordinates (r, w) as
follows

P(h) = D2
r + r−2Λ−E + h2(d− 1)(d− 3)(2r)−2 + ṼL + ṼS

+r−1
d∑

j=1

(
bLj Qj +Qjb

L
j

)
+ 2

d∑

j=1

wjbjDr + 2r−1
d∑

j=1

bSj Qj + ih

d∑

j=1

wj∂r(b
L
j ),

if (1.7) holds, and

P(h) = (Dr + σ)2 + r−2Λ−E + h2(d− 1)(d − 3)(2r)−2 + ṼL + ṼS − σ2 − 2σ
d∑

j=1

wjb
S
j

+r−1
d∑

j=1

(
bLj Qj +Qjb

L
j

)
+ 2

d∑

j=1

wjb
S
j (Dr + σ) + 2r−1

d∑

j=1

bSjQj ,

if (1.8) holds. Since the function ϕ depends only on the variable r, in the first case we get

Pϕ(h) = D2
r + r−2Λ− E + h2(d− 1)(d− 3)(2r)−2 − 2iϕ′Dr +WL +WS

+2

d∑

j=1

wjbjDr + r−1
d∑

j=1

(
bLj Qj +Qjb

L
j

)
+ 2r−1

d∑

j=1

bSj Qj,

where
WL = ṼL − ϕ′2,

WS = ṼS + hϕ′′ − 2iϕ′
d∑

j=1

wjbj + ih

d∑

j=1

wj∂r(b
L
j ).

In the second case we get

Pϕ(h) = (Dr + σ)2 + r−2Λ− E + h2(d− 1)(d − 3)(2r)−2 − 2iϕ′(Dr + σ) +WL +WS

+2

d∑

j=1

wjb
S
j (Dr + σ) + r−1

d∑

j=1

(
bLj Qj +Qjb

L
j

)
+ 2r−1

d∑

j=1

bSjQj ,

where
WL = ṼL − σ2 − ϕ′2,

WS = ṼS + hϕ′′ − 2(iϕ′ + σ)

d∑

j=1

wjb
S
j .

For r > 0, r 6= 1, r 6= a, introduce the function

F (r) = −
〈
(r−2Λ + h2(d− 1)(d − 3)(2r)−2 − E +WL)u(r, ·), u(r, ·)

〉

+‖(Dr + σ)u(r, ·)‖2 − 2r−1
d∑

j=1

Re
〈
bLj Qju(r, ·), u(r, ·)

〉
.

Observe now that in the first case we have
h

2

d

dr
‖Dru‖

2 = Im
〈
D2

ru,Dru
〉
= Im 〈Pϕ(h)u,Dru〉
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−Im
〈
(r−2Λ + h2(d− 1)(d − 3)(2r)−2 − E +WL +WS)u,Dru

〉

+2ϕ′‖Dru‖
2 − 2

d∑

j=1

Im 〈wjbjDru,Dru〉

−

d∑

j=1

Im
〈
r−1(bLj Qj +Qjb

L
j )u,Dru

〉
− 2

d∑

j=1

Im
〈
r−1bSj Qju,Dru

〉
,

while in the second case we have
h

2

d

dr
‖(Dr + σ)u‖2 = Im

〈
(Dr + σ)2u, (Dr + σ)u

〉
= Im 〈Pϕ(h)u, (Dr + σ)u〉

−Im
〈
(r−2Λ+ h2(d− 1)(d− 3)(2r)−2 − E +WL +WS)u, (Dr + σ)u

〉

+2ϕ′‖(Dr + σ)u‖2 − 2
d∑

j=1

Im
〈
wjb

S
j (Dr + σ)u, (Dr + σ)u

〉

−
d∑

j=1

Im
〈
r−1(bLj Qj +Qjb

L
j )u, (Dr + σ)u

〉

−2
d∑

j=1

Im
〈
r−1bSj Qju, (Dr + σ)u

〉
.

