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ABNORMAL SUBANALYTIC DISTRIBUTIONS IN SUB-RIEMANNIAN

GEOMETRY

A. BELOTTO DA SILVA, A. PARUSIŃSKI, AND L. RIFFORD

Abstract. We present a description of singular horizontal curves of a bracket generating
analytic distribution in terms of the projections of the orbits of some isotropic subanalytic

singular distribution defined on the nonzero annihilator of the initial distribution in the

cotangent bundle. We expect this presentation to be useful in the context of the Sard
Conjecture in sub-Riemannian geometry. We provide an evidence by showing that the Sard

Conjecture holds true for trajectories that remains in a single stratum, and by showing the

minimal rank Sard Conjecture for Carnot groups.
In a follow-up paper, we use our description to obtain, under an additional assumption on

the constructed subanalytic singular distribution, a proof of the minimal rank Sard conjecture

in the analytic category.

1. Introduction

1.1. Preliminaries in sub-Riemannian geometry. LetM be a smooth connected manifold
of dimension n ≥ 3 equipped with a distribution ∆ ⊂ TM of rank m < n which is bracket
generating, that is, for every x ∈ M there are an open neighborhood V of x and m linearly
independent smooth vector fields X1

x, . . . , X
m
x such that

∆(y) = Span
{
X1
x(y), . . . , X

m
x (y)

}
, ∀y ∈ V,

and satisfy the Hörmander condition

Lie
{
X1
x, . . . , X

m
x

}
(y) = TyM, ∀y ∈ V.

By Chow-Rashevsky’s theorem, any pair of points of M can be connected by a horizontal path,
that is, by a curve γ : [0, 1] → M which is absolutely continuous with derivative in L2 and
satisfies

γ̇(t) ∈ ∆(γ(t)) for a.e. t ∈ [0, 1].

Consider now the cotangent bundle T ∗M equipped with the canonical symplectic form denoted
by ω. Define the nonzero annihilator of ∆ as the subset of T ∗M given by

(1.1) ∆⊥ :=
{
a = (x, p) ∈ T ∗M | p ̸= 0 and p · v = 0, ∀v ∈ ∆(x)

}
.

By construction, as a smooth vector subbundle with the zero section removed, ∆⊥ is a smooth
submanifold of dimension 2n −m of T ∗M which is invariant by dilations in the fibers. More
precisely, for every λ ∈ R∗ we consider the associated dilation:

(1.2) σλ : T ∗M → T ∗M, given by σλ(x, p) = (x, λp).

Then σλ(∆
⊥) = ∆⊥ for all λ. Moreover, ∆⊥ is equipped with the 2-form given by the restriction

of the canonical symplectic form ω over T ∗M , denoted by

(1.3) ω⊥ := ω|∆⊥ .

Following Hsu’s characterization [20], a singular horizontal path γ : [0, 1] → M is a horizontal
path which admits a lift ψ : [0, 1] → ∆⊥, called an abnormal lift, satisfying

(1.4) ψ̇(t) ∈ ker
(
ω⊥
ψ(t)

)
for a.e. t ∈ [0, 1].
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The corank of a horizontal path is equal to the dimension of the space of abnormal lifts. It can
be proved that the corank must be a number between {1, . . . , n−m}, essentially because ∆⊥ is
invariant by dilation and its fibers with respect to the projection to M have dimension n−m.
We say that γ : [0, 1] → M is a minimal rank singular horizontal path if its corank is equal to
n−m. In particular, if ∆ has corank 1, then every singular horizontal path is a minimal rank
singular horizontal path.

The aforementioned results concerning singular curves are stated and proved in Section
3.2. For a more general introduction to the notions above, we refer the reader to Belläıche’s
monograph [7], or to the books by Montgomery [30], by Agrachev, Barilari and Boscain [1], or
by the third author [33].

1.2. The Sard Conjecture. Our overarching ambition is to address in a systematic way the
Sard Conjecture in sub-Riemannian geometry, which we now recall. For every x ∈ M and
integer r ∈ [m,n − 1], we denote by Sx,r∆ the set of singular horizontal paths (with respect to
∆) starting at x of rank r. Set

Abnr∆(x) :=
{
γ(1) | γ ∈ Sx,r∆

}
⊂M.

By construction, each set Abnr∆(x) coincides with the set of critical values of rank r of the
so-called End-Point mapping (see Section 3.1) which is, roughly speaking, a smooth mapping
defined on a Hilbert space, see e.g. [30, 33]. Although Sard’s Theorem does not hold in infinite
dimension [6], it is currently believed that the following holds:

Sard Conjecture. For every x ∈ M and every integer r ∈ [m,n − 1], the set Abnr∆(x) has
zero Lebesgue measure in M .

The Sard Conjecture is known to be true in very few cases whenever dimM > 3. All results
so far focus on Carnot groups, either of small rank and/or step, see e.g. [2, 13, 24, 30, 32, 34],
or under extra quantitative conditions on the regularity of the controls – therefore, possibly,
restricting one-selves to a subset of Sx,r∆ – [26]. Note that Carnot groups are analytic.

In a joint work with Figalli [8], we have proved the strong version of the Conjecture in the
analytic three dimensional case by following a geometrical approach. Our proof is strongly based
on the understanding of the characteristic foliation, as introduced by Zelenko and Zhimtomirskii
[38] and previously studied by Belotto and Rifford [11]. This foliation is, essentially, a projection
of the distribution ker

(
ω⊥) ⊂ T∆⊥ to TM ; in three dimensions, this turns out to be a line

foliation which can be studied in details via singularity theory.
The first goal of this paper is to extend the notion of “characteristic foliations” to arbitrary

dimensions in the analytic case, thus providing the framework to generalize our methods from
[11, 8].

1.3. Abnormal subanalytic distributions. From now on, we restrict ourselves to the real-
analytic category, that is, when both M and ∆ are real-analytic, which gives us access to
techniques of subanalytic geometry and real-analytic geometry. Our goal is to find a refinement
of the geometrical description of characterization of singular paths given by Hsu, see equation
(1.4), which would be fit for applications to the Sard Conjecture in sub-Riemannian geometry

– see Section 1.2. To this end, we define two special distributions K⃗ and J⃗ over ∆⊥ satisfying
several additional properties, which describe the lifts of singular paths. The first distribution,

K⃗, is called abnormal distribution, while the second, J⃗ , is called the abnormal foliation.
We start by recalling a few preliminary notions related to distributions. We introduce the

notions directly over ∆⊥ ⊂ T ∗M for simplicity, and we postpone a more general discussion to
Section 3.

Subanalytic distribution: A distribution on ∆⊥ is any mapping L⃗ which assigns to a point a in

∆⊥ ⊂ T ∗M a vector subspace L⃗(a) of Ta∆⊥ of dimension dim L⃗(a), also called rank, that may

depend upon a. We say that L⃗ is a subanalytic distribution if its graph in T∆⊥ is subanalytic.
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Whitney stratification S and invariance by dilation: Consider a subanalytic Whitney stratifica-
tion of ∆⊥, that is a partition S = (Sα) of ∆⊥,

∆⊥ =
⋃

Sα∈S
Sα,

into a locally finite union of subanalytic strata satisfying Whitney’s conditions (see details in
Section 3.3.2). We say that S is invariant by dilation if σλ(Sα) = Sα for every α and every
λ ∈ R∗.

Horizontal curves with respect to L⃗: A curve ψ : [0, 1] → ∆⊥ is said to be horizontal with respect

to L⃗ if it is absolutely continuous with derivative in L2 and satisfies

ψ̇(t) ∈ L⃗(ψ(t)) ⊂ Tψ(t)∆
⊥ for a.e. t ∈ [0, 1].

Distributions compatible with a Whitney stratification S: A distribution L⃗ ⊂ T∆⊥ is compatible

with respect to a Whitney stratification S of ∆⊥ if L⃗ has constant rank on every stratum Sα
and L⃗ ∩ TSα yields an analytic subbundle of TSα, for all α. Furthermore, we say that L⃗ is

invariant by dilation if dσλ(L⃗(a)) = L⃗(σλ(a)) for all a and λ; note that the distribution ker(ω⊥)
is invariant by dilation.

For the next three paragraphs, we consider a subanalytic distribution L⃗ ⊂ T∆⊥ compatible
with a subanalytic Whitney stratification S of ∆⊥:

Essential domain: The essential domain of the distribution L⃗ ⊂ T∆⊥ is the union of all strata
from S of maximal dimension. We denote it by S0.

Integrable distributions: The distribution L⃗ ⊂ T∆⊥ is said to be integrable if for every stratum

Sα, the restriction of L⃗ to Sα is closed by the Lie-bracket operation. In particular, integrable
subanalytic distributions give rise to subanalytic foliations.

Isotropic distribution: The distribution L⃗ ⊂ T∆⊥ is said to be isotropic if for every a ∈ ∆⊥, the

vector-space L⃗(a) ⊂ Ta(T
∗M) is an isotropic space in Ta(T

∗M) with respect to the canonical
symplectic form ω.

We can now state our characterization, which is reminiscent of previous works by Sussmann
[36] and del Pino and Shin [3] in sub-Riemannian geometry, and of Bove and Treves [14] in
microlocal analysis:

Theorem 1.1 (Characterization of abnormal lifts). Assume that both M and ∆ are real-
analytic. There exist an open and dense set S0 ⊂ ∆⊥ whose complement is an analytic set, a
subanalytic Whitney stratification S = (Sα) of ∆⊥ invariant by dilation, where S0 is a stratum,
and two subanalytic distributions

K⃗ ⊂ J⃗ ⊂ T∆⊥

compatible with S and invariant by dilation satisfying the following properties:

(i) Specification on strata. For every stratum Sα of S, the distributions K⃗ ⊂ J⃗ ⊂ T∆⊥

at a point a ∈ Sα are given by

K⃗(a) := ker
(
ω⊥
a

)
∩ TaSα, J⃗ (a) := Lie

(
K⃗|Sα

)
(a).

In particular, on each Sα, the distributions K⃗, J⃗ have constant rank, K⃗ is isotropic and

J⃗ is integrable.
(ii) Equality on the essential domain. The set S0 is the essential domain of the two

distributions and K⃗|S0
= J⃗|S0

.

(iii) Abnormal lifts are horizontal paths of K⃗. A curve γ : [0, 1] → M is a singular
horizontal path with respect to ∆ if and only if it admits a lift ψ : [0, 1] → ∆⊥ which is

horizontal with respect to K⃗.
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(iv) Ranks of K⃗. The rank of ker
(
ω⊥
|S0

)
= K⃗|S0

satisfies

dim K⃗|S0
≡ m (mod 2) and dim K⃗|S0

≤ m− 2.

In addition, for every stratum Sα ̸= S0, the rank of ker
(
ω⊥
|Sα

)
is constant and

dim K⃗|Sα
≤ m− 1 and dimker

(
ω⊥
a

)
≥ dim K⃗|Sα

+ 2 ∀a ∈ Sα.

The proof of Theorem 1.1 is given in Section 4 and follows from techniques of subanalytic and
symplectic geometry. Assertion (i) provides two distributions which in general do not coincide
outside of the essential domain, we illustrate this point via an example in Section 2.3. The

property given in (ii) implies that K⃗ is indeed isotropic and integrable on the essential domain,
this fact will play a crucial role in our follow-up paper, concerning the analytic minimal rank
Sard Conjecture [9]. Finally, assertion (iii) is the core of Theorem 1.1, it justifies the construction

of K⃗ whose horizontal paths provide all abnormal lifts of ∆.

Remark 1.2 (The integrable-isotropic closure of K⃗). Given that K⃗ is isotropic, it is natural to

ask whether J⃗ is isotropic as well. This turns out to be false, in general. We may, nevertheless,
refine the stratification S from Theorem 1.1 (the proof is given in §4) in such a way that there

exists a third subanalytic distribution I⃗ ⊂ T∆⊥ compatible with S and invariant by dilation
given by

I⃗(a) := ker
((
ω|Sα

)
a

)
, ∀a ∈ ∆⊥.

Note that I⃗ is both isotropic and integrable (by Proposition 3.3 below). Therefore K⃗ ⊂ J⃗ ⊂ I⃗
and K⃗|S0

= J⃗|S0
= I⃗|S0

. Nevertheless, in general J⃗ ̸= I⃗ over a non-essential strata, as we
illustrate in Section 2.3.

In the C∞ category we do not know how to provide such a complete description yet, but we
provide a version of Theorem 1.1 focusing only in the essential domain in [10].

1.4. A geometrical approach to the Sard Conjecture. Following the geometrical frame-
work described in Theorem 1.1, our attempt to generalize the methods from [11, 8] requires
addressing two key problems:

(I) Analyzing the asymptotic properties of the abnormal distribution K⃗ ⊂ T∆⊥ near the
boundaries of strata, in order to describe the set of points reachable via horizontal paths

of K⃗ from the fiber of a given point in M .
(II) Investigating how the attainable set from (I) projects onto M , particularly in cases

where the dimension of this set is at least n.

These two problems are not addressed separately in the aforementioned papers on Carnot
groups where the Sard Conjecture has been proven see [13, 24, 32]. This is largely due to the
additional algebraic structure of Carnot groups and the low rank/or step hypothesis made by
the authors.

We approach the problem from a slightly different perspective, aiming to decouple the two
key problems. In fact, problem (II) can be adressed more straightforwardly when considering
singular horizontal paths of minimal rank, which corresponds to any singular horizontal path
in the case of co-rank 1 distributions (see Section 2.1). It is therefore natural to first consider
the following weak form of the Sard Conjecture, which requires addressing only (I):

Minimal rank Sard Conjecture. For every x ∈ M , the set Abnm∆(x) has zero Lebesgue
measure in M .

In this paper, we provide a version of Theorem 1.1 valid for minimal rank singular horizontal
paths directly over M , see Theorem 2.1. Moreover, we prove the minimal rank Sard Conjecture
for bracket generating polarized groups in Proposition 2.3, following a refinement of Theorem
1.1 to this setting, given in Theorem 2.2.
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More generally, in our follow-up paper [10], we reduce the minimal rank Sard Conjecture
over an analytic distribution to the study of a topological-metrical property of the abnormal

foliation K⃗ on its essential domain, which we call “splitability”. We note that we do not know of
any example of an analytic foliation which does not satisfy this property. This result demands
the development of several new techniques, which can be seen as the generalization of the heart
arguments from [11, 8].

In this paper, we focus instead in providing evidence that Step (II) can also be addressed in
general, as we now explain:

1.5. Application: Sard over strata. By combining Theorem 1.1 with techniques of geo-
metric control theory, we can prove that the Sard Conjecture holds true when restricted to
horizontal paths whose abnormal lifts are confined to a single stratum of the stratification.

Theorem 1.3 (Sard Property over strata). Assume that both M and ∆ are real-analytic, and
consider the notation introduced in Theorem 1.1. Given a stratum Sα and a point x ∈ π(Sα) ∈
M , denote by (Sα)x := Sα ∩ π−1(x) the fiber of π|Sα

at x. Moreover, for every a ∈ Sα denote

by La ⊂ Sα the leaf of the foliation generated by J⃗|Sα
containing a. Then, for every x ∈ π(Sα),

the set

Abnα(x) :=
⋃

a∈(Sα)x

π (La)

has Lebesgue measure zero in M . More precisely, Abnα(x) is a countable nested union of
subanalytic sets of codimension at least 1.

The proof of Theorem 1.3 is given in Section 5, where we actually prove a refinement of
its statement, see Theorem 5.1. It establishes that the set of abnormal lifts, starting from the
fiber in ∆⊥ above a given point of M , which remain in a given stratum Sα, projects in M
onto a countable union of subanalytic sets of dimension strictly smaller than dimM , therefore
implying that its Lebesgue measure is zero. As a consequence, the study of the Sard Conjecture
needs to consider abnormal lifts having bifurcations points from one stratum to another.

1.6. Application: Sussmann’s regularity Theorem. As a second application of Theorem
1.1, we recover the following result of Sussmann, proved in Section 6:

Theorem 1.4 (Sussmann’s regularity Theorem [36]). Assume that M and ∆ are analytic and
that g is smooth (resp. analytic) (who is g?). Then any minimizing geodesic is smooth (resp.
analytic) on an open dense subset of its interval of definition.

1.7. Paper structure. The paper is organized as follows: Several examples illustrating our
results are presented in Section 2, including a discussion on Carnot groups; Section 3 gathers
several results of importance for the rest of the paper; Sections 4 and 5 are devoted to the
proofs of Theorems 1.1 and 1.3 respectively. The proof of the Sussmann regularity Theorem
(Theorem 1.4) is given in Section 6. Finally, the first appendix completes the proofs of Section
2, Appendix B provides the proofs of all the results given in Section 3 and Appendix C provides
the proof of Theorem 2.1 below.

