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Abstract—Anomaly detection (AD) plays a critical role in a
wide variety of big data applications, including cybersecurity,
monitoring, and network systems. It consists in finding patterns
in time series data that indicate unexpected events such as faults
or defects. Traditional AD approaches, predominantly based on
reconstruction techniques, often yield suboptimal performance,
particularly when anomalies are present in the training set.
Conversely, contrastive learning (CL) has shown significant
performance in image processing tasks and is increasingly ap-
plied in time series data classification and forecasting. However,
traditional CL frameworks are not well-adapted for time series
AD due to two key challenges. First, AD is typically performed
only on normal instances, and thus CL does not benefit from
knowledge about anomalous instances. Second, the temporal
nature of time series data is often neglected when computing
time series similarity, thereby hindering the effective learning of
time series representation.

To overcome these limitations, we propose CATS, a novel
approach that leverages a temporal similarity measure to learn
time series representations. Moreover, through negative data
augmentation, CATS generates a more realistic distribution of
anomalies, which enables anomaly-informed CL. Extensive ex-
periments conducted on six real-world datasets demonstrate that
CATS outperforms existing AD methods. Our results highlight
the efficacy of CATS in enhancing time series AD performance
in big data environment across various application domains.

Index Terms—anomaly detection, time series, cloud gaming,
contrastive learning

I. INTRODUCTION

In various application domains such as networking or cyber-
security, large volumes of time series datasets are generated
and crucial for monitoring systems performance. Accurately
detecting anomalies within these datasets are essential for
identifying networks faults, device/system malfunctions, se-
curity breaches or service degradations that can significantly
impact operations and user quality of experience (QoE). How-
ever, labeling real-time series data for anomaly detection is
challenging due to the large amount of time-series data and
the scarcity of labeled anomalies.

Consequently, unsupervised time series anomaly detection
(AD) has received significant attention in machine learning
research community leading to various proposed techniques.
These can be categorized into five groups: reconstruction-
based [1]–[4], distance-based [5], one-class classification-
based [6], [7], isolation-based [8], and generative-based [9],
[10]. These techniques learn normal patterns from normal data
and detect anomalies based on deviations from the learned

normality. However, these techniques have some limitations
as they can be affected by data contamination from unknown
anomalies in training sets.

To enhance the performance of time series AD, contrastive
learning (CL) [11] has emerged as a promising approach,
increasingly applied to various classification and forecasting
tasks [12]–[15]. CL learns data representations by contrasting
positive and negative views through data augmentation. This
process clusters similar views while repelling dissimilar ones,
enhancing transformation-invariant properties.

However, in time series analysis tasks, the exploration of
data augmentation techniques has not yet been as extensive
as in the field of computer vision. Some previous works in
this field have used CL for anomaly detection. Nevertheless,
they did not utilize a similarity function specifically designed
for time series data, resulting in an inefficient exploitation of
the temporal aspect inherent in multivariate time series data,
which are nevertheless crucial for modeling. To address these
limitations, we propose in this paper an end-to-end method
called contrastive learning for anomaly detection in time series
(CATS). Our contributions can be summarized as follows:

• Using Dynamic Time Warping (DTW) similarity, we
propose a novel DTW-based temporal contrastive learning
loss to efficiently model multivariate time series.

• We use negative data augmentations to create synthetic
anomalies, establishing a realistic out-of-order distribu-
tion that contrasts with normal instances in the training
set.

• We conduct extensive empirical experiments on large
real-world and popular benchmark time series datasets.
Furthermore, we conduct experiments on time series
datasets in the networking domain, collected from cloud
gaming platforms. We demonstrate the effectiveness of
our proposed framework and its generalization capabili-
ties compared to previous AD techniques.

• We conduct ablation studies to evaluate the effectiveness
of each component of the proposed method, data contam-
ination and the influence of hyper-parameters.

The remainder of the paper is organized as follows. Section II
discusses the related work. Section III describes CATS method
and Section IV presents the experimental results.