On the other hand, we have the identities

Im 〈wjbjDru,Dru〉 = 0,

Re
d

dr

〈
bLj Qju, u

〉
= Re

〈
∂r(b

L
j )Qju, u

〉

−h−1Im
〈
(bLj Qj +Qjb

L
j )u,Dru

〉

in the first case, and
Im

〈
wjb

S
j (Dr + σ)u, (Dr + σ)u

〉
= 0,

Re
d

dr

〈
bLj Qju, u

〉
= Re

〈
∂r(b

L
j )Qju, u

〉

−h−1Im
〈
(bLj Qj +Qjb

L
j )u, (Dr + σ)u

〉
− Re

〈
bLj u, [qj , σ]u

〉

in the second case. Using the above identities we find that in both cases the first derivative of
F is given by

F ′(r) =
2

r

〈
r−2(Λ + (h/2)2(d− 1)(d − 3))u, u

〉
−W ′

L‖u‖
2

+2r−2
d∑

j=1

Re
〈
bLj Qju, u

〉
− 2r−1

d∑

j=1

Re
〈
∂r(b

L
j )Qju, u

〉
+ 2r−1

d∑

j=1

Re
〈
bLj u, [qj , σ]u

〉

+2h−1Im 〈Pϕ(h)u, (Dr + σ)u〉+ 4h−1ϕ′‖(Dr + σ)u‖2 − 2h−1Im
〈
W̃Su, (Dr + σ)u

〉
,

where

W̃S =WS + 2r−1
d∑

j=1

bSjQj .

Thus we obtain the identity
(µF )′ = µ′F + µF ′

= (2r−1µ− µ′)
〈
r−2(Λ + (h/2)2(d− 1)(d − 3))u, u

〉
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+(Eµ′ − (µWL)
′)‖u‖2 + (µ′ + 4h−1ϕ′µ)‖(Dr + σ)u‖2

−2(r−1µ)′
d∑

j=1

Re
〈
bLj Qju, u

〉
− 2r−1µ

d∑

j=1

Re
〈
∂r(b

L
j )Qju, u

〉

+2r−1µ
d∑

j=1

Re
〈
bLj u, [qj , σ]u

〉
− 2h−1µIm

〈
W̃Su, (Dr + σ)u

〉

+2h−1µIm 〈(Pϕ(h)± iε)u, (Dr + σ)u〉 ∓ 2εh−1µRe 〈u, (Dr + σ)u〉 .

In view of (3.5), we have the estimates

(3.6)
∥∥∥W̃Su

∥∥∥
2
. B1 ‖u‖

2 +B2

∥∥∥r−1Λ1/2u
∥∥∥
2
,

where
B1(r) = (r + 1)−2−ρ + (r + 1)−2−ρϕ′2 + h2ϕ′′2 + h2r−2(r + 1)−2−ρ,

B2(r) = (r + 1)−2−ρ,

and ∣∣〈bLj Qju, u
〉∣∣ . B3‖u‖

∥∥∥Λ1/2u
∥∥∥+ hB3‖u‖

2

(3.7) .
(
γ−1
1 (rB3)

2 + hB3

)
‖u‖2 + γ1

∥∥∥r−1Λ1/2u
∥∥∥
2
,

(3.8)
∣∣〈∂r(bLj )Qju, u

〉∣∣ .
(
γ−1
2 (rB4)

2 + hB4

)
‖u‖2 + γ2

∥∥∥r−1Λ1/2u
∥∥∥
2
,

where γ1 and γ2 are arbitrary positive functions of r to be fixed below and

B3(r) = (r + 1)−ρ, B4(r) = (r + 1)−1B3(r).

In view of (1.8), we also have

(3.9)
∣∣〈bLj u, [qj , σ]u

〉∣∣ . B5‖u‖
2,

where B5(r) = B3(r). Since 2r−1µ− µ′ > 0 and d ≥ 3, by (3.6), (3), (3.8) and (3.9), we get the
inequality