Acknowledgment: The first author is supported by the project “Plan d’investissements
France 2030”, IDEX UP ANR-18-IDEX-0001, and partially supported by the Agence Nationale
de la Recherche (ANR), project ANR-22-CE40-0014.

2. Examples

We gather in this section several examples. Section 2.2 is concerned with rank 2 distributions,

Section 2.3 provides an example of distribution in R7 whose distributions K⃗, J⃗ , I⃗ given by
Theorem 1.1 and Remark 1.2 do not coincide on non-essential strata, and Section 2.4 deals
with the case of bracket generating polarized groups.
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2.1. Horizontal paths of minimal rank. Note that in the case of distributions of corank
1, ∆⊥ can be seen as a graph (up to multiplication by a scalar) over M and this allows one
to “project” all objects from Theorem 1.1 to M . This observation captures the heuristic of
why we can expect to visualize the singular horizontal paths with minimal ranks directly in M .
Indeed, we have the following result which is valid for arbitrary distributions:

Theorem 2.1 (Horizontal paths of minimal rank). Assume that both M and ∆ are real-
analytic. There exists a subanalytic open dense set R0 ofM , a subanalytic Whitney stratification
R = (Rα) of M such that R0 is a union of strata, and a subanalytic distribution H ⊂ ∆ ⊂ TM
compatible with R satisfying the following properties:

(0) Compatibility with S. The projection of S0 from Theorem 1.1 onto M is a union of
strata of R; in particular, it contains R0.

(i) Specification on strata. For every stratum Rα of R the distribution H ⊂ TM at a
point x ∈M is given by

H(x) =
⋂

a=(x,p)∈∆⊥

π∗(ker(ω
⊥
a )) ∩ TxRα.

(ii) Integrability on the essential domain. The distribution H is integrable when re-
stricted to its essential domain R0.

(iii) Minimal rank singular horizontal paths are horizontal paths of H. A curve
γ : [0, 1] →M is a minimal rank singular horizontal path with respect to ∆ if and only
if it is horizontal with respect to H.

(iv) Ranks of H. For every stratum Rα of R, the distribution H|Rα
has rank ≤ m − 1,

and in addition, for every x ∈ R0, we have dimH(x) ≤ m− 2.

We postpone the proof of this result to Appendix C. The Theorem is particularly useful
when considering explicit examples, where it is often more convenient to work directly over
M . This observation is at the root of our follow-up work [10] concerning the Sard Conjecture
for generic co-rank 1 smooth distributions. In particular, a version of the above Theorem for
smooth co-rank 1 distributions is given in [10, Theorem 2.1].

2.2. Rank 2 distributions. Given an analytic bracket generating distribution ∆ of rank 2 on

a real-analytic connected manifold M of dimension n ≥ 3, Theorem 1.1 gives a distribution K⃗,
adapted to a subanalytic stratification S = (Sα) of ∆⊥, which satisfies in particular properties

(ii)-(iv). This shows that K⃗ has rank 0 on its essential domain S0 and that its rank is 0 or 1

in all strata. Thus, each stratum Sα is equipped with K⃗, a line field or a field of rank 0 (as

S0), and any abnormal lift is made of concatenations of one-dimensional orbits of K⃗|Sα
. This

result is well-known (see [27] and [34, Section 2.2]), it has been used recently for example in
[5] to investigate the regularity properties of minimizing geodesics of rank 2 sub-Riemannian
structures. Any rank 2 distribution ∆ satisfies the Minimal Rank Sard Conjecture. In fact,
Theorem 2.1 provides a subanalytic stratification Rα along with a compatible subanalytic
distribution H whose rank, by (iv), is 0 on the essential R0. Thus, all singular horizontal paths
of minimal rank (w.r.t. ∆) are contained in the union of all strata Rα ̸= R0 which can be
shown to coincide with the analytic set

Σ =
{
x ∈M | [∆,∆](x) ⊂ ∆(x)

}
,

where [∆,∆] is the (possibly singular) distribution given by

[∆,∆](x) :=
{
[X,Y ](x) |X,Y smooth local sections of ∆

}
∀x ∈M.

Note that in the special case when dim(M) = 3, the stratification of Σ by strata Rα ̸= R0 is
the one given in [8, Lemma 2.4] and all singular horizontal paths have minimal rank so that the
Sard Conjecture holds true. The method presented in the present paper does not allow to prove
the Sard Conjecture in higher dimension. For example, in the case dim(M) = 4, abnormal lifts
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of singular horizontal paths of rank 3 are contained in the union Γ of strata Sα ̸= S0. The set
Γ is an analytic set of dimension at most 5 which is invariant by dilation. The Sard Conjecture
can be shown to hold true in the case where Γ is a smooth manifold, following the methods
developed in [11] and [10], see also [4], but remains open in the general case of a singular analytic
set Γ.

2.3. A counterexample to integrability on non-essential strata. The aim of the following

example is to show that in general the distributions K⃗, J⃗ , I⃗ given by Theorem 1.1 and Remark

1.2 do not coincide and K⃗ is not integrable on non-essential strata. Consider in R7 with
coordinates (x1, . . . , x7) the rank 3 distribution ∆ spanned by the vector fields

X1 = ∂1, X2 = ∂2 + x4 ∂3, X3 = ∂4 + x21 ∂5 + x31 ∂6 + x41 ∂7.

We check easily that

X12 := [X1, X2] = 0, X13 := [X1, X3] = −2x1 ∂5 − 3x21 ∂6 − 4x31 ∂7,

X23 := [X2, X3] = ∂3, X131 := [X13, X1] = −2 ∂5 − 6x1 ∂6 − 12x21 ∂7,

X1311 := [X131, X1] = −6 ∂6 − 24x1 ∂7 and X13111 := [X1311, X1] = −24 ∂7,

which shows that ∆ is bracket generating distribution on R7. The Hamiltonians h1, h2, h3

associated with X1, X2, X3 on T ∗R7 with coordinates (x, p = (p1, . . . , p7)) are given by

h1(x, p) = p1, h2(x, p) = p2 + x4p3, h3(x, p) = p4 + x21p5 + x31p6 + x41p7.

Thus, the nonzero annihilator of ∆ is given by

∆⊥ =
{
p1 = p2 + x4p3 = p4 + x21p5 + x31p6 + x41p7 = 0

}
\
{
p = 0

}
and the hamiltonian vector fields generating ∆⃗ = Span{h⃗1, h⃗2, h⃗3} verify

h⃗1 = ∂1, h⃗2 = ∂2 + x4 ∂3 − p3 ∂
p
4 ,

h⃗3 = ∂4 + x21∂5 + x31∂6 + x41∂7 −
(
2x1p5 + 3x21p6 + 4x31p7

)
∂p1 .

Note that the Hamiltonians h12 := p ·X12, h13 := p ·X13, h23 := p ·X23 on T ∗R7 are given by

h12(x, p) = 0, h13(x, p) = −2x1p5 − 3x21p6 − 4x31p7, h23(x, p) = p3

and the set of points (x, p) ∈ T ∗R7 where matrix L2
(x,p) (see Proposition 3.5) has rank zero is

equal to the set

Σ = ∆⊥ ∩
{
p3 = x1

(
2p5 + 3x1p6 + 4x21p7

)
= 0
}
.

The essential domain is therefore given by S0 = ∆⊥ \ Σ, over which the kernel of L2 has

dimension one. It induces a distribution K⃗0 over S0 which is generated by the vector field

Z = h12h⃗3 + h31h⃗2 + h23h⃗1.

In order to fully illustrate Theorem 1.1, we consider a subdivision of Σ in at least three strata
given by

S1 = {x1 = p1 = p2 = p3 = p4 = p5 = 0, p ̸= 0} ,
S2 = {x1 = p1 = p2 = p3 = p4 = 0, p5 ̸= 0} ,
S3 =

{
x1 ̸= 0, p1 = p2 = p3 = 0, p4 = x31p6/2 + x41p7, p5 = −3x1p6/2− 2x21p7, p ̸= 0

}
.

Note indeed that a stratification with only two strata (S1∪S2) and S3 does not satisfy Whitney’s
condition (a) and, therefore, would not illustrate Theorem 1.1. Furthermore, in order to get a

stratification compatible with the symplectic form ω and the distribution I⃗ from Remark 1.2,
it is necessary to consider a refinement of S3 into two strata

S ′
3 = S3 ∩

{
p6 ̸= −8p7x1/3

}
and S4 = S3 ∩

{
p6 = −8p7x1/3

}
.
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We can now compute the restrictions of K⃗, J⃗ , I⃗ to S1,S2,S ′
3,S4 and check that they do not

coincide in general. We have

K⃗|S1
= ∆⃗ ∩ TS1 = Span

{
∂2 + x4 ∂3, ∂4

}
J⃗|S1

= Lie
(
K⃗|S1

)
= Span

{
∂2, ∂3, ∂4

}
I⃗|S1

= ker
(
ω|S1

)
= Span

{
∂2, ∂3, ∂4, ∂5

}
,

K⃗|S2
= ∆⃗ ∩ TS2 = Span

{
∂2 + x4 ∂3, ∂4

}
J⃗|S2

= Lie
(
K⃗|S2

)
= Span

{
∂2, ∂3, ∂4

}
I⃗|S2

= ker
(
ω|S2

)
= Span

{
∂2, ∂3, ∂4

}
,

K⃗|S′
3
= ∆⃗ ∩ TS ′

3 = Span
{
∂2 + x4 ∂3, ∂4 + x21∂5 + x31∂6 + x41∂7

}
J⃗|S′

3
= Lie

(
K⃗|S′

3

)
= Span

{
∂2, ∂3, ∂4 + x21∂5 + x31∂6 + x41∂7

}
I⃗|S′

3
= ker

(
ω|S′

3

)
= Span

{
∂2, ∂3, ∂4 + x21∂5 + x31∂6 + x41∂7

}
and

K⃗|S4
= ∆⃗ ∩ TS4 = Span

{
∂2 + x4 ∂3, ∂4 + x21∂5 + x31∂6 + x41∂7

}
J⃗|S4

= Lie
(
K⃗|S4

)
= Span

{
∂2, ∂3, ∂4 + x21∂5 + x31∂6 + x41∂7

}
dim

(
I⃗|S4

)
= dim

(
ker
(
ω|S4

))
= 4,

which yields

K⃗|S1
⊊ J⃗|S1

⊊ I⃗|S1
, K⃗|S2

⊊ J⃗|S2
= I⃗|S2

, K⃗|S3
⊊ J⃗|S3

= I⃗|S3
, K⃗|S4

⊊ J⃗|S4
⊊ I⃗|S4

.

2.4. Bracket generating polarized groups. We focus in this section on bracket generating
left-invariant distributions on real Lie groups which are important general examples for the
present paper since any real Lie group admits a real-analytic structure (see e.g. [16, Section
1.6] or [37, Section 2.11]). Following [18, 24], we consider a polarized group (G, V ), which
consists of a connected (real) Lie group (G, ⋆) with Lie algebra g = TeG of dimension n ≥ 3
and a linear subspace V ⊂ g of dimension m < n, and we assume that V is bracket-generating
of step s ≥ 2 , which means that the sequence of linear subspaces {V s}s∈N∗ , defined by

V 1 := V and V s+1 := [V, V s] = Span
{
[v, w] | v ∈ V, w ∈ V s

}
∀s ∈ N∗,

satisfies

V 1 + · · ·+ V s−1 ⊊ V 1 + · · ·+ V s = g.(2.1)

We call such a polarized group a bracket-generating polarized group of step s. Then, denoting
by Lg : G → G the left-translation by the element g ∈ G (i.e. Lg(g

′) = g ⋆ g′ for all g′ ∈ G), we
define the left-invariant distribution ∆ on G by

∆(g) := deLg(V ) ∀g ∈ G,
which is bracket generating thanks to (2.1) and we use left-trivialization to identify T ∗G with
G×g∗ and push-forward various objects we can define on T ∗G to G×g∗. We define the function
Φ : T ∗G → G× g∗ by (it does not depend on the set of coordinates (g, p))

Φ(g, p) := (g, p · deLg) ∀(g, p) ∈ T ∗G(2.2)

which is an analytic diffeomorphism sending the nonzero annihilator ∆⊥ ⊂ T ∗G to

Φ(∆⊥) = G× V ⊥

with

V ⊥ :=
{
p ∈ g∗ \ {0} | p · v = 0, ∀v ∈ V

}
⊂ g∗,

and we note that Theorem 1.1 in bracket generating polarized groups can indeed be written as
follows (our convention for the formula of Lie brackets is given at the beginning of Section 3.1):

Theorem 2.2. Let (G, V ) be a bracket generating polarized group of step s ≥ 2, m = dim(V )
and ∆ be the bracket generating left-invariant distribution of rankm generated by V on G. There
exist a subanalytic Whitney stratification S = (Sα) of V

⊥ and two subanalytic distributions

K⃗ ⊂ J⃗ ⊂ T
(
G× V ⊥) ≃ TG× V ⊥

adapted to the subanalytic Whitney stratification G ×S = (G ×Sα) of G × V ⊥ satisfying the
following properties:
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(0) Compatibility with Theorem 1.1: The stratification (Sα) and distributions K⃗ ⊂ J⃗
from Theorem 1.1 may be taken as Sα = G × Sα, K⃗ = K⃗ and J⃗ = J⃗. In particular,
G ×Sα is the essential domain of both distributions and conditions (i), (ii), (iii) and
(iv) from Theorem 1.1 hold true.

(i) Specification on strata of K⃗: For every stratum Sα of S, the distribution K⃗ ⊂
T (G× V ⊥) at a point (g, p) ∈ G×Sα is given by

K⃗(g, p) :=

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V

}
∩ T(g,p) (G×Sα) .

In particular, on each G×Sα, K⃗, J⃗ have constant rank and J⃗ is an integrable distribu-
tion.

Note that Theorem 1.3 is also valid in this context, so the Sard property is verified in each
stratum G×Sα. The proof of Theorem 2.2 is given in Section A.

Let γ : [0, 1] → G be a singular horizontal path (with respect to ∆) with minimal rank.
Then, by Proposition 3.4, for every p ∈ V ⊥, there is a lift p̃ = (γ, p) : [0, 1] → G × V ⊥ such

that p̃(1) = (γ(1), p(1)) and which is horizontal with respect to K⃗, that is, such that we have

(γ̇(t), ṗ(t)) ∈ K⃗(γ(t), p(t)) :=

{(
deLγ(t)(v)
−p(t) · [v, ·]

)
| v ∈ V

}
∩ T(γ(t),p(t)) (G×Sα)

for almost every t ∈ [0, 1]. By considering n −m linearly independent forms p1, . . . , pn−m in
V ⊥ and the corresponding lifts p̃1 = (γ, p1), . . . , p̃n−m = (γ, pn−m) : [0, 1] → G× V ⊥, we infer
that, for almost every t ∈ [0, 1], all p̃1, . . . , p̃n−m admit a derivative at t and the vector v(t) ∈ V
such that γ̇(t) = deLγ(t)(v(t)) satisfies

pj(t) · [v(t), w] = 0 ∀w ∈ V, ∀j = 1, . . . , n−m,

where p1(t), . . . , pn−m(t) are linearly independent. Therefore, for almost every t ∈ [0, 1], by
considering all possible linear combinations of p1(t), . . . , pn−m(t), we have

v(t) ∈ V :=
{
v ∈ V | p ([v, w]) = 0, ∀w ∈ V, ∀p ∈ V ⊥} ,

where V indeed coincides with the set of v ∈ V such that [v, w] ∈ V for all w ∈ V . We
check easily that V is linear and, thanks to the Jacobi identity, that it is a proper subalgebra
of g. Thus, by considering the exponential map expG : g → G, the set Abnm∆(e) coincides
with expG(V) which is a proper subgroup of G and for every g ∈ G the set Abnm∆(g) is the
left-translation by g of that set. In consequence, we have:

Proposition 2.3. Let (G, V ) be a polarized group with V nilpotent bracket-generating of step
s ≥ 2. Then the minimal rank Sard conjecture holds true.