II. RELATED WORK

A. Unsupervised Anomaly Detection for Time Series

Anomaly detection in time series data has been extensively
studied in the literature with various approaches such as
statistical methods [16], distance-based methods [17], density-
based methods [5], isolation-based methods [8] and one-class
classification methods [7]. The emergence of deep learning
led to many novel approaches including Deep-SVDD [6],
GAN-based approaches [9], [10], [18], [19], reconstruction-
based approaches [1]–[4], [10], [16] or transformers-based
approaches [20], [21] where all of them, mainly rely on
unsupervised learning due to the scarcity of labeled data.

Reconstruction-based models utilize autoencoders to train
models with only normal data and detect anomalies by re-
constructing a point or a sliding window from test data and
comparing them to the actual data according to a recon-
struction error. Variational autoencoders have been applied
to this approach, assuming that the training data follows a
Gaussian distribution. However, these models often struggle
with generalization to other datasets that exhibit different data
distributions. On the other hand, GAN-based approaches and
one-class classification methods are prone to model collapse
during training, leading to instability issues [22]. Other studies
leveraged transformers to efficiently extract temporal informa-
tion for time series anomaly detection but training transformers
demand significant computing resources [23].

Compared to the aforementioned approach, in this work
contrastive learning is adopted to enhance the anomaly de-
tection performance and the robustness to data contamination.

B. Contrastive Learning for Time-Series

Contrastive Learning has emerged as a prominent self-
supervised learning technique demonstrating a great potential
across various domains, including computer vision and natural
language processing. Traditional contrastive learning models
[24]–[26] construct positive sample pairs i.e. augmented views
of the same instance and negative pairs i.e. augmented views
of other instances or a dictionary queue to facilitate repre-
sentation learning with data augmentation techniques. The
effectiveness of these approaches relies on key factors such
as data augmentation, efficient sampling of negative pairs,
and large batch sizes [25]. Recent advancement in contrastive
learning architectures such as [27], [28] have shown that mean-
ingful representations can be learned without the explicit need
of negative pairs or large batch sizes, achieving remarkable
performance in downstream tasks.

In the domain of time series analysis, recent techniques
have been developed to learn representations from time-series
data. For instance, some methods introduced triplet loss and
temporal negative sampling [13], while others leveraged local
smoothness to define neighborhoods [29]. [12] utilized tem-
poral and contextual contrastive learning on different views
of time-series data generated with weak and strong data
augmentation. Similarly, TS2Vec [14] employed a hierarchical
contrastive learning approach, using augmented context views

to capture multi-scale information. These aforementioned
methods have demonstrated robust performance across various
downstream tasks, notably in forecasting and classification.

CL techniques have also been applied to anomaly detec-
tion in time-series data. Some studies employed deterministic
contrastive learning with learnable transformations [30], while
others combined negative sample-free contrastive learning
with one-class classification [31]. Other approaches [32]–[34]
have utilized temporal transformations to generate anomalies
from normal windows and have proposed frameworks that
enhance anomaly detection through representation learning.

While some studies suggest that negative pairs are not
essential for contrastive learning, we believe that negative
pairs, constructed through negative data augmentations, bring
some learning knowledge that may enhance AD tasks, unlike
their impact on other downstream tasks. In contrast to the
aforementioned AD approaches, our approach CATS considers
temporal similarity using a temporal loss to better discriminate
anomalous time series windows.

III. PROPOSED METHOD: CATS

In this section, we first formulate the multivariate time series
anomaly detection problem. We then present the architecture
of CATS and provide a detailed description of each of its
components. In particular, we explain the data augmentation
techniques employed in our work, introduce and describe
the temporal contrastive loss, and the global contrastive loss.
Finally, we define the computation of the anomaly score,
which is utilized for the detection of time series anomalies.

A. Problem Formulation

Given a multivariate time series dataset X =
{x1, x2, ..., xT }, where T is the length of X and xt ∈ Rm

denotes a m-dimensional vector corresponding to the values of
our m features at time t. The dataset is sliced into sequences
of time series windows W = {w1, w2, ..., wT−p+1} with
stride 1 where wt = {xt, xt+1, ..., xt+p−1} ∈ Rp×m, p being
the window size.