(µF )′ ≥ (2r−1µ− µ′)
〈
r−2Λu, u

〉

+(Eµ′ − (µWL)
′)‖u‖2 + (µ′ + 4h−1ϕ′µ)‖(Dr + σ)u‖2

−2|(r−1µ)′|

d∑

j=1

∣∣〈bLj Qju, u
〉∣∣− 2r−1µ

d∑

j=1

∣∣〈∂r(bLj )Qju, u
〉∣∣− 2r−1µ

d∑

j=1

∣∣〈bLj u, [qj , σ]u
〉∣∣

−3h−2µ2(µ′ + 4h−1ϕ′µ)−1
∥∥∥W̃Su

∥∥∥
2
−

1

3
(µ′ + 4h−1ϕ′µ)‖(Dr + σ)u‖2

−
3h−2µ2

µ′
‖(Pϕ(h) ± iε)u‖2 −

µ′

3
‖(Dr + σ)u‖2 − εh−1µ‖u‖‖(Dr + σ)u‖

≥ A1‖u‖
2 +A2‖r

−1Λ1/2u‖2 −
3h−2µ2

µ′
‖(Pϕ(h) ± iε)u‖2 − εh−1µ‖u‖‖(Dr + σ)u‖,

where

A1(r) = (ϕ′2µ)′ + (E − ṼL)µ
′ − C(r + 1)−1−ρµ− Ch−2B1µ

2(µ′ + h−1ϕ′µ)−1

−C|(r−1µ)′|
(
γ−1
1 (rB3)

2 + hB3

)
− Cr−1µ

(
γ−1
2 (rB4)

2 + hB4 +B5

)
,

A2(r) = 2r−1µ− µ′ − Ch−2B2µ
2(µ′ + h−1ϕ′µ)−1

−Cγ1|(r
−1µ)′| − Cγ2r

−1µ.
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We now choose the functions γ1 and γ2 so that

Cγ1|(r
−1µ)′| = Cγ2r

−1µ =
1

4
(2r−1µ− µ′).

Thus we conclude that the above inequality holds with

A1(r) = (ϕ′2µ)′ + (E − ṼL)µ
′ − Cr−1(r + 1)−ρµ− Ch−2B1µ

2(µ′ + h−1ϕ′µ)−1

−C(rB3)
2M1 − ChB3M2,

2A2(r) = 2r−1µ− µ′ − Ch−2B2µ
2(µ′ + h−1ϕ′µ)−1,

with a new constant C > 0, where

M1(r) = (2r−1µ− µ′)−1
(
|(r−1µ)′|2 + (r(r + 1))−2µ2

)
,

M2(r) = |(r−1µ)′|+ (r(r + 1))−1µ.

Now we will use Lemmas 2.1 and 2.3 to bound the functions A1 and A2 from below. Observe
first that M1(r) =M2(r) = 1 for r < 1. For 1 < r < a we have the bounds

M1(r) . (r + 1)−1+ℓ, M2(r) . 1,

while for r > a we have the bounds

M1(r) . (r + 1)−3+2sµ′(r), M2(r) . (r + 1)−2+2sµ′(r).

Therefore, for 0 < r < 1 we have

A1(r) ≥ Eµ′(r) + C♭
ντ

2 − Ch−2 − Ch−1τ, C♭
ν > 0,

A2(r) ≥ 2−1 − Ch−1τ−1.

We take τ = τ0h
−1, where τ0 ≫ 1 is independent of h. It is clear that if τ0 is big enough we can

arrange that
A1(r) ≥ Eµ′(r), A2(r) ≥ 0, for 0 < r < 1.

For 1 < r < a we have r−1µ(r) < µ′(r) and

(3.10) (rB3)
2M1(r) . (r + 1)ℓ−2ρµ′(r) . (r + 1)−ρµ′(r)

if ℓ < ρ. Hence

A1(r) ≥ τ2Cν(r + 1)−1−ν + (E − ṼL)µ
′ − C(r + 1)−ρµ′

−Ch−1τ−1(r + 1)−ρµ′ −Chτ(r + 1)−2µ′ − Ch−1τ(r + 1)−1−ρ,

A2(r) ≥ 2−1ℓr1−ℓ − Ch−1τ−1r1−ρ.

Since ṼL satisfies (1.1), there exists λ0 ≫ 1, independent of h and τ0, such that

(3.11) ṼL(rw) + C(r + 1)−ρ ≤ E/4 for r ≥ λ0.

On the other hand, for r < λ0, we have

(3.12) ṼLµ
′(r) + C(r + 1)−ρµ′(r) . (r + 1)−1−ν .

Similarly, there exists λ≫ 1, independent of h but depending on τ0, such that

Cτ0(r + 1)−2 ≤ E/4 for r ≥ λ,

and
Cτ0(r + 1)−2µ′(r) . (r + 1)−1−ν for r < λ.