Let us now consider the case of nilpotent bracket generating polarized groups of step 2, that
is such that V satisfies

V 1 ⊊ V 1 + V 2 = g and V 3 = {0}.(2.3)

Then, for every (x, p) ∈ G× g∗, we have

K⃗(a) =

{(
deLx(v)

0

)
| v ∈ V

}
∩ Ta (G×Sα) ,(2.4)

because if for some v ∈ V , the linear form qv := p · [v, ·] belongs to V ⊥, then we have qv(w) = 0
for all w ∈ V = V 1 and we also have, by (2.3), for every w ∈ V 2, qv(w) = p([v, w]) = 0 because
[v, w] ∈ V 3 = {0}. Then, (2.4) shows that all abnormal lifts are constant in p, so they remain
inside the same leaf (of the same stratum Sα). Therefore, we can apply Theorem 1.3 to obtain:

Proposition 2.4. Let (G, V ) be a polarized group with V nilpotent bracket-generating of step
2. Then the Sard conjecture holds true.
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This result corresponds to a weak version of [24, Theorem 1.2 (1)] which is stated in the
case of Carnot groups. The result follows directly from Theorem 1.3 because all abnormal lifts
are confined in a given stratum of the stratification of G × V ⊥, but this is not the case in
general. A study of the bifurcation points allowing abnormal lifts moving from one stratum to
another can certainly lead to other results. This strategy, which is at the core of the works on
the strong Sard conjecture [11, 8], has been used successfully by Boarotto and Vittone [13] in
Carnot groups. They showed that the Sard conjecture holds true for Carnot groups of rank 2
and step 4 and Carnot groups of rank 3 and step 3.

Another Sard type result has been obtained by Le Donne, Leonardi, Monti and Vittone
[22, 23] (see also [24]). In the setting of Carnot groups, they have shown, by integrating
the abnormal equation, that singular horizontal paths are indeed contained in a collection of
algebraic varieties. Recently, moreover, Lerario, Rizzi and Tiberio have proved a quantitative
version of the classical Sard theorem for polynomial mappings from a Hilbert space, and have
applied their result to obtain quantitative version of the Sard Conjecture for Carnot groups
[26].

These results and Theorem 2.2 are certainly very good tools to understand the nature of
singular horizontal paths in polarized groups, but we do not know yet how they could be
combined to settle the Sard Conjecture in Carnot groups.

3. Preliminary results

We gather in this section preliminary results in differential geometry (Section 3.1), geometric
control theory (Section 3.2), subanalytic geometry (Section 3.3) and on integrable families of
1-forms (Section 3.4). All proofs are postponed to Appendix B.

3.1. Reminders of differential geometry. Throughout this section, M is a smooth con-
nected manifold of dimension n ≥ 1. We refer the reader to [15, 25, 29] for further details on
the notions and results presented below and we point out that we follow the sign conventions
used in [29].

3.1.1. Lie brackets. Given a smooth vector field X on M we write X · f or X(f) for the Lie
derivative of a smooth function f :M → R with respect to X. Then, given two smooth vector
fields X,Y on M we define their Lie bracket as the vector field uniquely associated with the
derivation Y ◦X −X ◦ Y , which means that, if in a local set of coordinates (x1, . . . , xn) in M ,
the vectors fields X,Y are given by

X =

n∑
i=1

ai ∂xi , Y =

n∑
i=1

bi ∂xi ,

where a1, . . . , an, b1, . . . bn are smooth scalar functions, then the Lie bracket [X,Y ] is the smooth
vector field defined as

[X,Y ] =

n∑
i=1

ci ∂xi
,

where c1, . . . , cn are the smooth scalar functions given by

ci =

n∑
j=1

(
∂xj

ai
)
bj −

(
∂xj

bi
)
aj ∀i = 1, . . . , n.

3.1.2. Symplectic structure of the cotangent bundle. We equip the cotangent bundle T ∗M ofM
with the canonical symplectic form ω defined as ω = −dλ where λ is the canonical Liouville
form. This means that if we have a local chart (x, p) of T ∗M valued in Rn × (Rn)∗ with
coordinates (x1, . . . , xn, p1, . . . , pn), then λ, ω read

λ =

n∑
i=1

pi dxi and ω =

n∑
i=1

dxi ∧ dpi,
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where the latter amounts to say that we have in local coordinates at a ∈ T ∗M ,

ωa(ζ, ζ
′) =

n∑
i=1

(
ξjη

′
j − ξ′jηj

)
∀ζ = (ξ, η), ζ ′ = (ξ′, η′) ∈ Ta (T

∗M) .

In the paper, we generally denote by a an element of T ∗M and we may write a = (x, p) and
ζ = (ξ, η) any element respectively of T ∗M and Ta(T

∗M) in local coordinates.

3.1.3. Hamiltonian vector fields and Poisson brackets. Given a smooth function, called Hamil-
tonian, h : T ∗M → R the Hamiltonian vector field associated with it with respect to ω is the

unique smooth vector field h⃗ on T ∗M satisfying

ıh⃗ω = dh,

which in a set of local coordinates (x, p) in T ∗M where ω =
∑n
i=1 dxi ∧ dpi reads

h⃗(x, p) =

(
∂h

∂p
(x, p),−∂h

∂x
(x, p)

)
.

By construction, h⃗ · h = dh(⃗h) = ω(⃗h, h⃗) = 0, so h is a first integral of h⃗ or in other words h is

constant along the orbits of h⃗. Given two smooth Hamiltonians h, h′ : T ∗M → R, their Poisson
bracket is the smooth Hamiltonian {h, h′} defined by

{h, h′} := ω
(
h⃗, h⃗′

)
,

it satisfies by construction

h⃗′ · h = dh
(
h⃗′
)
= ω

(
h⃗, h⃗′

)
= {h, h′} .(3.1)

If X is a given smooth vector field on M , then the smooth Hamiltonian hX : T ∗M → R
associated with X on T ∗M is defined by

hX(x, p) := p ·X(x)

in a set of local coordinates (x, p) in T ∗M and the associated Hamiltonian vector field is given
by

h⃗X(x, p) =

(
∂hX

∂p
(x, p),−∂h

X

∂x
(x, p)

)
=
(
X(x),−p · dxX

)
.

Thus, if X and Y smooth vector field on M , then we have

h[X,Y ] = h⃗Y · hX ,

which by (3.1) allows to relate the Poisson and Lie brackets as follows:

Proposition 3.1. If X and Y are two smooth vector field on M , then we have{
hX , hY

}
= h[X,Y ].

3.1.4. Isotropic spaces and submanifolds. For every a ∈ T ∗M and every vector space W ⊂
Ta(T

∗M), we denote by Wω the symplectic complement of W ,

Wω :=
{
ζ ∈ Ta(T

∗M) |ωa(ζ, ζ
′) = 0, ∀ζ ′ ∈W

}
,

and we call W isotropic if W ⊂ Wω. If S is a smooth submanifold of T ∗M , we denote by ω|S
the 2-form given by the restriction of ω to S, its kernel at a ∈ S given by

ker
(
ω|S
)
a
=
{
ζ ∈ TaS |ωa(ζ, ζ

′) = 0, ∀ζ ′ ∈ TaS
}
= (TaS)ω ∩ TaS,

is an isotropic space.
Even though the following result is not used in the present paper, it is important in our proof

of [10, Theorem 1.1]. Its proof is given in Appendix B.1:
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Proposition 3.2. Let S be a smooth submanifold of T ∗M of dimension s, a ∈ S, E ⊂ TaS a
vector space such that

TaS = E ⊕ ker
(
ω|S
)
a
,(3.2)

and let r := dimker(ω|S)a, then the following properties hold:

(i) r ≤ min{2n− s, s} and s− r = 2l for some integer l.
(ii) The form (ωl|S)a is a volume form over E, which means that there is a basis {ζ1, ζ ′1, . . . , ζl, ζ ′l}

of E such that ωla(ζ1, ζ
′
1, . . . , ζl, ζ

′
l) ̸= 0.

(iii) (ωl+1
|S )a = 0.

Finally, we say that a smooth submanifold S of T ∗M is isotropic if all its tangent spaces are
isotropic.

3.1.5. Foliations. Let N be a smooth manifold of dimension n ≥ 1, a smooth foliation F on N
of dimension d ≥ 1 is a smooth atlas {(Uβ , φβ)}β satisfying the following properties:

(i) For every β, there are open disks V dβ ⊂ Rd and V n−dβ ⊂ Rn−d such that the map

φβ : Uβ → V dβ × V n−dβ is a smooth diffeomorphism.

(ii) For every β, β′ with Uβ ∩ Uβ′ ̸= ∅, the change of coordinates

φβ′ ◦ φ−1
β : φβ(Uβ ∩ Uβ′) −→ φβ′(Uβ ∩ Uβ′)

preserves the leaves, which means that it has the form(
φβ′ ◦ φ−1

β

)
(x, y) =

(
h1(x, y), h2(y)

)
∀(x, y) ∈ φβ(Uβ ∩ Uβ′),

for some smooth functions h1, h2.

A chart (Uβ , φβ) is called a foliation chart and any set of the form φ−1
β (V dβ ×{y}) with y ∈ V n−dβ

is called a plaque of the foliation. Then, we can define an equivalence relation on N by saying
that two points z, z′ are equivalent if they can be connected by a path of plaques P1, . . . , Pk such
that Pj ∩ Pj+1 ̸= ∅ for all j ∈ {1, . . . , k − 1}. Therefore, N can be partitioned into equivalent
classes, called leaves, each of which having the structure of an injectively immersed smooth
submanifold of N of dimension d. Smooth foliations are indeed in one-to-one correspondence
with involutive smooth distributions. Recall that a smooth regular distribution D on N , that is,
a distribution of constant rank parametrized locally by smooth vector fields, is called involutive if
given two smooth vector fields X,Y such that X(z), Y (z) ∈ D(z) for all z ∈ N , then [X,Y ](z) ∈
D(z) for all z ∈ N . On the one hand, the field of vector spaces corresponding to the tangent
spaces to the leaves of a smooth foliation F forms an involutive distribution, and on the other
hand, the Frobenius Theorem asserts that any involutive smooth distribution is integrable,
which means that it can be viewed as the tangent plane field of a smooth foliation. If a foliation
chart (Uβ , φβ) as above is given then the local distribution associated with the foliation is given

by the pull-back of the horizontal constant distribution Rd × {0} in V dβ × V n−dβ .
As the next result shows, the kernel of the restriction of a symplectic form to a submanifold

gives rise to isotropic foliations.

Proposition 3.3. Let S be a smooth submanifold of T ∗M such that the dimension of ker(ω|S) ⊂
TS is constant. Then the smooth distribution

I⃗(a) := ker
(
ω|S
)
a

∀a ∈ S,

is integrable with isotropic leaves.

The proof of Proposition 3.3 is postponed to Appendix B.2.
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3.2. Singular horizontal paths and abnormal lifts. Throughout this section, M is a
smooth connected manifold of dimension n ≥ 3 equipped with a bracket generating distri-
bution ∆ of constant rank m ≤ n. Let us consider a family of smooth vector fields X1, . . . , Xk

with m ≤ k ≤ m(n+ 1) (see [33, 35]) providing a global parametrization of ∆ over M , that is,
satisfying

∆(x) = Span
{
X1(x), . . . , Xk(x)

}
∀x ∈M.

Then, define the distribution ∆⃗ on T ∗M by

∆⃗(a) :=
{
h⃗1(a), . . . , h⃗k(a)

}
∀ a ∈ T ∗M,

where for every i = 1, . . . , k, hi stands for the Hamiltonian hX
i

: T ∗M → R associated with

Xi. By construction, ∆⃗ is a smooth distribution of rank m which projects onto ∆, that is,

such that π∗(∆⃗) = ∆ where π : T ∗M →M is the canonical projection. In order to give several
characterizations of the notion of singular horizontal path, it is useful to identify the horizontal
paths with the trajectories of a control system and to define the so-called end-point mapping.
It is important to note that all results presented below are classical, we refer the reader to
[1, 30, 33] for further details.

3.2.1. The End-Point mapping. For every x ∈ M , there is a non-empty maximal open set
Ux ⊂ L2([0, 1],Rk) such that for every control u = (u1, · · · , uk) ∈ Ux, the solution x(·;x, u) :
[0, 1] →M to the Cauchy problem

ẋ(t) =

k∑
i=1

ui(t)X
i(x(t)) for a.e. t ∈ [0, 1] and x(0) = x(3.3)

is well-defined. By construction, for every x ∈ M and every control u ∈ Ux the trajectory
x(·;x, u) is an horizontal path in Ωx∆, the set of horizontal paths γ : [0, 1] →M inW 1,2([0, 1],M)
with γ(0) = x. Moreover, the converse is true, any γ ∈ Ωx∆ can be written as the solution of
(3.3) for some u ∈ Ux. Of course, since in general the vector fields X1, . . . , Xk are not linearly
independent globally on M , the control u such that γ = x(·;x, u) is not necessarily unique. For
every point x ∈ M , the End-Point Mapping from x (associated with X1, . . . , Xk in time 1) is
defined as

Ex : Ux −→ M
u 7−→ x(1;x, u).

It shares the same regularity as the vector fields X1, . . . , Xk, it is of class C∞. Given x ∈ M
and u ∈ Ux ⊂ L2([0, 1],Rk), we define the rank of u with respect to Ex by

rank(u) := dim (Im (duE
x)) ,

where Im (duE
x) denotes the image of the differential of Ex at u

duE
x : L2

(
[0, 1],Rk

)
−→ TEx(u)M.

It can be shown that for every u ∈ Ux, one has (see [33, Proposition 1.10 p. 19])

∆ (Ex(u)) ⊂ Im (duE
x) ,(3.4)

in such a way that rank(u) ≥ m for all u ∈ Ux. Then, we define the rank of a horizontal path

γ ∈ Ωx∆, denoted by rank∆(γ), as the rank of any control u ∈ Ux such that γ = x(·;x, u), and
the corank of γ (with respect to ∆) by corank∆(γ) := n− rank∆(γ). As we shall see with two
characterizations given in Proposition 3.4, the rank defined in this way does not depend neither
on the control u satisfying γ = x(·;x, u) nor on the family X1, . . . , Xk used to parametrize ∆.
A horizontal path γ : [0, 1] → M is said to be singular if its rank is strictly less than n and it

is said to be of minimal rank if rank∆(γ) = m.
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3.2.2. Characterizations of singular horizontal paths. Recall that ∆⊥ denotes the smooth sub-
manifold of T ∗M of codimension m given by the set of non-zero annihilators of ∆ in T ∗M . The
following result provides several characterizations of singular curves such as Hsu’s characteri-
zation used in the introduction of the paper, its proof is recalled in Appendix B.3:

Proposition 3.4. Let γ : [0, 1] → M be an absolutely continuous curve which is horizontal
with respect to ∆, let u ∈ Ux, with x := γ(0), be such that γ = x(·;x, u), and let p ∈ T ∗

yM \{0},
with y := γ(1), be fixed. Then the following properties are equivalent:

(i) p ∈ (Im (duE
x))

⊥
.

(ii) There is an absolutely continuous curve ψ : [0, 1] → ∆⊥ which is horizontal with respect

to ∆⃗ such that π(ψ) = γ and ψ(1) = (y, p).
(iii) There is an abnormal lift ψ : [0, 1] → ∆⊥ of γ with ψ(1) = (y, p), that is, an absolutely

continuous curve ψ : [0, 1] → ∆⊥ with ψ(1) = (y, p) such that π(ψ) = γ and ψ̇(t) ∈
ker(ω⊥

ψ(t)) for almost every t ∈ [0, 1].

In particular, rank∆(γ) ∈ [m,n] and γ is singular (rank∆(γ) < n) if and only if it admits
an abnormal lift. Moreover, any absolutely continuous curve ψ : [0, 1] → ∆⊥ satisfying the

property of (iii) is an abnormal lift and if γ has minimal rank (rank∆(γ) = m) then for each
p ∈ (∆⊥)x := ∆⊥∩π−1(x) there is an abnormal lift ψ : [0, 1] → ∆⊥ of γ such that ψ(1) = (y, p).

The part of Proposition 3.4 establishing that abnormal lifts of a given horizontal path do

coincide with lifts which are tangent to ∆⃗ in ∆⊥ is a consequence of the following equality

ker
(
ω⊥
a

)
=
(
Ta∆

⊥)ω ∩ Ta∆
⊥ = ∆⃗(a) ∩ Ta∆

⊥ ∀a ∈ ∆⊥.(3.5)

This approach allows also to relate the kernel of ω⊥ to the kernel of some linear operator defined
from Poisson brackets of length two. Assume now that, in an open neighborhood V of some

x ∈ M , ∆ is generated by m smooth vector fields X1, . . . , Xm. Then, set hi := hX
i

for all
i = 1, . . . ,m and define the Hamiltonians hij with i, j ∈ {1, . . . ,m} by

hij :=
{
hi, hj

}
,

which by (3.1) and Proposition 3.1 satisfy

hij = h⃗j · hi = h[X
i,Xj ].(3.6)

We have the following result whose proof is given in Appendix B.4:

Proposition 3.5. For every a ∈ T ∗V ∩∆⊥, define L2
a : ∆⃗(a) → Rm by(

L2
a(ζ)

)
i
:=

m∑
j=1

uj h
ij(a) ∀ζ =

m∑
i=1

uih⃗
i(a) ∈ ∆⃗(a), ∀i = 1, . . . ,m.

Then, for every a ∈ T ∗V ∩∆⊥, we have ker(L2
a) = ker(ω⊥

a ).