Time series anomaly detection aims at training an unsuper-
vised anomaly detection model M that given an unknown
window time series w̃t at inference time will output an
anomaly score s(w̃t). By using this anomaly score and a
threshold η, a binary label ỹt ∈ {0, 1} is computed which
indicates whether a window is anomalous (ỹt = 1) or not
(ỹt = 0).

B. Model Architecture

The overall architecture of CATS is shown in Fig. 1. Our
architecture comprises the following components:

• A stochastic data augmentation module that transforms
each input window time series wt to three views: two
positive views {w+

i ;w
+
i+N} and a negative view w−

i .
• A siamese network encoder fθ that learn representations

from augmented views of the input window time series
hi = fθ(wi) ∈ Rp×d with d the feature size.



Fig. 1: The proposed architecture of CATS. (a) is the training phase which consists in time series representation learning with
temporal contrastive learning (TCL) and global contrastive learning (GCL). (b) is the inference phase where given an unknown
window time series w̃i its anomaly score is computed as the distance between its latent representation h̃i and the centroid of
training samples zcent.

• A projection head gθ that projects the latent represen-
tations hi to a projection space zi = gθ(hi) due to its
importance for contrastive learning [25].

• A global contrastive loss (GCL) that performs contrastive
learning on projection space giving the set of (zi) from
the batch using an improvement of NT-Xent loss [35].

• Random cropping is applied on feature space repre-
sentations hi to built temporal pairs for the temporal
contrastive learning.

• A temporal contrastive loss (TCL) to enforce temporal
similarity between cropped versions (hi ∈ Rk×d) (k the
crop size) of latent vectors and a triplet loss.

The model is trained using a contrastive loss model com-
bining the temporal and the global contrastive losses defined
as follows:

L = α.LTCL + β.LGCL (1)

where α and β are two hyper-parameters representing the
relative weight of each loss.

At inference time, the projector gθ is discarded and a
anomaly score is obtained by computing the distance between
an unseen window and the center of latent representations.

C. Data augmentation

Data augmentation plays a crucial role in contrastive learn-
ing, facilitating the learning process. While diverse data aug-
mentation techniques are available in the computer vision
domains, selecting appropriate data augmentation methods for
time series remains challenging. Building upon previous works
that have utilized or evaluated data augmentation for time
series [25], [36], we define a set of positive data augmentations
D+

aug = {d+1 , . . . , dn+
aug

} which are as follows, given a
window time series w = (x1, ..., xp):

• Jitter transformation adds a i.i.d Gaussian noise with zero
mean and variance σ2 to the time series.

djitter(w) = w +N (0, σ2) (2)

• Scaling transformation changes the global magnitude of a
portion P of the time series by multiplying all the values
by a scaling factor α.

dscaling(w) = αscaling ∗ wP (3)

In the context of unsupervised learning for anomaly detec-
tion, the focus is typically on modeling normality using only
normal instances during training, and anomalous instances
are only encountered during inference. We use negative data
augmentations to incorporate weak supervision during the
representation learning stage, thus providing prior information
about what does not constitute normal data [32]–[34], [37].
This approach enhances the learning process by incorpo-
rating knowledge of abnormal patterns during training. We
thus define a a set of negative data augmentations D−

aug =
{d−1 , . . . , dn−

aug
} which are as follows:

• Mask transformation consists in randomly masking some
points of the time series.

dmask(w) = (x̂1, ..., x̂p) with x̂i = 0 (4)

• Trend transformation applies a linear drift wdrift to the
time series to simulate a shift in the trend of the time
series.

dtrend(w) = w + wdrift (5)

Thus, given a time series window wi from a batch B
of size N , we generate two positive views w+

i and w+
i+N

and one negative view w−
i resulting in a batch of positive

samples B+ = (w+
i )

2N
i=1 and a batch of negative samples

B− = (w−
i )

N
i=1.

However, the range of anomalies present in time series data
is usually large, and it is not feasible to expect negative data
augmentations to generate all possible anomalies. Therefore,
similar to previous studies [32]–[34], random data augmenta-
tion is employed in this paper. Specifically for each window
wt, and a selected data augmentation d−i ∈ D−

aug , diversity
is enforced through the hyperparameters of di that control the
augmentation process. These hyperparameters include the ratio
of features nfeat that will be augmented and the ratio of time



points nt that will be augmented per features. Given nfeat

(resp. nt), and a given time series window wt, a random subset
of features (resp. time steps) will be chosen for augmentation.
This approach allows for increased variability and diversity
in the generated augmented samples, enhancing the learning
process for anomaly detection in multivariate time series data.