Therefore, if we choose ν < ρ, ℓ < ρ, taking τ0 big enough and h small enough we can arrange
that

A1(r) ≥ 3−1Eµ′(r), A2(r) ≥ 0, for 1 < r < a.
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We now take 1/2 < s < (1 + ρ)/2, 0 < κ < 1 + ρ − 2s. In view of (1.1) with ṼL, for r > a we
have

A1(r) ≥ 2−1Eµ′(r)− Cµ′(r)
(
τ2a−3+2s + a−ρ+2s−1 + τh−1a−4+2s

)
,

A2(r) ≥ 2−1a2(r + 1)−1
(
1− Ch−1τ−1a−1

)
.

Taking a = h−m with m > 0 big enough and h small enough we can arrange that

A1(r) ≥ 3−1Eµ′(r), A2(r) ≥ 0, for r > a.

By the above inequalities we obtain

(3.13) (µF )′ ≥
E

3
µ′‖u‖2 −

3h−2µ2

µ′
‖(Pϕ(h)± iε)u‖2 − εh−1µ‖u‖‖(Dr + σ)u‖.

Integrating (3.13) with respect to r and using that
∫ ∞

0
(µF )′dr = 0,

we obtain the estimate

(3.14)
E

3

∫ ∞

0
µ′‖u‖2dr ≤ 3h−2

∫ ∞

0

µ2

µ′
‖(Pϕ(h)± iε)u‖2dr + εh−1

∫ ∞

0
µ‖u‖‖(Dr + σ)u‖dr.

Using that µ(r) . ζ(r)a2, where ζ(r) = r(r + 1)−1, together with (2.3) and (2.4) we get from
(3.14), ∫ ∞

0
(r + 1)−2s‖u‖2dr ≤ Ca2h−2

∫ ∞

0
(r + 1)2s‖(Pϕ(h) ± iε)u‖2dr

(3.15) +Cεh−1a2
∫ ∞

0

(
τ‖u‖2 + τ−1ζ2‖Dru‖

2
)
dr

with some constant C > 0 independent of h and ε. Since

Dru = r(d−1)/2eϕ/hDrf + (iϕ′ + (d− 1)(2r)−1)u,

we have

(3.16) ζ2‖Dru‖
2 .

∥∥∥r(d−1)/2eϕ/hDrf
∥∥∥
2
+ τ2‖u‖2.

Clearly, the estimate (3.1) follows from (3) and (3.16). ✷

4. Carleman estimates when VS ≡ 0 and bS ≡ 0

In this section we will prove the following

Theorem 4.1. Under the conditions of Theorem 1.1 with (1.8), if VS ≡ 0 and bS ≡ 0, the
estimate (3.1) holds true with new parameters a, τ ≫ 1 independent of h.

Proof. We will make use of the Carleman estimates obtained in the previous section under
the condition (1.8), which in our case take a much simpler form. Indeed, VS ≡ 0, bS ≡ 0 imply

that ṼS ≡ 0 and W̃S = hϕ′′. Hence B1 = h2ϕ′′2 and B2 = 0. The functions B3, B4 and B5

remain unchanged. Therefore the functions A1 and A2 take the form

A1(r) = (ϕ′2µ)′ + (E − ṼL)µ
′ − Cr−1(r + 1)−ρµ

−Chτµ(ψ′′)2(ψ′)−1 − C(rB3)
2M1 − ChB3M2,

2A2(r) = 2r−1µ− µ′ > 0.
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For 0 < r < a, r 6= 1, in view of (3.10), (3.11) and (3.12), we have

A1(r) ≥ τ2Cν(r + 1)−1−ν + (E − ṼL)µ
′ − C(r + 1)−ρµ′ − Chτ(r + 1)−2µ′ ≥ Eµ′/3,

if τ is taken big enough, independent of h, and h is taken small enough. For r > a we have

A1(r) ≥ 2−1Eµ′ −Cµ′
(
τ2a−3+2s + a−ρ+2s−1

)
≥ Eµ′/3,

if a is taken big enough, independent of h. Thus we conclude that the estimate (3) still holds in
this case with parameters a, τ ≫ 1 independent of h. Clearly, this implies the theorem. ✷

5. Carleman estimates for Hölder potentials

In this section we will prove the following

Theorem 5.1. Under the conditions of Theorem 1.2, the estimate (3.1) holds true with new
parameters a = h−m and τ = τ0h

−n+1 with some positive constants m and τ0.