Finally, Propositions 3.4 and 3.5 allow us to show that singular horizontal paths with minimal
rank are constrained to be tangent to a (singular) distribution onM . Recalling that π : T ∗M →
M stands for the canonical projection and that ∆⊥

x := T ∗
xM ∩∆⊥ denotes the fiber in ∆⊥ over

some x ∈M , we have:

Proposition 3.6. Let γ : [0, 1] → M be a singular horizontal path with respect to ∆. Then γ
has minimal rank if and only if

γ̇(t) ∈
⋂

a∈∆⊥
γ(t)

π∗
(
ker
(
ω⊥
a

))
for a.e. t ∈ [0, 1].(3.7)

The proof of the above result is given in Appendix B.5.
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Remark 3.7. In this section we have restricted our attention to horizontal paths defined on
[0, 1] but this definition can be extended to paths defined on any interval (with positive length).
A curve γ : [a, b] →M , with a < b, which is absolutely continuous with derivative in L2, is said
to be horizontal if it has a parametrization on [0, 1] which is an horizontal path. Then, we can
define its rank as the rank of this parametrization. We can show that both definitions do not
depend of the parametrization, see e.g. [33].

3.3. Reminders of subanalytic geometry. We recall the main notions of subanalytic ge-
ometry used in this paper. We refer the reader to [12, 19, 28] for further details. Throughout
this section, N stands for a real-analytic connected manifold of dimension n. Later on, N will
stand for one of the following three manifolds: M , T ∗M or ∆⊥.

3.3.1. Subanalytic sets. Let d be a nonnegative integer. An analytic submanifold S of dimension
d of N is an embedded submanifold such that for every point p ∈ S there are a neighborhood
U ⊂ N and n−d analytic functions f1, . . . , fn−d : U → R with the property that df1, . . . , dfn−d
are linearly independent over U and S ∩ U is the set of points where all the fi vanish. A set
X ⊂ N is said to be analytic if for every x ∈ N there is an open neighborhood U of x in N ,
and a real-analytic function f : U → R such that X ∩ U = {f = 0}. Note that every closed
analytic submanifold is an analytic set locally given by {f21 + . . .+ f2n−d = 0}. Similarly, a set
X ⊂ N is said to be semianalytic if for every x ∈ N , there is an open neighborhood U of x in
N and a finite number of real-analytic functions fi : U → R and gij : U → R with j = 1, . . . , bi
and i = 1, . . . , a such that

X ∩ U =

a⋃
i=1

{y ∈ U ; fi(y) = 0; gi1(y) > 0, . . . , gibi(y) > 0} .

It is worth noting that an analytic submanifold S is not necessarily a semianalytic set, unless S
is closed. By definition, the class of semianalytic sets is closed by the operations of locally finite
unions, locally finite intersections, and taking the complement. Moreover, it can be shown that
it is also stable by closure (the closure of a semianalytic set is semianalytic) and connected com-
ponent (each connected component of a semianalytic set is semianalytic). However the image
of a semianalytic set by an analytic map, even a proper one, is not necessarily semianalytic.

A set X ⊂ N is called subanalytic if for every x ∈ N , there is an open neighborhood U of x
in N and a relatively compact semianalytic set Y ⊂ N × Rk (where k may depend on x) such
that X∩U is the image of Y by the canonical projection N×Rk → N . The class of subanalytic
sets is closed by the operations of locally finite unions, locally finite intersections and taking
the complement (by a theorem of Gabrielov), and stable by closure and connected component.
Moreover, the image of a relatively compact subanalytic set by an analytic map is subanalytic.

3.3.2. Whitney’s stratification and uniformization. We recall here two important techniques of
subanalytic geometry which are used in the paper: Whitney subanalytic stratification and the
uniformization Theorem. We refer the reader to [17, 12] for a complete introduction on these
two techniques.

Let N be a smooth manifold and Z be a closed subset of N . We call Whitney stratification
of Z any partition S = (Sα) of Z into locally closed smooth submanifolds Sα, called strata of
S, that is,

Z =
⊔

Sα∈S
Sα,

such that the following properties are satisfied:

(1) The family S is locally finite.
(2) If S ∈ S then the closure S̄ of S is the union of those strata that intersect S̄.
(3) If S, T are strata with T ̸= S and T ⊂ S̄, then dim(T ) < dim(S).

(4) Let S, T be two strata with T ̸= S and T ⊂ S̄, let {xk}k ∈ S and {yk}k ∈ T be
sequences of points converging to a point y ∈ T :
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(Whitney condition a) If the tangent spaces Txk
S converge to a vector subspace

τ ⊂ TyN , then TyT ⊂ τ .
(Whitney condition b) If, moreover, the secant lines ℓk = (xkyk), with respect to
some local coordinate system on N , converge to a line ℓ ⊂ TyN , then ℓ ⊂ τ .

A stratification S is said to be compatible with a family A of subsets of N if every A ∈ A is a
union of strata of S. A stratification S ′ is a refinement of S if it is compatible with all strata of
S. A Whitney analytic stratification, or simply analytic stratification, is a stratification whose
strata are connected real-analytic submanifolds. A Whitney subanalytic stratification of N is
an analytic stratification S such that all the strata of S are subanalytic. We start by noting
that all subanalytic sets admit a subanalytic Whitney stratification:

Theorem 3.8 (Whitney subanalytic stratification). Let N be a real-analytic manifold and A
be a locally finite collection of subanalytic sets of N . Then there exists a Whitney subanalytic
stratification of N compatible with A.

Now, given a subanalytic set X ⊂ N and a subanalytic stratification S = (Sα) of X, the
dimension of X is defined as the highest dimension of strata S ∈ S. Now that we have defined
the notion of dimension, we can present the uniformization Theorem:

Theorem 3.9 (Uniformization). Let N be an analytic manifold and X be a closed subanalytic
subset of N . Then there exists an analytic manifold W of the same dimension as X and a
proper analytic map Φ :W → N such that Φ(W ) = X.

3.3.3. Subanalytic distributions and foliations. A distribution ∆ of N is said to be subanalytic
if its graph in TN is a subanalytic set. As stated in the introduction, the dimension of the
vector space ∆(x) = ∆ ∩ TxN is called the rank of ∆ at x.

Given a subanalytic stratification S = (Sα)α of N , we say that ∆ is compatible with S, or
that S is compatible with ∆, if for every stratum Sα, the rank of ∆ is constant along Sα and
∆ ∩ TSα is an analytic vector-bundle over Sα. The following result, whose proof is postponed
to Appendix §B.6, shows that for every subanalytic distribution ∆, there exists a subanalytic
stratification S which is compatible with ∆.

Proposition 3.10. Let ∆ ⊂ TN be a closed subanalytic distribution. There exists a subanalytic
Whitney stratification S = (Sα) of N such that:

(i) the rank of ∆ is constant along Sα;
(ii) ∆ ∩ TSα is an analytic vector-bundle over Sα for each α.

Furthermore, if S ′ is a subanalytic stratification of N , then S can be chosen as a refinement of
S ′.

Suppose that ∆ is compatible with a Whitney stratification S. We say that ∆ is integrable at
x ∈ N if the Lie-bracket closure of ∆∩TSα at x, where x ∈ Sα, is equal to ∆∩TSα. Then, we
say that ∆ is integrable if it is integrable at every point. Now, recall that a smooth integrable
distribution ∆ of constant rank generates a smooth foliation F , see §§3.1. If ∆ is integrable
and subanalytic, then we say that the induced foliation F = (Fα) is a subanalytic foliation.

3.4. Integrable families of 1-forms. We recall here the main notions of analytic geometry,
in particular of Pfaffian systems, used in this work. We start with the case of families of 1-forms
on an open and connected set U ⊂ Rn. Let Ω = {ω1, . . . , ωt} be a family of analytic 1-forms
on U , that is, such that each ωk (k = 1, . . . , t) has the form

ωk = ak,1(x)dx1 + · · ·+ ak,n(x)dxn ∀k = 1, . . . , t,

for some analytic functions ak,1, . . . , ak,n on U . Consider the analytic distribution KΩ given by

KΩ(x) :=

t⋂
k=1

ker ((ωk)x) ∀x ∈ U
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and denote by r its generic corank and by Σ ⊂ U the analytic set, called singular set of Ω, of
points where the corank of KΩ is strictly smaller than r. Then, we say that Ω is integrable if
there holds

dωk ∈ Ω ∧ Ω1
U k = 1, . . . , t,

where Ω1
U stands for the module of analytic 1-forms defined on U . It follows from Frobenius

Theorem, see e.g. [31, Th.2.9.11], that if Ω is integrable, then KΩ is integrable distribution
over U \ Σ and generates an analytic foliation F|U\Σ (as we will see in Remark 3.11 below, Ω
actually generates a subanalytic foliation). Then, we consider the dual of Ω, that is, the set of
analytic vector fields X on U satisfying

ıXωk ≡ 0 ∀k = 1, . . . , t.

By construction, this collection of vector fields Ω∗ generates a module of analytic vector fields
and moreover, outside of Σ, the analytic distribution generated by Ω∗ is equal to KΩ (although
this might not be true over Σ).

The above definitions can be made global over an analytic manifold N via sheaves. Denoting
by ON the sheaf of analytic functions over N and by Ω1

N the sheaf of analytic 1-forms over N ,
we can consider sub-sheaves Ω ⊂ Ω1

N of finite type, that is, locally generated by a finite family
of analytic 1-forms as above, and extend all above notions to this setting.

Given an analytic map f : Z → N , where Z is an analytic manifold, the differential of f
induces a natural map between forms

f∗ : Ω1
N −→ Ω1

Z

α 7−→ f∗α,

where f∗αx(X) = αf(x)(df ·X) for all point x ∈ Z and all vector field germ X ∈ DerZ,x. The

pull-back f∗Ω of Ω is the sub-sheaf of Ω1
Z generated by the image of f∗(Ω).

Remark 3.11. Of particular importance is the case that Z is a submanifold of N and f is the
embedding. If Ω is integrable, then so is f∗(Ω) since

df∗(ω) = f∗(dω) ∈ f∗
(
Ω ∧ Ω1

N

)
⊂ f∗(Ω) ∧ Ω1

Z .

The generic corank of f∗(Ω) is always smaller than or equal to the generic corank of Ω. There-
fore, given an integrable sheaf of 1-forms Ω and a Whitney stratification S compatible with the
distribution K|Ω, then K|Ω yields a subanalytic foliation (Fα).

Example 3.12. Let M = U ⊂ Rn be an open ball and ∆ be an analytic bracket generating

distribution of constant rank m. Apart from shrinking U , we may suppose that ∆⃗ ⊂ T (T ∗M) is

locally generated by analytic Hamiltonian vector fields {h⃗1, . . . , h⃗m}, cf. §§3.2. We may assume

that there exists coordinate system (a1, . . . , a2n) of T ∗M such that h⃗k(ak) = 1 and h⃗k(aj) = 0,
for all j, k = 1, . . . ,m. Let

ωl =

m∑
k=1

h⃗k(al)dak − dal, l = m+ 1, . . . , n,

and consider the sheaf of 1-forms Ω∆⃗ generated by these forms. It follows from a direct com-

putation that KΩ∆⃗
= ∆⃗. Moreover, if we denote by i : ∆⊥ → T ∗M the inclusion, then i∗Ω∆⃗

gives rise to a family of Pfaffian equations over ∆⊥, whose associated distribution is equal to
ker(ω⊥) by equation (3.5).

4. Proof of Theorem 1.1

In this section we also prove the assertion of Remark 1.2.
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4.1. Proof of (i). Since M and ∆ are real-analytic, ∆⊥ (given by (1.1)) is an analytic sub-
manifold of T ∗M of dimension 2n −m. As in the introduction, we denote by ω the canonical
symplectic form over T ∗M and by ω⊥ its restriction to ∆⊥. We recall that, since T ∗M is
a vector bundle, the dilation in the fibers σλ : T ∗M → T ∗M given by σλ(x, p) = (x, λp) for
λ ∈ R∗ are well-defined everywhere in T ∗M , which gives rise to a natural structure of projective
bundle. More generally, let G denote a group of analytic automorphisms of ∆⊥ such that:

(G1) G contains the dilations σλ for λ ∈ R∗.
(G2) G fixes ker(ω⊥), that is, daσ (ker(ω

⊥
a )) = ker(ω⊥

σ(a)), ∀σ ∈ G, ∀a ∈ ∆⊥.

(G3) The quotient space ∆⊥
G is an analytic manifold and the geometric quotient map Π :

∆⊥ → ∆⊥
G is an analytic (and, therefore, subanalytic) submersion.

In general, G will stand for the group of dilations (in this case, the above conditions are
immediate), but it might stand for a more general group, such as in the case of Carnot groups,
cf. §§2.4. The map Π is not proper but it induces a proper map after dividing by the dilation
group first, i.e. from the projectivisation of ∆⊥. We say that a set X ⊂ ∆⊥ is G-invariant if
σ(X) = X for every σ ∈ G. In this case, we denote by XG its image by the quotient map, that is
XG = Π(X) ⊂ ∆⊥

G. Note that if X is a subanalytic G-invariant set, then XG is a subanalytic set
(since the projectivization of X is subanalytic and the image of a subanalytic set by a proper
analytic map is subanalytic). Reciprocally, if Y ⊂ ∆⊥

G is subanalytic, then Π−1(Y ) ⊂ ∆⊥

is subanalytic and G-invariant. A stratification S is G-invariant if all of its strata are G-

invariant. We say that a distribution K⃗ of ∆⊥ is G-invariant if daσ (K⃗(a)) = K⃗(σ(a)) for every

a ∈ ∆⊥ and σ ∈ G; in this case we denote by K⃗G the associated distribution in ∆⊥
G, that is,

K⃗G(Π(a)) = daΠ(K⃗(a)) which is well-defined since Π ◦ σ(a) = Π(a), so that dσ(a)Πdaσ = daΠ.

Moreover, if K⃗ is subanalytic, then so it K⃗G. Both ∆⊥ and ker(ω⊥) are G-invariant.
Now, we claim that ker(ω⊥) is a closed subanalytic subset of T∆⊥. Indeed, this property is

local, so we may suppose that ∆ is generated by analytic vector fields X1, . . . , Xm. This implies

that ∆⃗ is an analytic distribution, so its intersection with T∆⊥ is an analytic subset T∆⊥, and
we conclude by equation (3.5). Next, since ∆⊥ is connected and ω is analytic, there exists l ∈ N
such that (ω⊥)l+1 ≡ 0 over ∆⊥ and (ω⊥)l is non-zero over an open dense set S0 of ∆⊥ whose
complement is an analytic set; in particular, the rank of ker(ω⊥) is constant along S0. Note

that S0 is G-invariant. Finally, the existence of the stratification S and the distributions K⃗, J⃗
and I⃗ follows from the Lemma below applied to X = ∆⊥ \ S0:

Lemma 4.1. Let M and ∆ be real-analytic, and let X ⊂ ∆⊥ be a G-invariant subanalytic set.
There exists a G-invariant subanalytic Whitney stratification S = (Sα) of X which satisfies the

following property: fix a stratum Sα ⊂ X and consider the distributions K⃗ ⊂ J⃗ ⊂ I⃗ ⊂ TSα at
a point a ∈ Sα given by:

K⃗(a) := ker(ω⊥)(a) ∩ TaSα, J⃗ (a) := Lie(K⃗|Sα
(a)), I⃗(a) := Ker(ωa|Sα

)

(in particular, K⃗ is an isotropic distribution; J⃗ is an integrable distribution and I⃗ is an isotropic

integrable distribution), then the distributions ker(ω⊥), K⃗, J⃗ , I⃗ ⊂ T∆⊥ are subanalytic, G-
invariant and of constant rank along Sα.

Proof of Lemma 4.1. We prove the result by induction on the dimension of the set X, we note
that the 0-dimensional case is obvious. Fix a G-invariant subanalytic set X of dimensions d.
Recall that the projection Π(X) = XG is a subanalytic subset of ∆⊥

G, and consider a subanalytic
Whitney stratification R of XG, see Theorem 3.8. We denote by S the pre-image of R by Π,
which is a G-invariant subanalytic Whitney stratification of X. Denote by X ′ the union of
strata of dimension at most d − 1 and note that it is G-invariant. In what follows we show
that the Lemma holds over the strata of pure dimension d, apart from refining the stratification
three times, each time increasing the size, but not the dimension, of X ′. The result will then
follow by induction applied to X ′.
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Let r denote the rank of dΠ, which is constant since Π is a submersion and ∆⊥ is connected.
Note that the dimension of XG is equal to e = d− 2n+m+ r. By the uniformization Theorem
3.9, there exists a proper real-analytic mapping ψ : Z → XG, where Z is a smooth manifold of
dimension e such that ψ(Z) = XG. Since Π is an analytic submersion ψ induces a uniformization
of X by taking the fiber product

W = ∆⊥ ×∆⊥
G
Z,

and the projection φ : W → X to the first factor. In particular, W is a smooth manifold of
dimension d, and φ and the projection Π′ : W → Z are analytic morphisms. The action of G
on X lifts to W by the restriction of the automorphisms σ × Id of ∆⊥ × Z to W .