D. Temporal Contrastive Learning

One shortcoming of previous anomaly detection approaches
using contrastive learning is that they do not exploit temporal
dependencies for contrasting. We address this limitation by
proposing a novel Temporal Contrastive Loss (TCL). TCL
aims at learning temporal properties, and clusters time series
window that are temporally similar while pushing away win-
dows that are dissimilar. To achieve that representation in the
feature space, we use DTW (Dynamic Time Warping) [38]
as a time series similarity measure that is more suited for
time series forecasting or clustering than classical Euclidean
distance.

DTW similarity measure aims at minimizing the Euclidean
distance between aligned time series under all possible tempo-
ral alignments. However, DTW measure is not differentiable
and is not suitable for gradient-based algorithms. To overcome
this limitation, Soft-DTW [39] was proposed to smooth DTW
and make it differentiable everywhere and then can be used as
a loss function or similarity measure. In this work, we choose
a Soft-DTW variant called Soft-DTW divergence [40] that
unlike the former is positive and minimized when the time
series are equal. Specifically given two time series xi and xj ,
Soft-DTW divergence is defined as follows:

Dγ(xi, xj) = DTW γ
Soft(xi, xj)

− 1

2
(DTW γ

Soft(xi, xi) +DTW γ
Soft(xj , xj))

(6)

with DTW γ
Soft(.) being the Soft-DTW measure and γ a

smoothing parameter.
To enhance the temporal contrastive learning, we build

triplets using cropped versions (subsets of time series windows
as defined in [14]) of the two positive views and a crop version
of the negative view. Specifically, we apply random cropping
on a positive view h+

i ∈ Rp×d to generate two positive
subseries hi

+
1

and hi
+
2
∈ Rk×m where k < p. We do the same

process on a negative view h−
i to obtain a negative subseries

hi
−. The rationale behind building triplets in this way, instead

of using the views resulting from positive and negative data
augmentations to build them, is to ensure that the two positive
subseries will be temporally similar and temporally distant
from the negative subseries. Since we consider only normal
time series windows to build positive pairs, we avoid the
limitation of the cropping strategy raised by [14].

Given this similarity measure, and a triplet of latent repre-
sentations {hi

+
1
;hi

+
2
;hi

−} TCL is defined as follows:

LTCL =
1

N

N∑
i=1

max(Dγ(hi
+
1
−hi

+
2
)−Dγ(hi

+
1
−hi

−)+m; 0)

(7)
where Dγ(.) is the Soft-DTW divergence measure, m the
margin (minimum distance that must be kept between positive
samples and negative samples). One advantage of Soft-DTW
divergence measure is that it can be applied to time series
of different sizes and then our TCL can be computed using
the cropped versions of the latent vectors. However, the
computation of Soft-DTW has a quadratic time complexity
which can increase the training time.

E. Global Contrastive Learning

We define a Global Contrastive Loss to learn representations
at the instance level. This loss improves the NT-Xent loss
by considering more negative pairs for contrastive learning.
Traditionally, given an instance zi in a batch of size N , CL
models using this loss contrast one positive pair (zi, z+i ) i.e.,
two views from the same instance to N − 1 negative pairs
(zi, z

+
j ) ∀j ̸= i i.e., pairs with views of different instances.

However, in anomaly detection tasks that are performed on
normality assumptions, the training data mostly belong to the
same class, i.e., normal data. To enhance, the representation
learning, we include views coming from negative data aug-
mentation. Specifically, we form a negative pairs by computing
the similarity between an instance and all negative views of all
the instances in the batch (zi, z

−
j ) ∀j ∈ [|1;N |]. Consequently,

we get one positive pair and 2N − 1 negative pairs for each
zi in the batch. Then, the GCL is expressed as follows:

LGCL =
1

2N

∑
i∈B+

log
exp(sim(zi, zi+N )/τ)∑

j∈B and j ̸=i exp(sim(zi, zj)/τ)
(8)

with B = B+ ∪ B−, N the batch size, τ the temperature
hyperparameter and sim(.) the cosine similarity.