Proof. Let φ0 ∈ C∞
0 ([0, 1]), φ0 ≥ 0, be a real-valued function independent of h such that∫∞

0 φ0(t)dt = 1. If VS satisfies (1.21), we approximate it by the function

Vθ1(r, w) = θ−1
1

∫ ∞

0
φ0((r

′ − r)/θ1)VS(r
′, w)dr′ =

∫ ∞

0
φ0(t)VS(r + θ1t, w)dt

where 0 < θ1 < 1 is a parameter depending on h to be fixed later on. We have

|VS(r, w) − Vθ1(r, w)| ≤

∫ ∞

0
φ0(t)|VS(r + θ1t, w)− VS(r, w)|dt

(5.1) . θα1 (r + 1)−3−ρ

∫ ∞

0
tαφ0(t)dt . θα1 (r + 1)−3−ρ.

Since VS satisfies (1.1), the above bound implies

(5.2) Vθ1(r, w) ≤ p(r) +O((r + 1)−3−ρ).

Clearly, Vθ1 is C1 with respect to the variable r and its first derivative is given by

∂rVθ1(r, w) = −θ−2
1

∫ ∞

0
φ′0((r

′ − r)/θ1)VS(r
′, w)dr′

= −θ−1
1

∫ ∞

0
φ′0(t)VS(r + θ1t, w)dt = −θ−1

1

∫ ∞

0
φ′0(t)(VS(r + θ1t, w)− VS(r, w))dt

where we have used that
∫∞
0 φ′0(t)dt = 0. Hence

(5.3) |∂rVθ1(r, w)| . θ−1+α
1 (r + 1)−3−ρ

∫ ∞

0
tα|φ′0(t)|dt . θ−1+α

1 (r + 1)−3−ρ.

Let φ ∈ C∞
0 (Rd), φ ≥ 0, be a real-valued function independent of h such that

∫
Rd φ(x)dx = 1.

If bS satisfies (1.22), we approximate it by the function

bθ2(x) = θ−d
2

∫

Rd

φ((x′ − x)/θ2)b
S(x′)dx′ =

∫

Rd

φ(y)bS(x+ θ2y)dy

where 0 < θ2 < 1 is a parameter depending on h to be fixed later on. We have

|bS(x)− bθ2(x)| ≤

∫

Rd

φ(y)|bS(x+ θ2y)− bS(x)|dy

(5.4) . θα
′

2 (r + 1)−3/2−ρ1

∫

Rd

|y|α
′

φ(y)dy . θα
′

2 (r + 1)−3/2−ρ1 .
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By (1.23) and (5),

(5.5) |bθ2(rw)| . (r + 1)−ρ2 + (r + 1)−3/2−ρ1 .

If β is a multi-index such that |β| = 1, we have

∂βx bθ2(x) = −θ−d−1
2

∫

Rd

(∂βxφ)((x
′ − x)/θ2)b

S(x′)dx′ = −θ−1
2

∫

Rd

(∂βy φ)(y)b
S(x+ θ2y)dy

= −θ−1
2

∫

Rd

(∂βy φ)(y)(b
S(x+ θ2y)− bS(x))dy.

Hence

|∂βx bθ2(x)| ≤ θ−1
2

∫

Rd

|(∂βy φ)(y)||b
S(x+ θ2y)− bS(x)|dy

(5.6) . θ−1+α′

2 (r + 1)−3/2−ρ1

∫

Rd

|y|α
′

|(∂βy φ)(y)|dy . θ−1+α′

2 (r + 1)−3/2−ρ1 .

By (5) we deduce that

(5.7) |∂rbθ2(rw)| . θ−1+α′

2 (r + 1)−3/2−ρ1 ,

(5.8) |∂βw(w · bθ2(rw))| . θ−1+α′

2 (r + 1)−1/2−ρ1 .

It is also easy to see that (1.6) implies

(5.9) |div (bS(x)− bθ2(x))| . (r + 1)−1−ρ.