Now, fix a connected stratum Sβ of dimension d and consider Rβ = Π(Sβ). By Proposition
3.10, apart from refining the stratification R, we can assume that the rank of ker(ω⊥)G is
constant along Rβ and that ker(ω⊥)G ∩ TRβ is an analytic subundle of Rβ . We conclude that

ker(ω⊥) has constant rank along Sβ and K⃗|Sβ
= ker(ω⊥) ∩ TSβ is an analytic subundle of Sβ .

Next, denote by Wβ = φ−1(Sβ), which is a subanalytic open set of W invariant by H. We
now may argue locally in M ; let Ω∆⃗ be the module of 1-forms defined in Example 3.12 and
note that it is invariant by G. Consider its pull-back φ∗(Ω∆⃗); by construction, ker(φ∗(Ω∆⃗)) is a

distribution overW which coincides with dφ−1(K⃗) overWβ . Since the dual (φ
∗(Ω∆⃗)

∗ is analytic
and G-invariant, its closure by the Lie bracket is also analytic and G-invariant. Indeed, the
distribution (φ∗(Ω∆⃗)

∗) is given locally by analytic vector fields, and the Lie bracket of analytic
vector fields is analytic. Adding successively the Lie brackets of analytic vector fields defines
a flag of distributions that has to stabilize, at least locally, because of the descending chain
condition (noetherianity) of germs of analytic sets. Moreover, apart from refining once again
the stratification, we may further assume that it is of constant rank over Wβ . Finally, note

that J⃗ |Sβ
is equal to the projection of the distribution generated by Lie((φ∗(Ω∆⃗)

∗) restricted
to Wβ , and it is therefore an integrable G-invariant subanalytic distribution.

Finally, denote by η the pull-back φ∗ω of the symplectic form; note that it is H-invariant.
Since Sβ is connected and η is analytic, there exists l ∈ N such that ηl+1 ≡ 0 over Wβ , and η

l

is zero only over a H-invariant proper analytic set Zβ ⊂Wβ . Note that φ(Zβ) is a subanalytic
G-invariant subset of Sβ of dimension smaller or equal to d − 1 so, apart from refining the
stratification S, we may suppose that Zβ = ∅. By Proposition 3.3, we conclude that ker(η) is
an involutive analytic distribution over W , which has constant rank over Wβ . Note now that

the pull-back of I⃗Sβ
:= ker(ω|Sβ

) coincides with ker(η)|Wβ
, so that I⃗Sβ

is an isotropic involutive
G-invariant subanalytic distribution of constant rank along Sβ . This completes the proof. □

4.2. Proof of (ii). Recall that S0 is the only strata of maximal dimension, which is the open
and dense set of ∆⊥ where ker(ω⊥) is of constant rank. We conclude from (3.5).

4.3. Proof of (iii). By Proposition 3.4, if γ : [0, 1] → M is a singular horizontal curve with
respect to ∆, then there is an absolutely continuous curve ψ : [0, 1] → ∆⊥ such that π(ψ) = γ

and ψ̇(t) ∈ ker(ω⊥
ψ(t)) for almost every t ∈ [0, 1]. Let D ⊂ [0, 1] be the set of differentiability

points of ψ, for every α, let

Tα :=
{
t ∈ D |ψ(t) ∈ Sα

}
.

Each set Tα is measurable, for each α denote by T̄α the set of density points of Tα and the empty
set if L1(Tα) = 0. By construction, the union ∪αT̄α has full measure in [0, 1]. If t belongs to

T̄α then ψ̇(t) belongs to ker(ω⊥
ψ(t)) and since t is a point of density of Tα there is a sequence of

times {tk}k converging to t such that ψ(tk) ∈ Sα for all k. So ψ̇(t) belongs to Tψ(t)Sα, finishing
the proof.

4.4. Proof of (iv). Start by noting that, as a 2 differential form over a space of dimension
2n − m, the kernel of ω⊥ has a dimension with the same parity as m. We conclude that

dim K⃗(a) ≡ m (2) over S0. Next, fix a point a ∈ ∆⊥ and consider local symplectic coordinates
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(x, p), where a = (0, pa), which are defined in some open set T ∗V of T ∗M ; note that each
coordinate pi may be seen as an analytic function over T ∗V. Next, consider the locally defined
ideal I = (h1, . . . , hk) of functions in T ∗V whose zero locus is equal to the union of ∆⊥ ∩ T ∗V
with the trivial section V × {0}. We thus consider the chain of ideals:

I = I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ . . .

where Ik+1 = Ik+∆⃗(Ik). It follows from direct computation via Poisson brackets that Ik is gen-
erated by all functions hZ , where Z is a vector-field obtained via k Lie-bracket compositions in
terms of the local generators {X1, . . . , Xm} of ∆ over V. It follows from the bracket generating
property that there exists ν ∈ N such that the ideal Iν is generated by the functions (p1, . . . , pn),
which implies that the zero locus of Iν is equal to the set {p1 = . . . = pn = 0} = V × {0}; ν is
equal to the step of ∆ at a. Now, given an analytic submanifold S ⊂ ∆⊥ ∩ T ∗V, denote by IS
the ideal of functions whose zero locus is equal to S and note that IS ⊃ I since S ⊂ ∆⊥. Note

that, in order for ∆⃗b ⊂ TbS for all b ∈ S, it is necessary that ∆⃗(IS) ⊂ IS ; in particular, since
S ⊂ ∆⊥ we conclude that S must be contained in the zero locus of Iν = (p1, . . . , pn), that is,

the zero section, implying that S is empty. This observation shows that K⃗|Sα
has rank at most

m− 1 for every stratum Sα ∈ S. We conclude easily.

5. Proof of Theorem 1.3

We are going to prove the following refinement of Theorem 1.3:

Theorem 5.1. Assume that both M and ∆ are real-analytic, and consider the notation in-
troduced in Theorem 1.3. Let Sα be a stratum equipped1 with a complete analytic Riemannian
metric gα. Given ℓ ≥ 0 denote by Lℓa the set of points a′ in the leaf La that can be joined to a by
a Lipschitz curve in La of length ≤ ℓ (with respect to gα). Given x ∈ π(Sα) ∈ M , a relatively
compact subanalytic set C ⊂ (Sα)x and ℓ ≥ 0, consider:

AbnC,ℓα (x) :=
⋃
a∈C

π
(
Lℓa
)
⊂M.

Then, the following properties hold:

(i) AbnC,ℓα (x) is a relatively compact subanalytic set of codimension at least 1.
(ii) Given a subanalytic stratification T α = (T α

β ) of (Sα)x which is invariant by dilation

and compatible with J⃗|Sα
, for every stratum T α

β consider

AbnC,ℓα,β(x) :=
⋃

a∈T α
β ∩C

π
(
Lℓa
)
.

Then AbnC,ℓα,β(x) is a subanalytic set of dimension bounded from above by

dim T α
β − dim J⃗|T α

β
+ dim J⃗|Sα

− 1.

(iii) if Sα = S0, moreover, then the codimension of AbnC,ℓ0,β(x) is at least 3.

The above result implies Theorem 1.3 because the set Abnα(x) associated with a given
stratum Sα can be written as

Abnα(x) =
⋃

a∈(Sα)x

π (La) =
⋃

(k,ℓ)∈N2

⋃
a∈(Sα)x∩Ck

π (La) ,

where gα is a complete analytic Riemannian on Sα (it does exist, see[21]) and {Ck}k∈N is an
increasing sequence of compact subanalytic subsets of (Sα)x whose union is equal to (Sα)x.

It remains to prove Theorem 5.1. So, we fix a stratum Sα of S of dimension d equipped
with a complete analytic Riemannian metric gα whose norm is denoted by | · |α, we consider

1Note that every real-analytic manifold can be equipped with a complete analytic Riemannian metric, see

[21].
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x̄ ∈ π(Sα), and we denote by k and j ≥ 0 the dimensions of the constant rank distributions

K⃗ and J⃗ over Sα. By taking a chart and a symplectic set of coordinates in a neighborhood V
of x̄, we can assume that we have symplectic coordinates (x, p) in T ∗V = V × (Rn)∗ in such a
way that the restriction of π to T ∗V is given by π(x, p) = x for all (x, p) ∈ T ∗V. Then, we fix
a relatively compact subanalytic set C ⊂ (Sα)x̄, a real number ℓ ≥ 0 and we recall that

AbnC,ℓα (x̄) =
⋃
a∈C

π
(
Lℓa
)
,

where we recall that La denotes the leaf of the foliation J⃗ containing a and Lℓa denotes the set
of points a′ ∈ La than can be joined to a with a Lipschitz curve in La of length ≤ ℓ (w.r.t.

gα). The proof of assertion (i) consists in three steps. In Step 1, we show that AbnC,ℓα (x̄) can
be written as the image of a relatively compact subanalytic set by an analytic mapping, thus
proving that it is subanalytic. Then, we argue by contradiction by supposing that AbnC,ℓα (x̄)
has dimension n. In Step 2, we infer from Sard’s Theorem the existence of some point where
some mappings are submersions, and in Step 3 we reach a contradiction by showing that some
point has to be the end-point of an horizontal curve which has to be both singular and regular.

Before starting Step 1, we need to introduce some notations. For every a = (x, p) ∈ Sα∩T ∗V,
we denote by

expαa : J⃗ (a) −→ La

the exponential mapping from a in La with respect to the restriction of gα to La. Since
the Riemannian metric gα on Sα is assumed to be complete and all leaves La with a ∈ La

are injectively immersed smooth submanifolds of Sα, all Riemannian manifolds (La, g
α) are

complete and the function

Expα : (a, ξ) ∈ Γα(J⃗ ) 7−→ expαa (ξ) ∈ Sα
is analytic on the analytic manifold of dimension d+ d2

Γα(J⃗ ) :=
{
(a, ξ) | a ∈ Sα ∩ T ∗V, ξ ∈ J⃗ (a)

}
,

which is nothing but the graph of J⃗ over Sα. Then, we consider the projection of Expα to M ,

Πα : Γα(J⃗ ) →M , which is the analytic function defined by

Πα(a, ξ) := π (Expα(a, ξ)) = π (expαa (ξ)) ∀(a, ξ) ∈ Γα(J⃗ ).

We are ready to prove Step 1.

Step 1: AbnC,ℓα (x) is a relatively compact subanalytic set
By the above definitions, we have

AbnC,ℓα (x̄) = Πα
(
Γαx̄,C,ℓ

)
,

with

Γαx̄,C,ℓ :=
{
((x̄, p), ξ) | ((x̄, p), ξ) ∈ Γα(J⃗ ), (x̄, p) ∈ C, |ξ|α ≤ ℓ

}
.

Therefore, since all data Sα, gα, J⃗ are analytic and C is relatively compact, the set Γαx̄,C,ℓ
is relatively compact and subanalytic and as a consequence its image by Πα, AbnC,ℓα (x̄), is a
relatively compact subanalytic set in M .

To complete the proof of assertion (i), it remains to show that AbnC,ℓα (x̄) has codimension at

least one. We argue by contradiction by supposing from now on that AbnC,ℓα (x̄) has dimension
n. The next step consists in applying Sard’s Theorem to get a point where several mappings
are submersions.
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Step 2: Application of Sard’s Theorem
We consider a Whitney subanalytic stratification C = (Cβ) (Theorem 3.8) of the subanalytic
set C which allows us to write

AbnC,ℓα (x̄) =
⋃
β

Πα
(
Γαx̄,C,ℓ,β

)
,

where for every β,

Γαx̄,C,ℓ,β :=
{
((x̄, p), ξ) | ((x̄, p), ξ) ∈ Γα(J⃗ ), (x̄, p) ∈ Cβ , |ξ|α ≤ ℓ

}
.

By assumption AbnC,ℓα (x̄) has dimension n and by construction each set Πα(Γαx̄,C,ℓ,β) is suban-

alytic, hence there is β such that Πα(Γαx̄,C,ℓ,β) has dimension n. Then, we define the function

Jβ : Cβ → N by

Jβ(a) := dim
(
J⃗ (a) ∩ TaCβ

)
∀a = (x̄, p) ∈ Cβ

and set
J̄β := min

a∈Cβ

{
Jβ(a)

}
and Ωβ :=

(
Jβ
)−1(

J̄β
)
.

Since all data are subanalytic, the set Ωβ is a subanalytic subset of Cβ which is open and
dense in Cβ and whose complement is a closed subanalytic set in Cβ of codimension at least 1.
Morever, given (x̄, p) ∈ Cβ the set {|ξ|α < ℓ} is dense in {|ξ|α ≤ ℓ}. Thus, we infer that the

image Πα(D̂β,ℓ) of the open analytic manifold

D̂β,ℓ :=
{
((x̄, p), ξ) | ((x̄, p), ξ) ∈ Γα(J⃗ ), (x̄, p) ∈ Ωβ , |ξ|α < ℓ

}
is a subanalytic set of dimension n. In the following lemma the mapping

ProjJ⃗ (x̄,p) : Rn × (Rn)∗ −→ Rn × (Rn)∗

stands for the orthogonal projection to J⃗ (x̄, p) with respect to the Euclidean metric.

Lemma 5.2. There are ā = (x̄, p̄) ∈ Ωβ, an open smooth submanifold W̄ of Ωβ of codimension

J̄β containing ā and ξ̄ ∈ J⃗ (ā) such that the following properties are satisfied:

(i)
(
J⃗ (ā) ∩ TāΩβ

)
⊕ TāW̄ = TāΩ

β.

(ii) The analytic function G : W̄ × J⃗ (ā) →M defined by

G((x̄, p), ξ) := Πα
(
(x̄, p),ProjJ⃗ (x̄,p)(ξ)

)
∀((x̄, p), ξ) ∈ W̄ × J⃗ (ā)

is a submersion at (ā, ξ̄).

Proof of Lemma 5.2. Let us treat the cases D̄β = 0 and D̄β > 0 separately.

Case 1: J̄β = 0.
The set Πα(D̂β,ℓ) is a subanalytic subset of dimension n of M and Πα is analytic on the open

analytic manifold D̂β,ℓ. Hence by Sard’s theorem there is (ā, ξ̄) ∈ D̂β,ℓ with ā = (x̄, p) such that

the restriction of Πα to D̂β,ℓ is a submersion at (ā, ξ̄). Therefore, by considering an open subset
W̄ of Ωβ , we check that (i) is satisfied because J̄β = 0 and (ii) holds because the restriction of

Πα to D̂β,ℓ is a submersion at (ā, ξ̄) and the function

((x̄, p), ξ) ∈ Ωβ × J⃗ (ā) 7−→
(
(x̄, p),ProjJ⃗ (x̄,p)(ξ)

)
∈ D̂β,ℓ,

which is well-defined and analytic in a neighborhood of (ā, ξ̄), sends (ā, ξ̄) to itself and is a
submersion at (ā, ξ̄).

Case 2: J̄β > 0.
For every a = (x̄, p) ∈ Ωβ , pick an open smooth submanifold Wa of Ωβ of codimension J̄β

containing a such that(
J⃗ (a′) ∩ Ta′Ωβ

)
⊕ Ta′Wa = Ta′Ωβ ∀a′ ∈Wa(5.1)
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and such that for every a′ ∈Wa the function

Pa,a′ : ((x̄, p̃), ξ) ∈Wa′ × J⃗ (a) 7−→
(
(x̄, p̃),ProjJ⃗ (x̄,p̃)(ξ)

)
∈ D̂β,ℓ

is a smooth diffeomorphism from Wa′ × J⃗ (a′) to its image. Note that Wa exists because the

trace of the distribution J⃗ over Ωβ has constant rank J̄β > 0. As Wa is transverse to J⃗ which
is integrable, there is for every a ∈ Ωβ an open set Oa ⊂ Ωβ containing a such that for every
a′ ∈ Oa, there is a smooth curve ψa,a′ : [0, 1] → La′ ∩ Oa of length < 1 (with respect to gα)
such that ψ(0) ∈ Wa and ψ(1) = a′. Then, by local compactness of Ωβ , there is a countable
family {ai}i∈N such that

Ωβ =
⋃
i∈N

Oai .