F. Anomaly score

After model training, we discard the projection head gθ and
we only use the encoder fθ for our downstream task since hi

feature have more information for contrastive learning than zi
[25]. To identify anomalies, we follow the same assumptions
as one-class classifiers and we expect the normal data to be
clustered and anomalies to lies away from that cluster. Hence,
given a window from the test set w̃t, we define the anomaly
score s(.) as follows:

s(w̃t) = D(fθ(w̃t), zcent) = D(z̃t, zcent) (9)

zcent =
1

Ntrain

Ntrain∑
i=1

wi (10)

where D(.) is the L2-distance measure function, zcent is the
centroid of latent features of the training set and Ntrain is the
size of the training set.



TABLE I: Datasets summary.

Dataset Train Test Dimensions Anomalies (%)

Benchmark
SMD 708405 708420 28*38 4.16

SMAP 135183 427617 55*25 13.13
MSL 58317 73729 27*55 10.72

Cloud Gaming
STD 80486 169706 14 52.57
GFN 27415 22667 14 55.36
XC 83611 17918 14 24.32

One advantage of using Eq. 9 as anomaly score is that zcent
can be computed offline and stored allowing lower inference
time.

IV. EXPERIMENTS

This section begins by outlining the experimental setup,
including the datasets and anomaly detection (AD) models
used for comparison. The experiments focus on evaluating
CATS’s accuracy in anomaly detection against other models
across different datasets. Additionally, we conduct an ablation
study on CATS’s components, examine its robustness to data
contamination, and analyze the effects of hyper-parameters.

A. Dataset description

We evaluate the performance of our technique on three
public anomaly detection benchmark datasets to confirm that
our approach maintains its effectiveness when applied to them.
The selected datasets are listed as follows: i) SMD dataset
(Server Machine Dataset) which consists of 38 sensors con-
tinuously monitored during 10 days collected on 28 servers. ii)
MSL dataset (Mars Science Laboratory) and iii) SMAP (Soil
Moisture Active Passive) are two datasets collected from a
monitoring system. The benchmark datasets (SMD, MSL and
SMAP) are multi-entity datasets (contain different subdatasets)

We also evaluate the model on case study datasets specif-
ically collected for this purpose. The case study datasets
are multivariate time-series features collected on a cloud
gaming testbed for QoE degradation detection in low-latency
applications [41]. These datasets consist of QoE (Quality
of Experience) and QoS (Quality of Service) time series
collected on three cloud gaming platforms: iv) STD (Stadia
from Google), v) GFN (GeForceNow from NVIDIA) and vi)
XC (Xbox Cloud from Microsoft).

B. Benchmark AD models

We compare our models against state-of-the-art algorithms
or traditional algorithms mostly used in previous studies for
anomaly detection in time series data.

• Shallow machine learning algorithms: we use Isolation
Forest (IF) [8] that isolate anomalies using features
values.

• Unsupervised time-series anomalies detection: We se-
lect i) Deep-SVDD [6], ii) Auto-Encoder (AE), iii) Un-
Supervised Anomaly Detection (USAD) [1] that recon-
struct normal data and use reconstruction error to detect
anomalies.

• Contrastive learning algorithms: We use the following
contrastive learning architectures from i) SimCLR [25],
ii) SimSiam [27], iii) TS2Vec [14].

C. Implementation details

We choose as encoder fθ, the same encoder architecture
as TS2Vec, which consists of a dilated CNN module with
ten residual blocks of 1D convolutional layers. The projection
head gθ is a three-layer MLP with ReLU activation. The
embedding size and projection size are 100 and 50 for use-case
datasets and 128 and 128 for benchmark datasets respectively.
CATS is trained for 100 epochs with a batch size of 512,
using Adam optimizer with a learning rate of 10−3, a weight
decay of 10−5 and the learning rate is decayed using cosine
decay schedule. GCL loss temperature parameter τ is set to
0.1, TCL margin to 5 and TCL smooth parameter γ to 1 in
all experiments. We use α = β = 0.5. The positive data
augmentations are jitter and scaling and the negative data
augmentations used are trend and mask.