We will make use of the Carleman estimates obtained in Section 3 under the condition (1.8)
with VS, VL, b

S and bL replaced by VS −Vθ1 , VL+Vθ1 , b
S − bθ2 and bL+ bθ2 , respectively. Using

the above estimates one can easily check that our assumptions guarantee that the new functions

ṼS , ṼL and σ satisfy the bounds

|ṼS | .
(
θα1 + θα

′

2

)
(r + 1)−3−ρ + h(r + 1)−1−ρ,

∂r(ṼL − σ2) . (r + 1)−1−ρ +
(
θ−1+α
1 + θ−1+α′

2

)
(r + 1)−3−ρ,

with some ρ > 0. Moreover, ṼL satisfies (1.1) with a new decreasing function p independent of
the parameters θ1 and θ2. Then the functions Bj in this case become

B1(r) =
(
θ2α1 + θ2α

′

2

)
(r + 1)−6−ρ + h2(r + 1)−2−ρ + h2θ2α

′

2 r−2(r + 1)−3−ρ

+θ2α
′

2 (r + 1)−3−ρϕ′2 + h2ϕ′′2,

B2(r) = θ2α
′

2 (r + 1)−3−ρ, B3(r) = (r + 1)−ρ,

B4(r) = (r + 1)−1B3(r) + θ−1+α′

2 (r + 1)−3/2−ρ,

B5(r) = B3(r) + θ−1+α′

2 (r + 1)−2−ρ.

For the new functions A1 and A2 we obtain

A1(r) = τ2(ψ′2µ)′ + (E − ṼL)µ
′ − Cµr−1(r + 1)−ρ

−C
(
M2θ

−1+α
1 +M2θ

−1+α′

2 +M1θ
−2+2α′

2

)
(r + 1)−1−ρ

−Ch−1τ−1
(
θ2α1 + θ2α

′

2

)
(r + 1)−6−ρµ(ψ′)−1 − Cτh−1θ2α

′

2 (r + 1)−3−ρµψ′

−Chτ−1(r + 1)−2−ρµ(ψ′)−1 − Chτµ(ψ′′)2(ψ′)−1

−Cθ2α
′

2 µ2(rµ′)−2(r + 1)−3−ρµ′ − C(rB3)
2M1 − ChB3M2,
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2A2(r) = 2r−1µ− µ′ − Ch−1τ−1θ2α
′

2 (r + 1)−3−ρµ(ψ′)−1,

where the functions M1 and M2 are the same as in Section 3. Note that for 1 < r < a we have

µ(ψ′)−1 = O(r3), µψ′ = O(r), µ(ψ′′)2(ψ′)−1 = O(r−1), µ2(rµ′)−2 = O(1).

Set
χ1 = τ−2θ−1+α

1 , η1 = h−1τ−3θ2α1 , χ2 = τ−2θ−2+2α′

2 , η2 = h−1τ−1θ2α
′

2 .

We take θ1 = h2/(3+α), θ2 = h1/(1+α′), τ = h−n+1τ0, where τ0 ≫ 1 is independent of h. It is
easy to check that with this choice we have the inequalities

χ1 ≤ τ−2
0 , η1 ≤ τ−3

0 , χ2 ≤ τ−2
0 , η2 ≤ τ−1

0 .

Therefore, we can make all these parameters small enough by taking τ0 big enough. On the
other hand, if we choose ν < ρ, ℓ < ρ and the above parameters are small enough, it is easy to
see that we have A1 ≥ Eµ′/3 and A2 ≥ 0. Indeed, in view of (3.10), for r < a, r 6= 1, we have

A1(r) ≥ τ2(Cν − C(χ1 + η1 + χ2 + η2))(r + 1)−1−ν

+(E − ṼL)µ
′ − C(r + 1)−ρµ′ − C(hτ + θ2α

′

2 )µ′

≥ 2−1τ2Cν(r + 1)−1−ν + (E − ṼL)µ
′ − C(r + 1)−ρµ′ − C(hτ + θ2α

′

2 )µ′,

A2(r) ≥ Cℓ − Cη2 > 0.

Since n < 2, we can arrange C(hτ + θ2α
′

2 ) ≤ E/4 by taking h small enough. Therefore, by (3.11)
and (3.12) we obtain the desired lower bound for A1 in this case. For r > a the lower bounds
for A1 and A2 are obtained in the same way as in Section 3 taking a = h−m with m > 0 big
enough. Thus we conclude that the estimate (3) still holds in this case with the new parameters
a, τ , as desired. ✷

6. Carleman estimates for L∞ potentials VS and Hölder potentials bS

In this section we will prove the following

Theorem 6.1. Under the conditions of Theorem 1.3, the estimate (3.1) holds true with new

parameters a = h−m, τ = τ0h
− 1−α′

1+α′ if δ > (1 − α′)−1, α′ ≤ 1
2 , and τ = h−

1
2δ−1

−ǫτ0, 0 < ǫ ≪ 1

being arbitrary, independent of h, if α′ ≥ 1 − δ−1, 1 < δ ≤ 2, with some positive constants m
and τ0.