Therefore, by construction, the n-dimensional subanalytic set Πα(D̂β,ℓ), with non-empty inte-
rior, satisfies

Πα
(
D̂β,ℓ

)
⊂
⋃
i∈N

{
Πα(a, ξ) | a ∈Wai

, ξ ∈ J⃗ (a), |ξ|α < ℓ+ 1
}
,

and, as a consequence, by Baire’s Theorem, there is i ∈ N such that the set{
Πα(a, ξ) | a ∈Wai

, ξ ∈ J⃗ (a), |ξ|α < ℓ+ 1
}

has non-empty interior. As in the first case, by Sard’s Theorem, we infer that there are ā ∈Wai

and ξ̄ ∈ J⃗ (ā) such that the analytic function

(a, ξ) ∈
{
(x̄, p, ξ) | (x̄, p) ∈Wai

, ξ ∈ J⃗ (x̄, p)
}

7−→ Πα(a, ξ)

is a submersion at (ā, ξ̄). Setting W̄ := Wai
, the assertion (i) follows from (5.1) and (ii) is a

consequence of the fact that the above analytic function is a submersion at (ā, ξ̄) and Pai,ā is

a diffeomorphism from Wā × J⃗ (ā) to its image. □

Our contradiction will be reached in the next step. For this, we consider ā = (x̄, p̄) ∈ Ωβ , the

open smooth submanifold W̄ of Ωβ of codimension J̄β containing ā, and the vector ξ̄ ∈ J⃗ (ā) as
given by Lemma 5.2, we consider the geodesic ψ̄ : [0, 1] → Lā joining ā to expαā (ξ̄) = â = (ŷ, q̂)
with initial velocity ξ̄ (given by ψ(t) := expā(tξ̄) for t ∈ [0, 1]), and we set γ̄ := π(ψ̄). Then,
by an argument of partition of unity along the compact set γ̄([0, 1]) (note that γ̄ : [0, 1] → M
may have self-intersections), we construct an open neighborhood M of γ̄([0, 1]) along with k
smooth vector fields X1, . . . , Xk on M such that

∆(y) = Span
{
X1(y), . . . , Xk(y)

}
∀y ∈ M,

and we consider the End-Point mapping from x̄ associated with the family of vector fields
F = {X1, . . . , Xk} in time 1. As in Section 3.2, there is a non-empty maximal open set
U x̄ ⊂ L2([0, 1],Rk) such that the mapping Ex̄ : U x̄ → M ⊂M defined by

Ex̄(u) := x(1; x̄, u) ∀u ∈ U x̄,
where x(·; x̄, u) : [0, 1] → M is the unique solution to the Cauchy problem

ẋ(t; x̄, u) =

k∑
i=1

ui(t)X
i (x(t; x̄, u)) for a.e. t ∈ [0, 1], x(0; x̄, u) = x̄,(5.2)

is well-defined in U x̄ and allows to write any horizontal path (with respect to ∆) starting at
x̄ contained in M as a solution of (5.2). We are ready to proceed with the next step, which
consists in constructing a certain control U ∈ U x̄ which is a critical point of Ex̄ and for which

the singular horizontal path x(·; x̄, U) can be lifted into an horizontal path, with respect to J⃗ ,
joining ā to ψ̄(1) = â and regular.
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Step 3: The Contradiction
We start with the following lemma (we set M̃ := T ∗M):

Lemma 5.3. There are a family of smooth vector fields Z⃗1, . . . , Z⃗k1 on Sα∩M̃, an open subset
O of (Sα ∩ M̃)x̄ × L2([0, 1],Rk1), and a smooth function Λ : (Sα ∩ M̃) × Rk1 → Rk such that
the following properties are satisfied:

(i) The End-Point mapping E : O → Sα ∩ M̃ defined by (by abuse of notation we denote
the elements of O as (p, v) instead of ((x̄, p), v))

E(p, v) := ψpv(1) ∀(p, v) ∈ O,

where ψpv : [0, 1] → Sα ∩ M̃ is the unique solution to the Cauchy problem

ψ̇pv(t) =

k1∑
j=1

v(t)Z⃗j (ψpv(t)) for a.e. t ∈ [0, 1], ψpv(0) = (x̄, p)(5.3)

is well-defined and it satisfies for any (p, v) ∈ O,

π (ψpv(1)) = Ex̄ (U(·; p, v)) ,(5.4)

where the control U(·; p, v) ∈ U x̄ is defined by

U(t; p, v) := Λ (ψpv(t), v(t)) for a.e. t ∈ [0, 1].(5.5)

(ii) For every open neighborhood Ñ of ψ̄([0, 1]) in Sα, there is a control

v̄ ∈ Op̄ := O ∩
(
{ā} × L2([0, 1],Rk1)

)
,

such that

E p̄(v̄) := ψp̄v̄(1) = â, ψp̄v̄([0, 1]) ⊂ Ñ ,(5.6)

and for which the End-Point mapping E p̄ := E(p̄, ·) : Op̄ → Lā is a submersion.

Proof of Lemma 5.3. Since the family of vector fields F = {X1, . . . , Xk} span ∆, denoting by

h⃗1, . . . , h⃗k the Hamiltonian vector fields in M̃ := T ∗M associated with X1, . . . , Xk, we have

∆⃗(y, q) = Span
{
h⃗1(y, q), . . . , h⃗k(y, q)

}
∀(y, q) ∈ M̃.

As a consequence, since K⃗ ⊂ ∆⃗ has constant rank d1 on Sα and Lie(K⃗) = J⃗ , up to restricting

M̃ to a smaller open neighborhood of ψ̄([0, 1]) in T ∗M if necessary, there are k1 ∈ N (k1 ≥ d1)

and smooth functions φji : Sα ∩ M̃ → R, with i = 1, . . . , k and j = 1, . . . , k1, such that the

vector fields Z⃗1, . . . , Z⃗k1 on Sα ∩ M̃ defined by

Z⃗j(y, q) =

k∑
i=1

φji (y, q)⃗h
i(y, q) ∀(y, q) ∈ Sα ∩ M̃, ∀j = 1, . . . , k1,

satisfy

Span
{
Z⃗1(y, q), . . . , Z⃗k1(y, q)

}
= K⃗(y, q) ∀(y, q) ∈ Sα ∩ M̃

and

Lie
{
Z⃗1, . . . , Z⃗k1

}
(y, q) = J⃗ (y, q) ∀(y, q) ∈ Sα ∩ M̃.

In addition, the smooth function Λ = (Λ1, . . . ,Λk1) : (Sα ∩ M̃)× Rk1 → Rk defined by

Λi ((y, q), v) =

k1∑
j=1

vjφ
j
i (y, q) ∀(y, q) ∈ (Sα ∩ M̃), ∀v = (v1, . . . , vk1) ∈ Rk1 ,
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for i = 1, . . . , k, satisfies for every (y, q) ∈ Sα ∩ M̃,

d(y,q)π

 k1∑
j=1

vjZ⃗
j(y, q)

 =

k∑
i=1

Λ((y, q), v)iX
i(y) ∀v = (v1, . . . , vk1) ∈ Rk1 .(5.7)

By classical results of control theory (see for example [33]), the End-Point mapping E is well-

defined and smooth on its domain which is an open subset O of (Sα ∩ M̃)x̄ × L2([0, 1],Rk1).
By construction, for every (p, v) ∈ O, the curve ψpv : [0, 1] → Sα ∩ M̃ is horizontal with respect

to K⃗ and projects onto the curve γpv : [0, 1] → M ⊂M defined by

γpv := π (ψpv) ,

which is horizontal with respect to ∆. As a matter fact, by (5.7), this curve is solution to the
Cauchy problem

γ̇pv (t) =

k∑
i=1

Λ(ψpv(t), v(t))iX
i (γv(t)) for a.e. t ∈ [0, 1], γpv (0) = x̄,

so that we have (5.4)-(5.5), which completes the proof of (i). Assertion (ii) follows from Lie(K⃗) =

J⃗ on Sα, Chow-Rashevsky’s Theorem, and the fact that any control in Op̄ is the limit in L2

of non-singular controls (with respect to the End-Point mapping E p̄) with the same end-point
(see [7]). □

The following result follows from the fact that J⃗ is integrable on Sα, Lemma 5.2, and Lemma
5.3 (ii).

Lemma 5.4. There is a control v̄ ∈ O which is regular which respect to E p̄ such that E p̄(v̄) = â
and

dâπ
(
J⃗ (â)

)
+ dâπ

(
∂E
∂p

(p̄, v̄)

)(
TāW̄

)
= TŷM.(5.8)

Proof of Lemma 5.4. Since ψ̄ may have self-intersection (it is a geodesic but not necessarily a
minimizing geodesic), it is convenient to see it as the image of the segment I := c([0, 1]) ⊂ Rd,
with c(t) := (t, 0, . . . , 0) for t ∈ [0, 1], by a smooth immersion Φ from an open neighborhood

I of I in Rd into an open neighborhood Ñ of ψ̄([0, 1]) in Sα. Moreover, since J⃗ of rank d2 is
integrable in Sα, we can also assume that

dzΦ(J) = J⃗ (Φ(z)) ∀z ∈ I,(5.9)

with
J = Span {e1, . . . , ed2} ,

where (e1, . . . , ed) stands for the canonial basis of Rd. The mapping Φ allows us to pull-back
smoothly the objects that we have along ψ̄([0, 1]) into objects along I = c([0, 1]). First, by
considering a restriction of Φ being a local diffeomorphism sending the origin in Rd to ψ̄(0),
we can define uniquely an open smooth submanifold K ⊂ Rd containing the origin c(0) = 0
verifying

Φ(K) = W̄ and T0K ∩ J = {0}.
Then, we notice that if we have a control system

ż(t) =

a∑
i=1

wi(t)A
i(z(t)) for a.e. t ∈ [0, 1], z(0) = z,(5.10)

where A1, . . . , Aa are smooth vector fields on I satisfying

Ai(z) ∈ J ∀z ∈ I,(5.11)

then the corresponding End-Point mapping A : K × L2([0, 1],Ra) → I defined by

A(z, w) := z(1; z, w) ∀z ∈ K, ∀w ∈ L2([0, 1],Ra),
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where z(1; z, w) is the solution to the Cauchy problem (5.10) is smooth on its domain, of the
form K ×D, and it has the form

A(z, w) = (B(z, w), ẑ) ∀z = (z̄, ẑ) ∈
(
Rd2 × Rd−d2

)
∩K, ∀w ∈ D,

where B : K ×D → Rd2 is smooth. Thus, we have for every control w ∈ D,

d(0,w)A (η, 0) =
(
d(0,w)B(η, 0), η̂

)
∀η = (η̄, η̂) ∈ T0K.

By Lemma 5.4 (ii), there exists a control v̄ ∈ Op̄ satisfying (5.6) which is regular with respect to
E p̄. Hence, by applying the above discussion to the pull-back along ψ̄([0, 1]) of the control system

associated with the pull-backs of the vector fields Z⃗1, . . . , Z⃗k1 , that we denote by A1, . . . , Ad1 ,
and whose End-Point mapping A : K × L2([0, 1],Rk1) → I satisfies for every z ∈ K close to
c(0) = 0 and w close to v̄

Φ (A(z, w)) = E(Φ(z), w),
we obtain

∂E
∂p

(p̄, v̄) (d0Φ(η)) = d(p̄,v̄)E (d0Φ(η), 0) =
(
dc(1)Φ ◦ d(0,v̄)A

)
(η, 0)

= dc(1)Φ
(
d(0,v̄)B(η, 0), η̂

)
∀η = (η̄, η̂) ∈ T0K.

Furthermore, by viewing the mapping

H : p ∈ W̄ 7−→ expα(x̄,p)

(
ProjJ⃗ (x̄,p)(ξ̄)

)
∈ Sα ∩ M̃

as the End-Point mapping of a smooth control system parametrizing the trajectories

t ∈ [0, 1] 7−→ expα(x̄,p)

(
ProjJ⃗ (x̄,p)(tξ̄)

)
for p ∈ W̄ close to p̄, the above discussion yields

dp̄H (d0Φ(η)) = dc(1)Φ (∗, η̂) ∀η = (η̄, η̂) ∈ T0K,

where ∗ denotes an element of J that depends on η ∈ T0K. In conclusion, since Φ is a
diffeomosphism, we have demonstrated that

dp̄H(ζ)− ∂E
∂p

(p̄, v̄) (ζ, 0) ∈ J⃗ (â) ∀ζ ∈ TāW̄ .

Thus, recalling that

G((x̄, p), ξ̄) = Πα
(
(x̄, p),ProjJ⃗ (x̄,p)(ξ̄)

)
= π (H(p)) ∀p ∈ W̄ ,

we infer that

dâπ

(
∂E
∂p

(p̄, v̄)(ζ)

)
− ∂G
∂p

(ā, ξ̄)(ζ) ∈ dâπ
(
J⃗ (â)

)
∀ζ ∈ TāW̄ .(5.12)

To conclude, we pick µ ∈ TȳM and note that, by Lemma 5.2 (ii), there are ζ ∈ TāW̄ and

ξ ∈ J⃗ (a) such that

µ =
∂G
∂p

(
(x̄, p̄), ξ̄

)
(ζ) +

∂G
∂ξ

(
(x̄, p̄), ξ̄

)
(ξ).

Noting that
∂G
∂ξ

(
(x̄, p̄), ξ̄

)
(ξ) ∈ dâπ

(
J⃗ (â)

)
,

the equality (5.12) implies

µ− dâπ

(
∂E
∂p

(p̄, v̄)(ζ)

)
=
∂G
∂p

(
(x̄, p̄), ξ̄

)
(ζ)− dâπ

(
∂E
∂p

(p̄, v̄)(ζ)

)
+
∂G
∂ξ

(
(x̄, p̄), ξ̄

)
(ξ) ∈ dâπ

(
J⃗ (â)

)
,

which completes the proof. □
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We conclude the proof of Theorem 5.1 (i) by noting that (5.4) yields (note that the function
U is differentiable by construction)

dâπ ◦ ∂E
∂v

(p̄, v̄) = dŪE
x̄ ◦ ∂U

∂v
(·; p̄, v̄) and dâπ ◦ ∂E

∂p
(p̄, v̄) = dŪEx̄ ◦ ∂U

∂p
(·; p̄, v̄),

where Ū := U(·; p̄, v̄) ∈ U x̄ ⊂ L2([0, 1],Rk). Since E p̄ is a submersion at v̄, the first equality
gives

dâπ
(
J⃗ (â)

)
⊂ Im

(
dŪE

x̄
)

and moreover the second inequality implies

Im

(
dâπ ◦ ∂E

1

∂p
(p̄, v̄)

)
⊂ Im

(
dŪE

x̄
)
.

By (5.8), we infer that Ex̄ is a submersion at Ū which means that the horizontal path

γp̄v̄ := π
(
ψp̄v̄
)

associated with Ū is non-singular. But since γp̄v̄ is the projection of the curve ψp̄v̄ : [0, 1] → Lā

which is horizontal with respect to K⃗, Theorem 1.1 (iii) shows that the path is singular. We
get a contradiction and the proof of Theorem 5.1 (i) is complete.

To prove assertion (ii) of Theorem 5.1, we consider a subanalytic stratification T α = (T α
β )

of (Sα)x̄ which is invariant by dilation and compatible with J⃗|Sα
. The subanalyticity of the set

AbnC,ℓα,β(x̄) follows from (i). Set

Γβ(J⃗ ) :=
{
(a, ξ) | a ∈ T α

β , ξ ∈ J⃗ (a)
}
.

Since T α
β and J⃗ are invariant by dilation, the set F (Γβ(J⃗ )) is an injectively immersed analytic

submanifold of Sα of dimension

Dα
β := dim T α

β − dim J⃗|T α
β
+ dim J⃗|Sα

− 1

and moreover there holds

Abnℓα,β(x̄) ⊂ π
(
F (Γβ(J⃗ ))

)
.

This implies that Abnℓα,β(x̄) has dimension at most Dα
β . If α = 0, then by Theorem 1.1 (iv),

we have dim J⃗|S0
= dim K⃗|S0

≤ m− 2 which gives for any β

D0
β = dim T 0

β − dim J⃗|T 0
β
+ dim J⃗|S0

− 1

≤ dim T 0
β + dim J⃗|S0

− 1 ≤ (n−m) + (m− 2)− 1 = n− 3

and thus concludes the proof of assertion (iii).

6. The Sussmann regularity Theorem: Proof of Theorem 1.4

As in [36], we prove the result by induction on the rank of the distribution ∆. So, we are
going to show the following property, called (Pm), for every integer m ≥ 1:

(Pm) : If ∆ is an analytic bracket generating distribution of rankm ≥ 1 equipped with a smooth
(resp. analytic) metric g on a real-analytic manifold N of dimension n ≥ m and γ : [a, b] → N
is a minimizing geodesic, then γ is smooth (resp. analytic) on an open dense subset of [a, b].