To allow a fair comparison with contrastive learning bench-
mark methods, we adopt the same encoder to learn represen-
tations, the same positive data augmentation and the same
anomaly score procedure for all benchmarks (cf. in Section
III-F). All deep learning architectures are trained using the
same aforementioned hyperparameters.

All experiments are performed on a workstation with the
following specifications: Ubuntu 22.04, Intel(R) Xeon(R) W-
2235 CPU @ 3.8GHz with 32 GB of RAM, NVIDIA GeForce
RTX 3090 Ti with 24GB, Python 3.10.6, PyTorch 2.2.0 and
CUDA 12.1. The datasets and the code to reproduce all the
experiments are provided.1

D. Evaluation metrics

The performance of unsupervised anomaly detection models
is usually assessed using well-known Precision (P), Recall (R)
and F1-Score (F1) metrics. Since the values of those met-
rics are threshold-dependent, some studies prefer threshold-
independant metrics like AUC (Area Under the Curve) or
AUPR (Area Under Precision-Recall curve). Due to the lim-
itations of F1-score [42] for binary classification, we also
include MCC (Matthews Coefficient Correlation) metric in our
evaluation.

We then report the performance results using AUC, F1
and MCC. Point Adjust (PA) approach is not used in our
evaluation, despite being very popular and used in several
time series AD studies, since it was shown [32], [34], [41]
to overestimate the effectiveness of time series models.

E. Performance comparison

Table II presents the anomaly detection performance of
CATS in comparison to other methods, evaluated using the
AUC, F1, and MCC metrics.

1https://github.com/joelromanky/cats



TABLE II: Performance comparison on the datasets. Mean and standard deviation computed over all entities for benchmark
datasets and over five runs for case-study datasets. Bold values indicate best results.

Models IForest Deep-SVDD AE USAD SimCLR SimSiam TS2Vec CATS

B
en

ch
m

ar
k

da
ta

se
ts

SMD
AUC 77.10(±11.9) 75.31(±14.5) 81.33(±13.2) 81.08(±12.5) 80.83(±14.7) 77.26(±14.9) 74.25(±16.6) 82.21(±14.3)

F1 29.88(±20.6) 34.75(±21.5) 46.00(±24.3) 46.62(±26.3) 46.51(±25.7) 41.82(±25.3) 43.18(±25.9) 50.65(±23.6)

MCC 29.62(±20.8) 36.25(±22.0) 47.00(±24.1) 47.98(±25.1) 48.06(±24.2) 43.24(±24.9) 44.95(±24.7) 50.85(±23.6)

MSL
AUC 56.94(±14.1) 61.38(±17.1) 62.30(±16.1) 63.31(±14.3) 61.09(±15.4) 62.07(±14.3) 63.95(±15.0) 64.98(±15.7)

F1 21.24(±21.4) 27.93(±25.6) 26.02(±22.9) 27.16(±23.0) 25.72(±23.1) 23.78(±23.2) 28.43(±24.5) 29.15(±24.2)

MCC 11.09(±21.8) 19.24(±29.2) 16.49(±24.4) 17.33(±24.8) 16.30(±25.1) 14.11(±24.0) 19.86(±24.8) 20.14(±27.8)

SMAP
AUC 56.98(±17.3) 62.52(±19.1) 64.30(±19.6) 61.11(±19.4) 63.99(±17.7) 62.12(±17.1) 61.42(±20.3) 64.07(±18.6)

F1 22.80(±27.2) 29.20(±33.0) 28.93(±33.5) 30.10(±33.1) 28.23(±32.2) 27.46(±33.2) 28.26(±33.2) 29.07(±29.07)

MCC 11.38(±29.0) 23.93(±33.1) 23.96(±34.0) 23.66(±34.9) 22.52(±32.2) 21.44(±32.5) 23.5(±32.8) 24.28(±32.7)

C
as

e-
st

ud
y

da
ta

se
ts STD

AUC 74.57(±1.63) 91.19(±1.08) 96.04(±0.27) 96.09(±0.08) 95.78(±0.39) 75.65(±11.3) 95.63(±1.94) 97.93(±0.13)