Proof. In this case we will make use of the Carleman estimates obtained in Section 3 under
the condition (1.8) with bS and bL replaced by bS − bθ2 and bL+ bθ2 , respectively. The functions

VS and VL remain unchanged. Then the new functions ṼS , ṼL and σ satisfy the bounds

|ṼS | . (r + 1)−δ + θα
′

2 (r + 1)−3−ρ + h(r + 1)−1−ρ,

∂r(ṼL − σ2) . (r + 1)−1−ρ + θ−1+α′

2 (r + 1)−3−ρ.

Moreover, ṼL satisfies (1.1) with a new decreasing function p independent of the parameter θ2.
Then the functions Bj in this case become

B1(r) = (r + 1)−2δ + θ2α
′

2 (r + 1)−6−ρ + h2(r + 1)−2−ρ + h2θ2α
′

2 r−2(r + 1)−3−ρ

+θ2α
′

2 (r + 1)−3−ρϕ′2 + h2ϕ′′2,

B2(r) = θ2α
′

2 (r + 1)−3−ρ, B3(r) = (r + 1)−ρ,

B4(r) = (r + 1)−1B3(r) + θ−1+α′

2 (r + 1)−3/2−ρ,

B5(r) = B3(r) + θ−1+α′

2 (r + 1)−2−ρ.
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For the new functions A1 and A2 we obtain

A1(r) = τ2(ψ′2µ)′ + (E − ṼL)µ
′ − Cµr−1(r + 1)−ρ

−C
(
M2θ

−1+α′

2 +M1θ
−2+2α′

2

)
(r + 1)−1−ρ

−Ch−1τ−1(r + 1)−2δµ(ψ′)−1 − Ch−1τ−1θ2α
′

2 (r + 1)−6−ρµ(ψ′)−1

−Cτh−1θ2α
′

2 (r + 1)−3−ρµψ′ − Chτ−1(r + 1)−2−ρµ(ψ′)−1 − Chτµ(ψ′′)2(ψ′)−1

−Cθ2α
′

2 µ2(rµ′)−2(r + 1)−3−ρµ′ − C(rB3)
2M1 − ChB3M2,

2A2(r) = 2r−1µ− µ′ − Ch−1τ−1θ2α
′

2 (r + 1)−3−ρµ(ψ′)−1.

We have to show that the functions A1 and A2 satisfy the same lower bounds as in the previous
section. It suffices to do so for r < a since for r > a the lower bounds for A1 and A2 can be
obtained in the same way as in Section 3 taking a = h−m with m > 0 big enough. Set

χ = h−1τ−3, χ2 = τ−2θ−2+2α′

2 , η2 = h−1τ−1θ2α
′

2 .

We take θ2 = h
1

1+α′ , τ = h
− 1−α′

1+α′ τ0, where τ0 ≫ 1 is independent of h. Then we have

χ2 = τ−2
0 , η2 = τ−1

0 .

Consider first the case α′ = 1
2 and δ > 2. Then

χ = τ−3
0 .

Choose ν < min{ρ, 2(δ − 2)}. For r < a, r 6= 1, we have

A1(r) ≥ τ2(Cν −C(χ+ χ2 + η2))(r + 1)−1−ν

+(E − ṼL)µ
′ − C(r + 1)−ρµ′ − C(hτ + θ2α

′

2 )µ′

≥ 2−1τ2Cν(r + 1)−1−ν + (E − ṼL)µ
′ − C(r + 1)−ρµ′ − C(hτ + θ2α

′

2 )µ′,

A2(r) ≥ Cℓ − Cη2 > 0,

if τ0 is taken big enough. In the same way as in the previous section one can conclude that
A1 ≥ Eµ′/3, which leads to the desired estimate in this case.