Firstly, the property (P1) holds true because if m = 1 then n = 1 and any geodesic is
smooth (resp. analytic) on its interval of definition. Let us now assume that for some integer
m ≥ 1, (Pk) holds true for any integer k ∈ [1,m], and show that (Pm+1) is satisfied. Let ∆
be an analytic bracket generating distribution of rank m + 1 equipped with a smooth (resp.
analytic) metric g on a real-analytic manifold M of dimension n ≥ m+1 and let γ : [a, b] →M
be a minimizing geodesic. If γ is nonsingular, then it is the projection of a trajectory of the
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Hamiltonian vector field in T ∗M associated with (∆, g), so it is smooth (resp. analytic) (see
[33]). So, we assume from now that γ is singular. By Theorem 1.1, there is a subanalytic

distribution K⃗ ⊂ ∆⃗ of rank ≤ m on ∆⊥ ⊂ T ∗M associated with a subanalytic stratification
S = (Sα) of ∆⊥ and γ is the projection of an absolutely continuous curve ψ : [a, b] → ∆⊥ such
that

ψ̇(t) ∈ K⃗(ψ(t)) ⊂ Tψ(t)(T
∗M) for a.e. t ∈ [a, b].(6.1)

Moreover, the metric g on M can be lifted to a metric g̃ over ∆⃗ by setting for every a ∈ ∆⊥,

g̃a(ξ1, ξ2) := gπ(a)(daπ(ξ1), daπ(ξ2)) ∀ξ1, ξ2 ∈ ∆⃗(a).

By construction, g̃ is smooth (resp. analytic) if g is smooth (resp. analytic) and the curve ψ

minimizes the length with respect to g̃ among all horizontal paths of K⃗ joining ψ(a) to ψ(b).
Let D ∈ {1, . . . ,m} be the maximum of d ≥ 1 such that there are t ∈ [a, b] and α with ψ(t) ∈ Sα
and dim(Sα) = d, then let SD be the real-analytic manifold defined as the union of all strata
Sα of dimension D. By construction, the set

ID :=
{
t ∈ (a, b) |ψ(t) ∈ SD

}
is an open set. Moreover since K⃗ has constant rank and is bracket generating on each analytic

leaf generated by J⃗ , we infer by the induction hypothesis that ψ is smooth (resp. analytic) on
an open dense subset of ID. Now we can repeat this construction with the restriction of ψ to the
open set given by the interior of (0, 1)\ ID and observe that the set ((0, 1)\ ID)\ Int((0, 1)\ ID)
has empty interior. In conclusion, we obtain that ψ is smooth (resp. analytic) on an open dense
subset of [a, b] and as a consequence that γ = π(ψ) satisfies the same property.

Appendix A. Proof of results of Section 2.4

Let v1, . . . , vm be a basis of V and X1, . . . , Xm the left-invariant vector fields defined by

Xi(g) = deLx(vi) ∀g ∈ G, ∀i = 1, . . . ,m.

Then the bracket generating left-invariant distribution ∆ associated to V satisfies

∆(g) = Span
{
X1(g), · · · , Xm(g)

}
= deLg(V ) ∀g ∈ G

and we have (see (3.5))

ker
(
ω⊥
a

)
= ∆⃗(a) ∩ Ta∆

⊥ ∀a ∈ ∆⊥,(A.1)

where ∆⃗ is the distribution on T ∗M defined by

∆⃗(a) :=
{
h⃗1(a), . . . , h⃗m(a)

}
∀ a ∈ T ∗G

and where for every i = 1, . . . ,m, hi stands for the Hamiltonian hX
i

: T ∗G → R associated
with Xi. Let us now see how Φ = (Φ1,Φ2) : T

∗G → G× g∗ (defined by (2.2)) pushes forward

the vector fields h⃗1, . . . , h⃗m. We need the following lemma.

Lemma A.1. For every left-invariant vector field X on G with v := X(e) ∈ g, we have

daΦ1

(
h⃗X(g, p)

)
= X(g) and daΦ2

(
h⃗X(g, p)

)
= −p · deLg([v, ·]),

for every a = (g, p) ∈ T ∗G.

Proof of Lemma A.1. Let X an invariant vector field be fixed and v := X(e) ∈ g. The first
part follows directly from the fact that Φ1 coincides with the canonical projection from T ∗G to

G and the definition of the Hamiltonian vector field h⃗X , see Section 3.1. For the second part,
we need to show that

d(g,p)Φ2

(
h⃗X(g, p)

)
(w) = −p · deLg([v, w]) ∀w ∈ g, ∀a = (g, p) ∈ T ∗G.
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So, fix a = (g, p) ∈ T ∗G, w ∈ g, and moreover denote by Y the left-invariant vector field

verifying Y (e) = w and by φt(a) = (g(t), p(t)) the trajectory of the flow of h⃗X passing through
a at time t = 0. We have

daΦ2

(
h⃗X(a)

)
(w) =

d

dt

{
Φ2

(
φt(a)

)
(w)
}
|t=0

=
d

dt

{
Φ2

(
g(t), p(t)

)
(w)
}
|t=0

=
d

dt

{(
p(t) · deLg(t)

)
(w)
}
|t=0

=
d

dt

{
p(t) ·

(
deLg(t)(w)

)}
|t=0

=
d

dt

{
p(t) · Y

(
g(t)

)}
|t=0

=
d

dt

{
hY
(
g(t), p(t)

)}
|t=0

= h⃗X · hY (g, p),

which by Proposition 3.1 gives

daΦ2

(
h⃗X(a)

)
(w) = −h[X,Y ](g, p) = −p ·

(
[X,Y ](g)

)
= − (p · deLg) ([v, w]),

which proves the result. □

Therefore, by Lemma A.1, for every a = (g, p) ∈ T ∗G, the linear space ∆⃗(a) is sent to

D⃗(g, p) := daΦ
(
∆⃗(a)

)
=

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V

}
with p = Φ2(a).

Moreover, we have Φ(∆⊥) = G× V ⊥ and for every (g, p) ∈ G× V ⊥,

D⃗(g, p) ∩ T(g,p)
(
G× V ⊥) =

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V s.t. p · [v, ·] ∈ V ⊥

}
=

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V s.t. p([v, w]) = 0 ∀w ∈ V

}
.

We observe that the dimension of the above linear space depends only upon p.
Now consider the group H defined on G×V ⊥ generated by all elements σg = Lg × Id where

σg(h, p) = (Lg(h), p), together with dilations in respect to V ⊥. Note that the orbits of this are
given by G×{λp0}λ∈R∗ , for every p0 ∈ V ⊥. This implies that the quotient space is the analytic
manifold P(V ⊥) and the quotient map Π : G × V ⊥ → P(V ⊥) is an analytic submersion. In
other words, H satisfies conditions (G1) and (G3) given in §4. So, if we consider the group G
of automorphisms of T ∗G which is conjugate (by Φ) to H, the same properties hold true for G.

Next, by equation (3.5) and the definition of D⃗, in order to show that property (G2) holds true

for G, it is enough to show that
[
D⃗(g, p) ∩ T(g,p)

(
G× V ⊥)] is invariant by H. Indeed, this is

clear for dilation, and for every g′ ∈ G:

dσg′
[
D⃗(g, p) ∩ T(g,p)

(
G× V ⊥)]

= dσg

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V s.t. p([v, w]) = 0 ∀w ∈ V

}
=

{(
dgLg′deLg(v)
−p · [v, ·]

)
| v ∈ V s.t. p([v, w]) = 0∀w ∈ V

}
= D⃗(g′g, p) ∩ T(g′g,p)

(
G× V ⊥) .

We conclude that G satisfies conditions (G1), (G2) and (G3) given in §4. This implies that the
stratification constructed in Theorem 1.1 has the form given in the statement of Theorem 2.2.
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Appendix B. Proofs of preliminary results of Section 3

B.1. Proof of Proposition 3.2. Let a ∈ S be fixed and E ⊂ TaS a vector space satisfying
(3.2), since the result is local we can work in some sufficiently small neighborhood U of a where
there exists a metric g∗ over U ⊂ T ∗M such that Ea is orthogonal to ker

(
ω|S
)
a
. We denote

by J the canonical almost complex structure compatible with the symplectic form ω and the
metric g∗. We recall that J induces a linear map from Ta(T

∗M) to itself such that

ωa (ζ, J(ζ
′)) = g∗a(ζ, ζ

′) and J(J(ζ)) = −ζ ∀ζ, ζ ′ ∈ Ta(T
∗M).

The form ω|S at a is a skew-symmetric bilinear form over TaS of dimension s so its kernel has
even codimension, that is, it is of the form 2l with l ∈ N, which gives s − r = 2l. If l = 0
then ω|S vanishes identically on TaS and the properties (i)-(iii) are trivial. So suppose that
l > 0. We consider the orthogonal projection π : Ta(T

∗M) → TaS and define the application
JS : Ta(T

∗M) → TaS by

JS(ζ) := π(J(ζ)) ∀ζ ∈ Ta(T
∗M),

we note that JS is a linear map (a composition of linear maps) satisfying

(B.1) ωa(ζ, ζ
′) = g∗a(ζ

′, J(ζ)) = g∗a(ζ
′, JS(ζ)) ∀ζ, ζ ′ ∈ TaS.

In particular, this computation implies that:

(P1) JS(ζ) ∈ Ea for all ζ ∈ TaS;
(P2) JS(ζ) ̸= 0 for all ζ ∈ Ea \ {0};
(P3) ζ and JS(ζ) are orthogonal for all ζ ∈ Ea.

Note that (B.1) implies that ζ ∈ ker(ω|S)a if, and only if, J(ζ) belongs to the normal space
NaS which has dimension 2n− s; since J induces an isomorphism over Ta(T

∗M), we conclude
that r ≤ min{2n−s, s}, which completes the proof of (i). Moreover, by (P1)-(P3), JS : Ea → Ea

is a linear map with trivial kernel and whose eigenvalues are all complex. Moreover, by the real
Jordan decomposition Theorem, there exists a basis (ζ̄1, ζ̄

′
1, . . . , ζ̄l, ζ̄

′
l) of Ea such that:

JS
(
ζ̄i
)
, JS

(
ζ̄ ′i
)
∈ Span

{
ζ̄1, ζ̄

′
1, . . . , ζ̄i, ζ̄

′
i

}
∀i = 1, . . . , l.

We now set ζ1 = ζ̄1 and define inductively the vectors ζ ′1, . . . , ζl, ζ
′
l by (| · | stands for the norm

associated with g∗ in Ta(T
∗M))

ζ ′i := ζ̄ ′i −
i∑

j=1

g∗a
(
ζ̄ ′i, ζj

)
|ζj |2

ζj −
i−1∑
j=1

g∗a
(
ζ̄ ′i, ζ

′
j

)
|ζ ′j |2

ζ ′j

ζi := ζ̄i −
i−1∑
j=1

g∗a
(
ζ̄i, ζj

)
|ζj |2

ζj −
i−1∑
j=1

g∗a
(
ζ̄i, ζ

′
j

)
|ζ ′j |2

ζ ′j

By construction, (ζ1, ζ
′
1, . . . , ζl, ζ

′
l) is an orthogonal basis (in respect to g∗a) and we have

JS(ζi), JS(ζ
′
i) ∈ Span {ζ1, ζ ′1, . . . , ζi, ζ ′i} = Span

{
ζ̄1, ζ̄

′
1, . . . , ζ̄i, ζ̄

′
i

}
∀i = 1, . . . , l.

Then, for every i < j, we may apply (B.1) in order to get

ωa (ζi, ζj) = ωa

(
ζi, ζ

′
j

)
= ωa (ζ

′
i, ζj) = ωa

(
ζ ′i, ζ

′
j

)
= 0(B.2)

and, therefore

ωla (ζ1, ζ
′
1, . . . , ζl, ζ

′
l) = 2ll!ωa (ζ1, ζ

′
1) · · ·ωa (ζl, ζ

′
l) .

For each i = 1, . . . , l, ζi belongs to Ea so there is a vector ξ such that ωa(ζi, ξ) ̸= 0, which by
(B.2) implies that ωa(ζi, ζ

′
i) ̸= 0. Then we infer that ωla(ζ1, ζ

′
1, . . . , ζl, ζ

′
l) ̸= 0 which proves that

ωl is a volume form over Ea. Since TaS = Ea ⊕ ker(ω|S)a, we conclude that ωl+1 is zero over
TaS, which concludes the proof of the lemma.
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B.2. Proof of Proposition 3.3. The spaces I⃗(a) with a ∈ S are isotropic by definition. Let

Z⃗1, Z⃗2 be two smooth vector fields in I⃗, and Z⃗ a smooth vector field on S. The invariant
formula for exterior derivatives (see [25, Proposition 12.19 p. 311]) yields

0 = dω|S
(
Z⃗1, Z⃗2, Z⃗

)
= Z⃗1 · ω|S

(
Z⃗2, Z⃗

)
− Z⃗2 · ω|S

(
Z⃗1, Z⃗

)
+ Z⃗ · ω|S

(
Z⃗1, Z⃗2

)
− ω|S

(
[Z⃗1, Z⃗2], Z⃗

)
+ ω|S

(
[Z⃗1, Z⃗], Z⃗2

)
− ω|S

(
[Z⃗2, Z⃗], Z⃗1

)
.

By assumption, we have(
ω|S
)
a

(
Z⃗1(a), ζ

)
=
(
ω|S
)
a

(
Z⃗2(a), ζ

)
= 0 ∀a ∈ S, ∀ζ ∈ TaS.

We infer that ω|S([Z⃗1, Z⃗2], Z⃗) = 0 which shows that [Z⃗1, Z⃗2](a) belongs to the kernel of ω|S
for all a ∈ S, so that I⃗ is integrable with isotropic leaves.

B.3. Proof of Proposition 3.4. Let γ : [0, 1] → M be an absolutely continuous curve which
is horizontal with respect to ∆, let u ∈ Ux with x := γ(0), be such that γ = x(·;x, u), and
y := γ(1) be fixed. By the proof of [33, Proposition 1.11 p.21]), for each p ̸= 0 in T ∗

yM such
that

p · duEx(v) = 0 ∀v ∈ L2([0, 1],Rk),

the absolutely continuous arc ψ : [0, 1] → T ∗M defined as the unique solution of the Cauchy
problem

ψ̇(t) =

k∑
i=1

ui(t)⃗h
i(ψ(t)) for a.e. t ∈ [0, 1], ψ(1) = (y, p)

never intersects the zero section of T ∗M and satisfies π(ψ) = γ and

hi(ψ(t)) = 0 ∀t ∈ [0, 1], ∀i = 1, . . . , k.

On the other hand, any absolutely continuous solution ψ : [0, 1] → ∆⊥ of

ψ̇(t) =

k∑
i=1

ui(t)⃗h
i(ψ(t)) for a.e. t ∈ [0, 1]

such that π(ψ) = γ satisfies ψ(t) ∈ (Im(DuE
x))⊥ for all t ∈ [0, 1] and moreover it vanishes

for some t ∈ [0, 1] if and only if it is equal to zero for all t ∈ [0, 1]. This shows that for every
p ∈ T ∗

yM \ {0}, (i) is equivalent to (ii).
To prove that (ii) and (iii) are equivalent, we note that

Ta∆
⊥ =

(
∆⃗(a)

)ω
∀a ∈ ∆⊥.

As a matter of fact, if ∆ is locally generated by m vector fields X1, . . . , Xm, then any vector

ζ ∈ Ta(T
∗M) satisfying ζ · hi(a) = 0 for some i = 1, . . . ,m, verifies ωa(ζ, h⃗

i) = 0. This shows

that Ta∆
⊥ is contained in the symplectic complement of ∆⃗(a) and both spaces have the same

dimension 2n−m. Therefore, we have

ker
(
ω⊥
a

)
=
(
Ta∆

⊥)ω ∩ Ta∆
⊥ = ∆⃗(a) ∩ Ta∆

⊥ ∀a ∈ ∆⊥.(B.3)

We infer that an absolutely continuous curve ψ : [0, 1] → ∆⊥ is horizontal with respect to ∆⃗ if

and only if it satisfies ψ̇(t) ∈ ker(ω⊥
ψ(t)) for almost every t ∈ [0, 1]. This shows that (ii) ⇔ (iii).
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B.4. Proof of Proposition 3.5. Let a = (x, p) in local coordinates in ∆⊥ and X1, . . . , Xm a

generating family of ∆ in a neighborhood of x be fixed, then for any vector ζ =
∑m
i=1 uih⃗

i(a) ∈
∆⃗(a), the vector field

ζ⃗ :=

m∑
i=1

uih⃗
i

is a local section of ∆⃗. Then ζ⃗ is tangent to ∆⊥ at a if and only if there holds for every
i = 1, . . . ,m,

0 =
(
ζ⃗ · hi

)
(a) =

 m∑
j=1

uj h⃗
j(a) · hi

 (a) =

m∑
j=1

ujh
ij(a) =

(
L2
a(ζ)

)
i
,

where we used (3.6). We conclude by (3.5).