F1 75.79(±1.42) 87.18(±1.24) 90.35(±0.51) 90.02(±0.24) 90.15(±0.52) 74.21(±9.22) 92.83(±1.92) 94.06(±0.45)

MCC 39.56(±3.66) 71.83(±2.77) 78.93(±1.14) 77.89(±0.36) 78.48(±1.17) 39.31(±19.8) 84.33(±4.12) 86.72(±0.88)

GFN
AUC 61.97(±0.87) 71.78(±3.41) 74.05(±0.84) 74.84(±0.42) 78.50(±1.95) 67.07(±3.25) 74.91(±4.32) 84.35(±1.23)

F1 74.12(±0.71) 75.51(±2.11) 74.05(±0.84) 77.80(±0.38) 81.20(±2.61) 74.25(±2.93) 76.76(±2.71) 82.88(±0.96)

MCC 17.07(±1.27) 24.26(±6.56) 28.08(±0.14) 31.40(±1.22) 37.46(±3.87) 17.86(±6.27) 28.19(±8.39) 47.27(±1.49)

XC
AUC 78.71(±1.13) 67.32(±6.52) 89.18(±2.31) 89.97(±0.26) 85.81(±3.17) 83.35(±10.6) 96.96(±1.36) 96.10(±0.41)

F1 63.33(±1.18) 50.83(±7.69) 75.94(±3.30) 77.59(±0.58) 70.58(±3.45) 69.09(±13.4) 89.60(±2.03) 86.69(±0.83)

MCC 43.42(±2.43) 27.40(±11.4) 63.95(±4.63) 65.35(±0.72) 56.59(±4.89) 52.30(±21.3) 84.07(±2.94) 79.67(±0.11)

1) Benchmark datasets: Since the benchmark datasets con-
sist of multiple sub-datasets, we report the average perfor-
mance of each model across all sub-datasets. On average,
CATS demonstrates superior performance on SMD and MSL,
and ranks second-best on the SMAP. The results in this
study are reported using the standard F1-score instead of the
more commonly used F1-PA metric, which has a tendency to
inflate performance estimates [32], [34], [41]. Despite yielding
lower values, the standard F1-score offers a more reliable and
consistent basis for comparison across datasets. Consequently,
our reported scores are below those documented in previous
works on time series anomaly detection which used F1-PA
metric. However, they are consistent with those of other studies
that have used the standard F1-score [34]. Moreover, the
benchmark datasets contain sub-datasets with varying levels
of anomaly detection difficulty (e.g., models report a standard
F1-score of 0 on some sub-datasets, while achieving scores as
high as 90% on others). Consequently, averaging results across
all sub-datasets leads to overall scores with large standard
deviations.

2) Case-study datasets: The reported outcomes on the case
study datasets represent the average of five independent runs,
ensuring fair comparisons across methods using the same
evaluation metrics as previously mentioned. CATS achieves
the best performance on all datasets, except for the XC dataset,
where it ranks second.

The experimental results show that our model performs
on average better than the other methods on all datasets. It
also suggests that traditional contrastive learning only is not
sufficient for AD since unsupervised models like AE and
USAD perform on average better than SimCLR or SimSiam.
However, by considering temporal dependencies and introduc-

ing knowledge of the anomaly class, the AD performance is
enhanced as shown through CATS results.

F. Ablation studies

We conduct two ablation studies. First, we assess the
effectiveness of the two loss components LTCL and LGCL.
The results are shown in Table III. We compare our LGCL

to NT-Xent loss LNTXent that performs contrastive learning
without using negative augmentations and also compare the
performance by removing random cropping Lw/o−crop

The results show that each loss individually achieves lower
score than the combined loss in CATS. On the one hand,
GCL outperforms the NT-Xent loss on AD tasks as indicated
by the MCC score which fairly reflects the model’s ability
to distinguish well between normal instances and anomalous
instances. On the other hand, TCL individually achieves
slightly lower performance than GCL, but when combined
with GCL contributes to an overall performance enhancement.
This disparity may be attributed to TCL having only one
positive pair and one negative pair for each window time
series, whereas GCL incorporates one positive pair and 2N−1
negative pairs. Using multiple negative pairs to enhance the
discriminative capacity of TCL comes at the expense of longer
training times (O(n4)) due to the quadratic time complexity
of the Soft-DTW divergence. Thus, we opt for using only one
negative pair to maintain reasonable training times. Moreover,
the results show that removing the random cropping stage
negatively impacts the AD performance.