Let now α′ < 1
2 and (1− α′)−1 < δ ≤ 2. Let 1 < T < a be a parameter of the form

T = T0(hτ)
− 1

2(δ−1) ,

where T0 ≫ 1 is independent of h and τ0. For T ≤ r < a we have

Ch−1τ−1(r + 1)−2δµ(ψ′)−1 . h−1τ−1(r + 1)−2δ+2µ′(r) . T−2δ+2
0 µ′(r) ≤ 4−1Eµ′(r),

provided T0 is taken big enough. On the other hand, for r < T , we have

Ch−1τ−1(r + 1)−2δµ(ψ′)−1 . h−1τ−1(r + 1)−2δ+3

. χτ2(r + 1)−1−νT 4−2δ+ν . χ̃τ2(r + 1)−1−ν ,

where

χ̃ = χ(hτ)−
2−δ+ν/2

δ−1 = h−
1+ν/2
δ−1 τ−

2δ−1+ν/2
δ−1 ≤ τ

−
2δ−1+ν/2

δ−1

0 ,

provided ν is chosen small enough. Hence we can make χ̃ small enough by taking τ0 big enough,
depending on T0. Thus we conclude that the above lower bound for A1 holds with χ replaced
by χ̃ and E replaced by 3E/4, which again leads to the inequality A1 ≥ Eµ′/3 in this case.
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Let now α′ ≥ 1 − δ−1, 1 < δ ≤ 2. In this case we take τ = h−
1

2δ−1
−ǫτ0, where 0 < ǫ ≪ 1 is

arbitrary, independent of h, and τ0 ≫ 1 is independent of h and ǫ. Let θ2 be as above. Clearly,

we have τ ≥ h
− 1−α′

1+α′ τ0, which implies the inequalities

χ2 ≤ τ−2
0 , η2 ≤ τ−1

0 .

Moreover, it is easy to see that the above bound of χ̃ still holds, provided ν is chosen small
enough depending on ǫ. Therefore, the inequality A1 ≥ Eµ′/3 holds in this case, too.

✷

7. Resolvent estimates

In this section we will show that the Carleman estimates (3.1), proved under various condi-
tions, imply the resolvent bounds in Theorems 1.1, 1.2 and 1.3. These arguments are well-known
when b ≡ 0, but the presence of a non-trivial magnetic potential does not change anything. The
key points are the symmetry of the operator P (h) on the Hilbert space L2(Rd) and the fact that
the potentials are L∞. In what follows we will sketch the proof for the sake of completeness. It
follows from (3.1) and Lemma 2.2 that we have the estimate

(7.1) ‖(|x| + 1)−sf‖L2 ≤ N1‖(|x| + 1)s(P (h) − E ± iε)f‖L2 +N2ε
1/2

(
‖f‖L2 + τ−1‖h∇f‖L2

)

where

N1 = ah−1 exp
(
Ch−1τ log a

)
, N2 = (hτ)1/2N1,

with a constant C > 0 independent of h and ε. On the other hand, since the operator P (h) is
symmetric, we have

ε‖f‖2L2 = ±Im 〈(P (h) − E ± iε)f, f〉L2

≤ γ2N−2
2 ‖(|x| + 1)−sf‖2L2 + γ−2N2

2 ‖(|x| + 1)s(P (h) − E ± iε)f‖2L2

for every γ > 0, which yields

(7.2) N2ε
1/2‖f‖L2 ≤ γ‖(|x| + 1)−sf‖L2 + γ−1N2

2 ‖(|x| + 1)s(P (h) − E ± iε)f‖L2 .

We also have

Re 〈(P (h) − E ± iε)f, f〉L2 = ‖(ih∇ + b)f‖2L2 +Re 〈(V − E)f, f〉L2

≥ ‖h∇f‖2L2 − C‖f‖2L2 .

Thus we get

(7.3) ‖h∇f‖L2 . ‖f‖L2 + ‖(P (h) − E ± iε)f‖L2 .

Taking γ small enough, independent of N2 and ε, by (7.1), (7.2) and (7.3) we obtain the estimate

(7.4) ‖(|x| + 1)−sf‖L2 . (N1 +N2
2 )‖(|x| + 1)s(P (h) − E ± iε)f‖L2 .

It follows from (7.4) that the resolvent estimate

(7.5)
∥∥(|x|+ 1)−s(P (h) −E ± iε)−1(|x|+ 1)−s

∥∥
L2→L2 . N1 + hτN2

1 . N2
1

holds for all 0 < h≪ 1. Clearly, (7.5) implies the desired bounds for g±s .
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