B.5. Proof of Proposition 3.6. Let γ : [0, 1] →M be a singular horizontal path with respect
to ∆ be fixed. By compactness of γ([0, 1]) there are finitely many times τ0, . . . , τN ∈ [0, 1],
with

τ0 = 0 < τ1 < · · · < τN = 1 and [0, 1] =

N⋃
j=1

[
τ j−1, τ j

]
,

such that for every j = 1, . . . , N , there is a local set of coordinates in an open neighborhood
Vj ⊂ M of γ([τ j−1, τ j ]) such that we have coordinates (z, q) in T ∗Vj = Vj × (Rn)∗ and such
that ∆ is generated by m vector fields Xj,1, . . . , Xj,m in Vj , and let uj ∈ L2([τ j−1, τ j ],Rm) be
such that

γ̇(t) =

k∑
i=1

uji (t)X
j,i(γ(t)) for a.e. t ∈

[
τ j−1, τ j

]
.

Assume that γ has minimal rank. The path γ can be expressed as a concatenation of the paths
γ[τ0,τ1], . . . , γ[τ0,τ1], so each of them also has minimal rank (see Remark 3.7 and [33, Proposition

1.9]) or, in other words, the horizontal paths γ1, . . . , γN : [0, 1] →M defined by

γj(t) := γ

(
τ j−1 +

t− τ j−1

τ j − τ j−1

)
∀t ∈ [0, 1],∀j = 1, . . . , N,

have minimal rank. Hence, we need to show that each path γj satisfies (3.7). So, we fix
j ∈ {1, . . . , N}, we set γ̄ := γj , x̄ := γ̄(0), ȳ := γ̄(1) and we denote by ū ∈ L2([0, 1],Rm) the
(unique) control associated with γ̄ and the family Xj,1, . . . , Xj,m, so that ȳ = Ex̄(ū) (Ex̄ is the
End-Point Mapping from x̄ associated with Xj,1, . . . , Xj,m, see Section 3.2). By (3.4), we have
Im (dūE

x̄) = ∆(ȳ), so there are n−m linearly independent covectors p̄1, . . . , p̄n−m in ∆⊥
ȳ such

that

∆⊥
ȳ ∪ {0} = Span

{
p̄1, . . . , p̄n−m

}
(B.4)

and

p̄i ∈
(
Im
(
dūE

x̄
))⊥ ∀i = 1, . . . , n−m.

By Proposition 3.4, for every i = 1, . . . , n−m, there is an abnormal lift ψ̄i : [0, 1] → ∆⊥ of γ̄ such
that ψ̄i(1) = (ȳ, p̄i). Let T ⊂ [0, 1] be the set of times of full measure such that ψ̄1, . . . , ψ̄n−m are

all differentiable. Then, for every t ∈ T , we have ˙̄ψi(t) ∈ ∆⃗(ψ̄i(t)) for all i = 1, . . . , n−m, which

implies, by linearity of ∆⃗ in the fibers over γ̄, that for every λ = (λ1, . . . , λn−m) ∈ Rn−m \ {0},
the absolutely continuous curve ψ̄λ : [0, 1] → ∆⊥ defined by

ψ̄λ(t) :=

(
γ̄(t),

n−m∑
i=1

λip̄
i(t)

)
∀t ∈ [0, 1]
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is an abnormal lift of γ̄ satisfying (cf. (3.5))

˙̄ψλ(t) ∈ ∆⃗
(
ψ̄λ(t)

)
∩ Tψ̄λ(t)∆

⊥ = ker(ω⊥
ψ̄λ(t)) for a.e. t ∈ [0, 1].

The property (B.4) shows that for every t ∈ [0, 1], the covectors ψ̄1(t), . . . , ψ̄n−m(t) are linearly
independent and span ∆⊥

γ̄(t) ∪ {0}. Thus, we infer that

˙̄γ(t) =
⋂

λ∈Rn−m\{0}

π∗

(
˙̄ψλ(t)

)
⊂

⋂
a∈∆⊥

γ̄(t)

π∗
(
ker(ω⊥

a )
)

for a.e. t ∈ [0, 1].

Assume now that (3.7) holds, set τ := τN−1, y := γ(1), and let us show that for every
p ∈ ∆⊥

y there is an absolutely continuous curve ψ : [τ, 1] → ∆⊥ with ψ(1) = (y, p) such that

π(ψ) = γ and ψ̇(t) ∈ ker(ω⊥
ψ(t)) for almost every t ∈ [τ, 1]. Before proceeding, we set for almost

every t ∈ [τ, 1],

ζ(t, q) :=

m∑
i=1

ui(t)⃗h
i(γ(t), q) ∈ ∆⃗(γ(t), q) ∀q ∈ T ∗

γ(t)M

and we observe that if q belongs to ∆⊥
γ(t), then by (3.7) and Proposition 3.5 it is the only vector

of ker(L2
(γ(t),q)) = ker(ω⊥

(γ(t),q)) which projects onto γ̇(t), so by (3.5), we have

ζ(t, q) ∈ T(γ(t),q)∆
⊥ ∀q ∈ ∆⊥

γ(t), for a.e. t ∈ [τ, 1].

As a consequence, if we consider the smooth function f : T ∗V → [0,∞) given by

f(a) := d
(
(z, q),∆⊥)2 ∀(z, q) ∈ T ∗V = V × (Rn)∗,

where d(·,∆⊥) stand for the distance to ∆⊥ in T ∗V equipped with the Euclidean metric, then
we may assume without loss of generality that there is a constant K > 0 such that∣∣〈∇(γ(t),q)f, ζ(t, q)

〉∣∣ ≤ Kf(γ(t), q) |u(t)| |q| ∀q ∈ T ∗
γ(t)M, for a.e. t ∈ [τ, 1].(B.5)

Then given p ∈ ∆⊥
y , we consider the solution ψ = (γ(·), p(·)) : [τ, 1] → T ∗V to the Cauchy

problem

ψ̇(t) =

m∑
i=1

ui(t)⃗h
i(ψ(t)) = ζ(t, p(t)) for a.e. t ∈ [0, 1], ψ(1) = (y, p),

and note that by (B.5) we have for almost every t ∈ [τ, 1],∣∣∣∣ ddt {f(ψ(t))}
∣∣∣∣ = ∣∣〈∇(γ(t),p(t))f, ζ(t, p(t))

〉∣∣ ≤ Kf(ψ(t)) |u(t)| |p(t)|.

Thus, since f(ψ(1)) = 0, u ∈ L2([τ, 1]) and p is bounded on [τ, 1], Grönwall’s Lemma implies
that f(ψ(t)) = 0 for all t ∈ [τ, 1] which means that ψ is indeed valued in ∆⊥. In conclusion, we
have shown (see Proposition 3.4) that the horizontal path γ has minimal rank over [τ, 1]. We
can conclude by repeating the above proof on the interval [τN−2, τN−1] (in the case N ≥ 2)
and so on (note that we can always reparametrize the curve γ|[0,τj ] as a curve on [0, 1] and by
doing this we do not loose (3.7)).

B.6. Proof of Proposition 3.10. The result follows from standard methods in subanalytic
geometry, and we provide the main ideas. We start by recalling a useful stratification result
for maps. Recall that, given two subanalytic sets A and B, we say that a map f : A → B is
subanalytic if its graph is subanalytic.

Theorem B.1 (Stratification of Maps, see e.g. [17, Page 43]). Suppose that A and B are
subanalytic subsets of real-analytic manifolds M and N , and consider a proper subanalytic map
f : A → B. Then there exist Whitney subanalytic stratifications R of A and S of B such that
f is a stratified map, that is, the pre-image f−1(Sα) of each stratum Sα is a union of strata
Rβ and f |Rβ

: Rβ → Sα is an analytic submersion. Furthermore, if R′ and S ′ are Whitney
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subanalytic stratification of A and B, then R and S can be chosen as refinements of R′ and S ′

respectively.

Remark B.2. By Thom’s First Isotopy Lemma, see e.g. [17, Page 41], over each stratum Sα the
restriction of f , f−1(Sα) → Sα, is locally topologically trivial. This implies that the dimension
of the fibers of f is constant over Sα (recall that the strata are connected by definition).

Proof of Proposition 3.10. To establish (i) it suffices to show that the subset of points of M of
given rank r (i.e. the dimension of ∆(x)) is subanalytic. Moreover, it suffices to do it for r > 0.
Therefore, in what follows we consider TN with the zero section removed, that we denote by
TN \N . Let ∆∗ denote the trace of ∆ on TN \N .

Let π : TN \ N → N be the canonical projection. Consider the projective tangent bundle
PTN and note that π factors π = π2 ◦ π1, where π1 : TN \ N → PTN and π2 : PTN → N
denote the projections. Clearly π2 is proper. Since ∆(x) is a vector subspace of TxN , we
conclude that π1(∆

∗) is a closed subanalytic subset of PTN . Indeed, to see it, one may use the
sphere bundle STN and a sequence of projections TN \N → STN → PTN . The projection of
∆∗ to STN equals the intersection ∆∗ ∩ STN and therefore is subanalytic and the projection
STN → PTN is proper and preserves the subanalytic sets.

By Theorem B.1 applied to A = π1(∆
∗), B = N and f = (π2)|A, we obtain subanalytic

stratifications (Rβ) and (Sα) of A and B respectively, such that (π2)||π−1Sα∩A is a stratified
submersion; we may suppose that the strata of S are all connected. We conclude by Remark
B.2 that the dimension of ∆ is constant along Sα, thus completing the proof of (i). Note that
any refinement of thus obtained S also satisfies property (i).

Now, let B0 be a stratum of maximal dimension. We first show that, apart from refining the
stratification S, we may suppose that property (ii) holds over B0. Let d be the dimension of ∆
over B0 and we suppose d > 0. Consider the map

φ : P[(TN)d] → P(∧dTN)

that associates to d nonzero vectors of TxN its exterior product. This map is proper and analytic
and therefore the image φ([P(∆)]d), denoted by G(∆), by this map is subanalytic. In what
follows we identify the Grassmannian Grass(d, TN) with an analytic submanifold of P(∧dTN)
via the Plücker embedding. Thus the image of φ([P(∆x)]

d), for x ∈ B0, denoted G(∆x), is a
point of Grass(d, TN). Let GB0

(∆) :=
⋃
x∈B0

G(∆x). It now follows that the restriction of the

projection π′ : Grass(d, TB0) → B0 to GB0
(∆) is a continuous proper subanalytic bijection.

The claim now follows from Theorem B.1 applied to A = GB0
(∆), B = B0 and f = π′|A.

Now, let Sk be the union of all strata of S of codimension k in N . Note that property
ii) is satisfied over S0 by the previous paragraph. Suppose by induction that property ii) is
satisfied over Sk for every k < k0, and let us show the existence of a refinement of S so that
property ii) is satisfied over Sk for every k ≤ k0. We show this by repeating the arguments

of the previous two paragraphs. Indeed, the intersection Σk0 = π1(∆) ∩ π1(TSk0) is a closed
subanalytic subset of PTN and therefore there is a refinement of S such that over its strata the
dimension π1(∆)∩π1(TSk0) is constant. Then we repeat the argument of the second paragraph

to obtain condition (ii) for π1(∆) ∩ π1(TSk0) over Sk0 . □

Appendix C. Proof of Theorem 2.1

C.0.1. Proof of (i). Let ∆min be the distribution given in local coordinates by

∆min =
{
(x, ξ) ∈ TM | ∀a = (x, p) ∈ ∆⊥, ∃(ξ, η) ∈ ker(ω⊥

a )
}
.

We start by proving that ∆min is subanalytic with closed graph. Since these properties are
local, we may identify M with an open ball of Rn, and TM with a locally trivial product
M ×V =M ×Rn. We can now identify ∆⊥ with a product M ×U =M × (Rn−k \ {0}), where
k is the rank of ∆, so that

T∆⊥ ∼=M × U × V ×W =M × (Rn−k \ {0})× Rn × Rn−k,
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and ker(ω⊥) is a closed subanalytic subset of T∆⊥. Moreover, this subanalytic subset is linear
subspace of V ×W and is invariant by dilation in U , so that it gives rise to a subanalytic set
P(ker(ω⊥)) of

M × P(U)× P(V ×W ) =M × Pn−k−1
R × P2n−k−1

R

and we consider the associated distribution

P(∆min) := {
(x, v⃗) ∈M × P(V ); ∀p ∈ P(U)∃w⃗ ∈ P(W ) s.t. (x, p, [v⃗ : w⃗]) ∈ P(ker(ω⊥))

}
.

Firstly note that ∆min is subanalytic with closed graph if and only if P(∆min) is subanalytic
with closed graph. Secondly we know that P(∆min) has closed graph because P(V ) is compact
and ker(ω⊥) is never tangent to the fibers of the canonical projection π : ∆⊥ → M , c.f. §§3.2,
that is, (x, p, [0 : w⃗]) never belongs to P(ker(ω⊥)). Finally, P(∆min) is subanalytic since it is
definable in the language of global subanalytic sets.

Now, by Proposition 3.10, there exists a subanalytic Whitney stratification R = (Rβ) of
M such that ∆min and the distribution H defined in Theorem 2.1 (i) have constant rank over
each stratum. Apart from refining this stratification, we may suppose that it is compatible
with the subanalytic set π(S0), where S0 is given by Theorem 1.1 and π : T ∗M → M is
the canonical projection (recall that the projection is subanalytic because S0 is invariant by
dilation), completing the proof.

C.0.2. Proof of (ii). Fix a point x ∈ R0 and consider two vector-fields Z1 and Z2 defined in
some open neighborhood V of x in R0 which are everywhere tangent to H. It is enough to show
that [Z1, Z2](x) is a vector which belongs to H(x). Indeed, since Zk ∈ ∆, there exists locally
defined real-analytic functions Ai(x) such that:

Zk =

m∑
i=1

Aki (x)X
i, and let Y k :=

m∑
i=1

Aki (x)⃗h
i.

where ∆ is locally generated by the span of the Xi and h⃗i = h⃗X
i

, cf. §§3.1. Since Z1 and
Z2 ∈ ∆min, we conclude that the restriction of Y 1 and Y 2 to ∆⊥ ∩ T ∗V, which we denote
by Y1 and Y2, are everywhere tangent to ker(ω⊥). Next, since R is compatible with S, we
conclude that π−1(R0) ∩ S0 is open and dense in π−1(R0) ∩ ∆⊥. Now, note that at every

point (x, p) ∈ S0 ∩ T ∗V, we know that [Y1,Y2] belongs to ker(ω⊥), since ker(ω⊥)|S0
= K⃗|S0

is integrable. Moreover, recall that ker(ω⊥) is a distribution with closed graph and that the
Lie-bracket [Y1,Y2] is an analytic vector-field. We infer that the Lie bracket of Y1 and Y2 is
contained in ker(ω⊥) on π−1(x) ∩∆⊥ which concludes the proof of (ii).

C.0.3. Proof of (iii). By Proposition 3.6, if γ : [0, 1] →M is a minimal rank singular horizontal
path with respect to ∆, then

γ̇(t) ∈
⋂

a∈T∗
γ(t)

M∩∆⊥

π∗
(
ker(ω⊥(a))

)
= ∆min(γ(t)) ⊃ H(γ(t))(C.1)

for a.e. t ∈ [0, 1], where the previous inclusions are equality when γ(t) ∈ R0 by construction.
Let D ⊂ [0, 1] be the set of differentiability points of γ, for every β, let

Tβ :=
{
t ∈ D | γ(t) ∈ Rβ

}
.

Each set Tβ is measurable, for each β denote by T̄β the set of density points of Tβ and the empty
set if L1(Tβ) = 0. By construction, the union ∪β T̄β has full measure in [0, 1]. If t belongs to T̄β
then γ̇(t) belongs to ∆min(γ(t)) and since t is a point of density of Tβ there is a sequence of
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times {tk}k converging to t such that γ(tk) ∈ Rβ for all k. So, taking a local chart if necessary
and by regularity of Rβ , we obtain (because γ(t) and all γ(tk) belong to Rβ)

γ̇(t) = lim
k→∞

γ(tk)− γ(t)

tk − t
∈ Tγ(t)Rβ ,

which, by (C.1), concludes the proof of (iii).

C.0.4. Proof of (iv). By construction, for every x ∈M ,

dimH(x) ≤ min
{
dim

(
ker(ω⊥

a )
)
; a = (x, p) ∈ ∆⊥} .

The result over R0 follows directly from Theorem 1.1(iv). If we have dimH|Rα
= m for another

stratum Rα, then ∆ ∩ TRα has constant dimension m. Since the dimension of Rα is smaller
than n, this contradicts the fact that ∆ is bracket generating.
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[9] A. Belotto da Silva, A. Parusiński, and L. Rifford. Analytic minimal rank sard conjecture.
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Cedex 02, France

Email address: adam.parusinski@unice.fr
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