G. Data contamination impact

To assess the robustness of our model to data contamina-
tion, we introduce various levels of anomalies, denoted as
c ∈ {0, 4, 8, 12, 20}, into the training set. These contamination



TABLE III: Ablation study on loss components.

GFN XC

Loss F1 MCC F1 MCC

LNTXent 81.20(±2.61) 37.46(±3.87) 70.58(±3.45) 56.59(±4.89)

LGCL 82.52(±1.77) 40.73(±2.32) 85.68(±2.52) 78.31(±3.67)

LTCL 79.93(±2.69) 38.12(±8.32) 76.57(±5.68) 65.71(±8.34)

Lw/o−crop 80.44(±2.01) 33.45(±1.96) 85.68(±2.52) 78.31(±3.67)

LGCL + LTCL 82.88(±0.96) 47.27(±1.49) 86.69(±0.83) 79.67(±0.11)

Fig. 2: CATS robustness to data contamination.

rates are chosen to reflect realistic scenarios. Fig. 2 illustrates
the F1-score of CATS in comparison to other models on the
GFN dataset, considering different levels of data contamina-
tion.

Among the compared models, with the exception of the
iForest model, the performance of all models deteriorates
as the data contamination rate increases. Although CATS
is slightly more affected than some models, it consistently
demonstrates the highest performance across all contamination
levels when compared to the other models even with high
contamination rates of up to 20%.

We attribute CATS’s behavior to the use of negative data
augmentation during the learning process, which helps the
model recognize anomalies. However, the extent of this im-
provement is limited due to the use of synthetic anomalies.
Further experiments should be conducted in future work to
explore the potential enhancements in robustness that can
be achieved by incorporating more data-specific synthetic
anomalies.

H. Hyperparameters sensitivity

We study here how some CATS hyperparameters, namely
the temperature τ , Soft-DTW smoothing parameter γ, the
margin m, the embedding size, the projection size and the
batch size may impact the performance. We illustrate that
with Fig. 3 on GFN dataset. Our experimental results reveal
that the temperature parameter τ and the margin m are the
most influential hyperparameters. Lower τ values enable the

Fig. 3: CATS sensitivity evaluation to its hyperparameters
using F1-score and MCC metrics.

model to enhance its learning by focusing on hard-negatives
i.e., negative samples that are closer to the positive samples
[25]. Conversely, the results show that larger margins lead
to suboptimal performance. This is because larger margins
penalize negatives that are not distant enough from the anchors
and the positives.

Furthermore, our findings indicate that lower embedding
sizes, projection sizes and batch sizes reduce the efficacy
of CATS model to learn a good representation for AD.
These results highlight the importance of the hyperparameters
selection for CATS model.

V. CONCLUSION AND FUTURE WORK

This paper introduces CATS, a comprehensive end-to-end
contrastive learning approach for anomaly detection in time
series data. CATS addresses the limitations of traditional
contrastive learning methods by incorporating two key com-
ponents: temporal similarity and negative data augmentation.
By employing negative data augmentation, synthetic anomalies
are introduced, significantly enhancing the model’s capability
to effectively detect anomalies. Additionally, CATS introduces
a novel DTW-based temporal loss, enabling efficient time se-
ries representation learning and capturing the temporal patterns
inherent in time series data.

Empirical evaluations conducted on benchmark datasets and
use-case datasets demonstrate the significant improvements
achieved by CATS in anomaly detection compared to com-
peting unsupervised models. Notably, CATS exhibits superior
performance even in scenarios involving data contamination.

In future research, we aim to explore further performance
and robustness enhancements in anomaly detection by in-
corporating multiple negative pairs along with the temporal
contrastive loss without incurring higher time complexity and
dataset-specific data augmentation.
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